Feature Spaces
N N

Burr H. Settles

CS-540, UW-Madison
WWW.Cs.wisc.edu/~cs540-1
Summer 2003

Announcements

m Homeworks #4/#5 are due next Tuesday (7/29)
m Project papers/reports are due one week from
today (Friday, 8/1)
m Thenear future:
— Next week we have a few more lectures

— Mon-Wed of the week afterward will be project
presentations (sign up sheet at the front)

— Review for final exam aweek from Thursday (8/7)
— Fina exam in class that Friday (8/8)

What is a Feature Space?

m Sofarin artificial intelligence, we' ve discussed all
kinds of high-demensional “spaces,” for example:

— Search space: the set of states that can be reached in a
search problem

— Hypothesis space: the set of hypothesis that can be
generated by a machine learning algorithm

m Inthislecture, we'll talk about feature spaces, and
therolethat they play in machine learning

What is a Feature Space?

m Chances are, you aready understand the idea of
feature spaces even if you don’t know it yet

m Recall that in our inductive learning framework,
we usually represent examples as a vector of
features: (Xq, Xo,..., Xy

m Each feature can be thought of asa“dimension”
of the problem... and each example, thenisa
“point” in an n-demensional feature space

lllustrative Example: 2D

&

2000|

¥2 (s2)

1000

1
) 500 1000 Ta%0

Thisis the phoneme disambiguation problem from the neural network
lecture: there were only two features (thus 2 “dimensions’), so it is easy

to think of each example asa“point” in the 2D feature space. s

lllustrative Example: 3D

Separating Plane for the Federalists Papers — (Fung)

upon

i

T ze— | ‘Madison (50 Papers)t L=

to Fle T T woud

Here is an example of a 3D feature space: the federalist papers were
written in 1787-1788 by Hamilton, Jay, and Madison. The authorship of
12 of those papers are disputed between Hamilton/Madison. Using the
frequency of use for 3 words as features, we can consider each of the
documentsa“point” in 3D feature space.

= Learning and Feature Spaces

m SO every time we describe a classification
learning problem with a feature-vector, we
are creating afeature space

|
m Then the learning al gorithms must be
manipulating that feature space in some
way in order label new instances
|-

Decision Trees

m Let’'sthink about decision trees and what they are
doing to the feature space:
— Each feature is adimension in feature space
— A decision tree recursively splits up the examples
(pointsin feature space) based on one feature at atime

m So adecision tree essentialy draws dividing lines
in adimension of feature space, and recursively
subdivides along other dimensions

— Theselines are parallél to the axis of that dimension
— We say that decision-trees create axis-parallel splits

= Decision Trees

Given the above Venn diagram and these positive and
negative training examples, the decision tree will draw axis-
parallel boundaries to separate the two classes 9

k-Nearest Neighbors

m The k-nearest neighbors algorithm is a bit
uniquein its treatment of feature space:

— Sinceit remembersall of the training examples
anyway, it partitions the feature space when it
isgiven atest example

— The boundaries a so depend on the value of k,
the higher kis, the more complex and
expressive the partitioning can be

= k-Nearest Neighbors

AN i \\ // \\
N - I \\ // \ +
\\ | o+ / \
- \\ + \ II \\
/\\(/L‘\\\ \\\ // + /—--—
e N
__< + : + , \(\\ -
AN | | N T
N I - r-
LN [.
. [| /

It's easiest to visualize what the basic 1-NN algorithm does:
draw aVoronoi diagram, which constructs convex polygons
around the examples for a more complex partitioning u

Perceptrons

m Recall that a perceptron learns a linear
hypothesis function h
m S0 it can only partition the data by drawing
a“linear hyperplane”
— Imagine an n-dimensional feature space
— The perceptron learns an (n-1)-dimensional
“ling” (or “plane’ or “surface”) that separates
the classes

TR B

Perceptrons

Clearly, smple perceptrons cannot completely separate the
positives from the negatives, but they will try to learn a
linear hypothesis that does as best they can

13

TR B

Neural Networks

m Recall that as soon as we go from asingle
perceptron to afull network, the hypothesis
function becomes much more expressive

— With only one hidden layer we can learn any
arbitrary classification problem
— Wl given enough hidden units, anyway

TR B

Neural Networks: 2 Hidden Units

//
- - +
- +
- - +
// + —
-~ -
-~ P
// P
— -
// + ///
-
-
- -
-
+ - 3
-

With only two hidden units, a neural network can learn two
different hyperplanes to separate the data completely

15

TR B

Neural Networks: c Hidden Units

With an arbitrary number of hidden units, the network can
learn afunction that is much more expressive, even
appearing to be “contoured” (e.g. phoneme example) 16

Naive Bayes

m Recall from yesterday that a naive Bayes classifier

learns alinearly separating hyperplane, just asa
perceptron would

m Thedifferencein how thelineturnsout inin the
training mechanism:
— Perceptrons use gradient descent
(discriminative training)

— Nalve Bayes estimates probabilities conditioned on the

class label (generative training)

17

TR B

Different Learning Models

| . + | + +

+ - I+ +

o~

T~ |—+ +

+ - +
|

Decision Trees

— 7]
=
|

I

+ +

1-Nearest Neighbor

-
+ - 27 +
+ . - s+ v

- -—

Perceptron / Naive Bayes Neural Network

The Curse of Dimensionality

m The problem of having too many features
describing an inductive learning task is the
curse of dimensionality

m Aswe add more features to the problem
description, there are more features for the agent
to use when constructing its hypothesis

m More features make the model more expressive,
but maybe not all of these features are even
relevant to the concept

The Curse of Dimensionality

m Which algorithms suffer most from the curse of
dimensionality?
— k-nearest neighbors: clearly suffers... it usesall
features to compute the distance between examples
— Nalive Bayes: also considers every feature as equally
relevant to the concept function
— Neural networks: can reduce the weights of irrelevant
features close to zero, but it might take BP along time
to converge, and more likely to find alocal minimum
— Decision trees: these seem to do OK ... induced trees
are usually small, and only use “relevant” features

21

= Case Study: Text Classification

m Oneclassic problem that illustrates the curse of
dimensionality is the text classification task:
— Each document is an “example”’

— The documents are labeled from a set of topics, which
|| are classes in our inductive learning framework

— Every word in the vocabulary is a Boolean feature:
either it isin the document or not

m A given document can be hundreds of thousands
of words long, and most of them will not have
anything to do with the topic label!

Feature Selection

m Onepossibility isto... well... induce adecision
tree and use the features that it used
— This sometimes works alright

m But since other |earning algorithms don’t produce
thelogical tree structure, we have problems:
— Thelogical relationship between the featuresis lost
— In the worst case, the tree could overfit and use all of
the features: then we didn’t gain anything

23

= Feature Selection

m Perhaps we can learn alesson from the way
decision trees do things: select only the features
that seem relevant to the problem!

m This should not only improve the classifier, but

- might even speed up learning

— Will result in fewer weights to optimize, fewer
probabilities to estimate, dimensions with which to
compute distance, €tc...

* But how to know what features are important??

= Ranked Feature Selection

m Anocther possibility isto use some scoring function
to rank each feature in the problem, and then
choose the best k features

- — Could choose the top 10%, 25%, 50%, etc.

— Could also look for statistically significant gapsin the
rankings and take those that are above the gap

m So what would make a good ranking function for
feature selection for, say, text classification?

Ranked Feature Selection

m One possibility is to choose the features that have the most
consistent values

— For text classification, this means ranking the features (words) by
how often they appear in the corpus (training set)

— Still doesn't tell us much about correlation between the word and
the various topics

— Infact, if aword appears alot in every document, then it probably
isnot very informative about the topics!

m Another common ranking function is... believeit or not...
information gain!
— Estimates how well the feature (word) “ separates” the datainto the
different class labels
25

RFS for Text Classificiation

G. Forman, “An Extensive Empirical Study of
Feature Selection Metrics for Text Classification,”
Hewlett-Packard Technical Note, 2003

m Compared 12 feature selection methods on the
Reuters news articles text classification dataset
— Included “frequency” and “information gain” feature
sel ection methods
— Usually use linear models (naive Bayes, perceptron,
support vector machines) for these problems

RFS for Text Classificiation

074
all features

Odds —e—

F B
Acc ——

Rand ——
DFreq —e—

all ——

27

BNS —t—

Chi —=—
=

Ace2

10 100 1000
number of features selected

RFS for Text Classificiation

m Clearly the document frequency metric didn’t
“make the headlines”

m Information gain, however, was able to reduce the
feature set from 12,500 words to 50 words without
reducing performance

— That's afinal feature set that's 0.4% the size of the
original vocabulary!

m The“federalist papers’ example earlier also used
feature selection to chose the 3 words 28

Other Selection Methods

m Unfortunately, most of the features we can
rank with a scoring function to must be
Boolean (or at least discrete)

m But k-nearest neighbors or neural networks
deal with continuous features so naturally!

— Isthere some way to do efficiently select
continuous features too?

29

Feature Selection as Search

m Theanswer isto try and perform an optimization
search to find the best feature set:
— States: subsets of the available features
— Actions: add/remove features

— Objective function: maximize performance of the
chosen algorithm on the problem

m This sort of feature selection generalizeswell to
all features, al agorithms, and all problems (even
to regression tasks!)

Feature Selection as Search

m There are two common, efficient waysto search
for afeature set like this...

— Forward chaining: begin with an empty feature set, and
gradually add the feature that most improves
performance of the algorithm, until it begins to drop

— Backward chaining: begin with all available features,
and remove them one at atime until performance drops

m This solves the dilemma of trying to pick a good
initial state, but if we have asow training
algorithm (e.g. neural network) the entire process
can takeawhile...

31

w Feature Induction

m Feature selection can help keep hypotheses from
becoming overly expressive
— Throws out irrelevant features
— Often reduces overfitting for naive Bayes, k-nearest
|| neighbors, and sometimes neural networks

m However, sometimes the feature set we haveisn’t
expressive enough

— In this case, we might want to create new features that

suit the problem well .. thisis called feature induction

32

Feature Induction

m Consider a decision tree being trained on this data set:
x=110; f(x)=0 x=010; f(x)=1
x=100; f(x)=1 x=001; f(x)=0

ID3 might learn this tree: But the real concept is probably:

33

= Feature Induction

m Features x; and x, are at the core of the concept
function (x, O x,)

- m But each feature adloneyields an information gain
of zero (so ID3 won't choose it)

m Perhaps we could make use of atechnique that can
create anew feature (x, 0 x,), and consider itin
learning aswell

Feature Induction

m Another example: recall that naive Bayes assumes
that each feature is independent
— For text classification, this means that each word has
nothing to do with the other wordsin the vocabulary
m Consider classifying newspaper articles:
— If theword “box” occurs in a document, it probably
isn't very informative about any news topic
— Likewise, if the word “office” appears, it might be more
about business, but still not too helpful
— But if we add a new feature, “box office,” thisfeatureis
now highly correlated with “ entertainment”
35

= Feature Induction

m |n practice the best way to perform feature
induction is similar to festure selection:
— Begin with the base set of features
- — Exhaustively propose new features that are logical
operations on the base features
» Again we have trouble with continuous features, which must
be descretized somehow

— Either rank the new features by some scoring function
and add the best k, or do an optimization search like
forward chaining

Feature Induction

A. McCallum, “Efficiently Inducing Features of

Conditional Random Fields,” UAI, 2003.

— Used models called conditional random fields (CRFs)
to learn to extract entity names (people, locations,
organizations, etc.) from labeled text documents

— Induced novel Boolean features using a forward-

chaining sort of approach

Per

Loc

Org

Misc

All

WI/O induction | 61.9%

86.7%

63.5%

77.2%

73.3%

With induction | 93.2%

92.4%

84.4%

80.0%

89.0%

37

Summary

m When describing inductive learning tasks as vector

of nfeatures, we create afeature space
— Examples can be though of as “points’ in n-D space

m What classification algorithms doisto find an
optimal way of partitioning that feature space up
into the correct classes

m We can use feature selection to remove many
irrelevant features from the feature set

m We can aso use feature induction to add new and
potentially more relevant features the feature set

38

