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Announcements

� Homeworks #4/#5 are due next Tuesday (7/29)
� Project papers/reports are due one week from 

today (Friday, 8/1)
� The near future:

– Next week we have a few more lectures

– Mon-Wed of the week afterward will be project 
presentations (sign up sheet at the front)

– Review for final exam a week from Thursday (8/7)

– Final exam in class that Friday (8/8)
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What is a Feature Space?

� So far in artificial intelligence, we’ve discussed all 
kinds of high-demensional “spaces,”  for example:
– Search space: the set of states that can be reached in a 

search problem

– Hypothesis space: the set of hypothesis that can be 
generated by a machine learning algorithm

� In this lecture, we’ ll talk about feature spaces, and 
the role that they play in machine learning
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What is a Feature Space?

� Chances are, you already understand the idea of 
feature spaces even if you don’ t know it yet

� Recall that in our inductive learning framework, 
we usually represent examples as a vector of 
features: 

�
x1, x2,…, xn�

� Each feature can be thought of as a “dimension”
of the problem… and each example, then is a 
“point” in an n-demensional feature space
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Illustrative Example: 2D

This is the phoneme disambiguation problem from the neural network 
lecture: there were only two features (thus 2 “dimensions”), so it is easy 
to think of each example as a “point”  in the 2D feature space.
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Illustrative Example: 3D

Here is an example of a 3D feature space: the federalist papers were 
written in 1787-1788 by Hamilton, Jay, and Madison. The authorship of 
12 of those papers are disputed between Hamilton/Madison. Using the 
frequency of use for 3 words as features, we can consider each of the 
documents a “point”  in 3D feature space.
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Learning and Feature Spaces

� So every time we describe a classification 
learning problem with a feature-vector, we 
are creating a feature space

� Then the learning algorithms must be 
manipulating that feature space in some 
way in order label new instances
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Decision Trees

� Let’s think about decision trees and what they are 
doing to the feature space:
– Each feature is a dimension in feature space
– A decision tree recursively splits up the examples 

(points in feature space) based on one feature at a time

� So a decision tree essentially draws dividing lines 
in a dimension of feature space, and recursively 
subdivides along other dimensions
– These lines are parallel to the axis of that dimension
– We say that decision-trees create axis-parallel splits

9

Decision Trees

Given the above Venn diagram and these positive and 
negative training examples, the decision tree will draw axis-
parallel boundaries to separate the two classes

-

+

-

-

-
-

+ +

+
+

+

+

10

k-Nearest Neighbors

� The k-nearest neighbors algorithm is a bit 
unique in its treatment of feature space:
– Since it remembers all of the training examples 

anyway, it partitions the feature space when it 
is given a test example

– The boundaries also depend on the value of k, 
the higher k is, the more complex and 
expressive the partitioning can be
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k-Nearest Neighbors

It’s easiest to visualize what the basic 1-NN algorithm does: 
draw a Voronoi diagram, which constructs convex polygons 
around the examples for a more complex partitioning
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Perceptrons

� Recall that a perceptron learns a linear 
hypothesis function h

� So it can only partition the data by drawing 
a “ linear hyperplane”
– Imagine an n-dimensional feature space

– The perceptron learns an (n-1)-dimensional 
“ line”  (or “plane” or “surface”) that separates 
the classes
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Perceptrons

Clearly, simpleperceptrons cannot completely separate the 
positives from the negatives, but they will try to learn a 
linear hypothesis that does as best they can
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Neural Networks

� Recall that as soon as we go from a single 
perceptron to a full network, the hypothesis 
function becomes much more expressive
– With only one hidden layer we can learn any 

arbitrary classification problem

– Well, given enough hidden units, anyway
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Neural Networks: 2 Hidden Units

With only two hidden units, a neural network can learn two 
different hyperplanes to separate the data completely
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Neural Networks: ∞ Hidden Units

With an arbitrary number of hidden units, the network can 
learn a function that is much more expressive, even 
appearing to be “contoured”  (e.g. phoneme example)
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Naïve Bayes

� Recall from yesterday that a naïve Bayes classifier 
learns a linearly separating hyperplane, just as a 
perceptron would

� The difference in how the line turns out in in the 
training mechanism:
– Perceptrons use gradient descent 

(discriminative training)
– Naïve Bayes estimates probabilities conditioned on the 

class label (generative training)
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Different Learning Models
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The Curse of Dimensionality

� The problem of having too many features 
describing an inductive learning task is the 
curse of dimensionality

� As we add more features to the problem 
description, there are more features for the agent 
to use when constructing its hypothesis

� More features make the model more expressive, 
but maybe not all of these features are even 
relevant to the concept
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Case Study: Text Classification

� One classic problem that illustrates the curse of 
dimensionality is the text classification task:
– Each document is an “example”
– The documents are labeled from a set of topics, which 

are classes in our inductive learning framework
– Every word in the vocabulary is a Boolean feature: 

either it is in the document or not

� A given document can be hundreds of thousands 
of words long, and most of them will not have 
anything to do with the topic label!
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The Curse of Dimensionality

� Which algorithms suffer most from the curse of 
dimensionality?
– k-nearest neighbors: clearly suffers… it uses all 

features to compute the distance between examples
– Naïve Bayes: also considers every feature as equally 

relevant to the concept function
– Neural networks: can reduce the weights of irrelevant 

features close to zero, but it might take BP a long time 
to converge, and more likely to find a local minimum

– Decision trees: these seem to do OK… induced trees 
are usually small, and only use “relevant”  features
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Feature Selection

� Perhaps we can learn a lesson from the way 
decision trees do things: select only the features 
that seem relevant to the problem!� This should not only improve the classifier, but 
might even speed up learning
– Will result in fewer weights to optimize, fewer 

probabilities to estimate, dimensions with which to 
compute distance, etc…

� But how to know what features are important??
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Feature Selection

� One possibility is to… well… induce a decision 
tree and use the features that it used
– This sometimes works alright

� But since other learning algorithms don’ t produce 
the logical tree structure, we have problems:
– The logical relationship between the features is lost

– In the worst case, the tree could overfit and use all of 
the features: then we didn’ t gain anything
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Ranked Feature Selection

� Another possibility is to use some scoring function 
to rank each feature in the problem, and then 
choose the best k features
– Could choose the top 10%, 25%, 50%, etc.

– Could also look for statistically significant gaps in the 
rankings and take those that are above the gap

� So what would make a good ranking function for 
feature selection for, say, text classification?
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Ranked Feature Selection

� One possibility is to choose the features that have the most 
consistent values
– For text classification, this means ranking the features (words) by 

how often they appear in the corpus (training set)
– Still doesn’ t tell us much about correlation between the word and 

the various topics
– In fact, if a word appears a lot in every document, then it probably 

is not very informative about the topics!

� Another common ranking function is… believe it or not… 
information gain!
– Estimates how well the feature (word) “ separates”  the data into the 

different class labels
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RFS for Text Classificiation

�
G. Forman, “An Extensive Empirical Study of 
Feature Selection Metrics for Text Classification,”  
Hewlett-Packard Technical Note, 2003

� Compared 12 feature selection methods on the 
Reuters news articles text classification dataset
– Included “ frequency”  and “ information gain”  feature 

selection methods
– Usually use linear models (naïve Bayes, perceptron, 

support vector machines) for these problems
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RFS for Text Classificiation
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RFS for Text Classificiation

� Clearly the document frequency metric didn’ t 
“make the headlines”

� Information gain, however, was able to reduce the 
feature set from 12,500 words to 50 words without 
reducing performance
– That’s a final feature set that’s 0.4% the size of the 

original vocabulary!

� The “ federalist papers”  example earlier also used 
feature selection to chose the 3 words
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Other Selection Methods

� Unfortunately, most of the features we can 
rank with a scoring function to must be 
Boolean (or at least discrete)

� But k-nearest neighbors or neural networks 
deal with continuous features so naturally!
– Is there some way to do efficiently select 

continuous features too?
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Feature Selection as Search

� The answer is to try and perform an optimization 
search to find the best feature set:
– States: subsets of the available features
– Actions: add/remove features
– Objective function: maximize performance of the 

chosen algorithm on the problem

� This sort of feature selection generalizes well to 
all features, all algorithms, and all problems (even 
to regression tasks!)
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Feature Selection as Search

� There are two common, efficient ways to search 
for a feature set like this…
– Forward chaining: begin with an empty feature set, and 

gradually add the feature that most improves 
performance of the algorithm, until it begins to drop

– Backward chaining: begin with all available features, 
and remove them one at a time until performance drops� This solves the dilemma of trying to pick a good 

initial state, but if we have a slow training 
algorithm (e.g. neural network) the entire process 
can take a while…
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Feature Induction

� Feature selection can help keep hypotheses from 
becoming overly expressive
– Throws out irrelevant features
– Often reduces overfitting for naïve Bayes, k-nearest 

neighbors, and sometimes neural networks

� However, sometimes the feature set we have isn’ t 
expressive enough
– In this case, we might want to create new features that 

suit the problem well… this is called feature induction
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Feature Induction

� Consider a decision tree being trained on this data set:

x = 110;  f(x) = 0
x = 100;  f(x) = 1

x = 010;  f(x) = 1
x = 001;  f(x) = 0

ID3 might learn this tree:

x1
0

0 1

1 0

x2
0

1 0

x3
1 0

But the real concept is probably:

x1

x2

1 0

1 0

0

x2

0 1

1 0

1
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Feature Induction

� Features x1 and x2 are at the core of the concept 
function (x1 ⊗ x2)

� But each feature alone yields an information gain 
of zero (so ID3 won’ t choose it)

� Perhaps we could make use of a technique that can 
create a new feature (x1 ⊗ x2), and consider it in 
learning as well
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Feature Induction

� Another example: recall that naïve Bayes assumes 
that each feature is independent 
– For text classification, this means that each word has 

nothing to do with the other words in the vocabulary� Consider classifying newspaper articles:
– If the word “box”  occurs in a document, it probably 

isn’ t very informative about any news topic
– Likewise, if the word “office”  appears, it might be more 

about business, but still not too helpful
– But if we add a new feature, “box office,”  this feature is 

now highly correlated with “entertainment”
36

Feature Induction

� In practice the best way to perform feature 
induction is similar to feature selection:
– Begin with the base set of features

– Exhaustively propose new features that are logical 
operations on the base features

• Again we have trouble with continuous features, which must 
be descretized somehow

– Either rank the new features by some scoring function 
and add the best k, or do an optimization search like 
forward chaining
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Feature Induction

�
A. McCallum, “Efficiently Inducing Features of 
Conditional Random Fields,”  UAI, 2003. 
– Used models called conditional random fields (CRFs) 

to learn to extract entity names (people, locations, 
organizations, etc.) from labeled text documents

– Induced novel Boolean features using a forward-
chaining sort of approach

89.0%80.0%84.4%92.4%93.2%With induction

73.3%77.2%63.5%86.7%61.9%W/O induction

AllMiscOrgLocPer
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Summary

� When describing inductive learning tasks as vector 
of n features, we create a feature space
– Examples can be though of as “points”  in n-D space� What classification algorithms do is to find an 

optimal way of partitioning that feature space up 
into the correct classes� We can use feature selection to remove many 
irrelevant features from the feature set� We can also use feature induction to add new and 
potentially more relevant features the feature set


