
1

1

Feature Spaces

Burr H. Settles

CS-540, UW-Madison

www.cs.wisc.edu/~cs540-1

Summer 2003

2

Announcements

� Homeworks #4/#5 are due next Tuesday (7/29)
� Project papers/reports are due one week from

today (Friday, 8/1)
� The near future:

– Next week we have a few more lectures

– Mon-Wed of the week afterward will be project
presentations (sign up sheet at the front)

– Review for final exam a week from Thursday (8/7)

– Final exam in class that Friday (8/8)

3

What is a Feature Space?

� So far in artificial intelligence, we’ve discussed all
kinds of high-demensional “spaces,” for example:
– Search space: the set of states that can be reached in a

search problem

– Hypothesis space: the set of hypothesis that can be
generated by a machine learning algorithm

� In this lecture, we’ ll talk about feature spaces, and
the role that they play in machine learning

4

What is a Feature Space?

� Chances are, you already understand the idea of
feature spaces even if you don’ t know it yet

� Recall that in our inductive learning framework,
we usually represent examples as a vector of
features:

�
x1, x2,…, xn�

� Each feature can be thought of as a “dimension”
of the problem… and each example, then is a
“point” in an n-demensional feature space

5

Illustrative Example: 2D

This is the phoneme disambiguation problem from the neural network
lecture: there were only two features (thus 2 “dimensions”), so it is easy
to think of each example as a “point” in the 2D feature space.

6

Illustrative Example: 3D

Here is an example of a 3D feature space: the federalist papers were
written in 1787-1788 by Hamilton, Jay, and Madison. The authorship of
12 of those papers are disputed between Hamilton/Madison. Using the
frequency of use for 3 words as features, we can consider each of the
documents a “point” in 3D feature space.

2

7

Learning and Feature Spaces

� So every time we describe a classification
learning problem with a feature-vector, we
are creating a feature space

� Then the learning algorithms must be
manipulating that feature space in some
way in order label new instances

8

Decision Trees

� Let’s think about decision trees and what they are
doing to the feature space:
– Each feature is a dimension in feature space
– A decision tree recursively splits up the examples

(points in feature space) based on one feature at a time

� So a decision tree essentially draws dividing lines
in a dimension of feature space, and recursively
subdivides along other dimensions
– These lines are parallel to the axis of that dimension
– We say that decision-trees create axis-parallel splits

9

Decision Trees

Given the above Venn diagram and these positive and
negative training examples, the decision tree will draw axis-
parallel boundaries to separate the two classes

-

+

-

-

-
-

+ +

+
+

+

+

10

k-Nearest Neighbors

� The k-nearest neighbors algorithm is a bit
unique in its treatment of feature space:
– Since it remembers all of the training examples

anyway, it partitions the feature space when it
is given a test example

– The boundaries also depend on the value of k,
the higher k is, the more complex and
expressive the partitioning can be

11

k-Nearest Neighbors

It’s easiest to visualize what the basic 1-NN algorithm does:
draw a Voronoi diagram, which constructs convex polygons
around the examples for a more complex partitioning

-

+

-

-

-
-

+ +

+
+

+

+

12

Perceptrons

� Recall that a perceptron learns a linear
hypothesis function h

� So it can only partition the data by drawing
a “ linear hyperplane”
– Imagine an n-dimensional feature space

– The perceptron learns an (n-1)-dimensional
“ line” (or “plane” or “surface”) that separates
the classes

3

13

Perceptrons

Clearly, simpleperceptrons cannot completely separate the
positives from the negatives, but they will try to learn a
linear hypothesis that does as best they can

-

+

-

-

-
-

+ +

+
+

+

+

14

Neural Networks

� Recall that as soon as we go from a single
perceptron to a full network, the hypothesis
function becomes much more expressive
– With only one hidden layer we can learn any

arbitrary classification problem

– Well, given enough hidden units, anyway

15

Neural Networks: 2 Hidden Units

With only two hidden units, a neural network can learn two
different hyperplanes to separate the data completely

-

+

-

-

-
-

+ +

+
+

+

+

16

Neural Networks: ∞ Hidden Units

With an arbitrary number of hidden units, the network can
learn a function that is much more expressive, even
appearing to be “contoured” (e.g. phoneme example)

-

+

-

-

-
-

+ +

+
+

+

+

17

Naïve Bayes

� Recall from yesterday that a naïve Bayes classifier
learns a linearly separating hyperplane, just as a
perceptron would

� The difference in how the line turns out in in the
training mechanism:
– Perceptrons use gradient descent

(discriminative training)
– Naïve Bayes estimates probabilities conditioned on the

class label (generative training)

18

Different Learning Models

-

+

-

-

-
-

+ +

+
+

+

+

-

+

-

-

-
-

+ +

+
+

+

+

-

+

-

-

-
-

+ +

+
+

+

+

Decision Trees 1-Nearest Neighbor

Perceptron / Naïve Bayes Neural Network

-

+

-

-

-
-

+ +

+
+

+

+

4

19

The Curse of Dimensionality

� The problem of having too many features
describing an inductive learning task is the
curse of dimensionality

� As we add more features to the problem
description, there are more features for the agent
to use when constructing its hypothesis

� More features make the model more expressive,
but maybe not all of these features are even
relevant to the concept

20

Case Study: Text Classification

� One classic problem that illustrates the curse of
dimensionality is the text classification task:
– Each document is an “example”
– The documents are labeled from a set of topics, which

are classes in our inductive learning framework
– Every word in the vocabulary is a Boolean feature:

either it is in the document or not

� A given document can be hundreds of thousands
of words long, and most of them will not have
anything to do with the topic label!

21

The Curse of Dimensionality

� Which algorithms suffer most from the curse of
dimensionality?
– k-nearest neighbors: clearly suffers… it uses all

features to compute the distance between examples
– Naïve Bayes: also considers every feature as equally

relevant to the concept function
– Neural networks: can reduce the weights of irrelevant

features close to zero, but it might take BP a long time
to converge, and more likely to find a local minimum

– Decision trees: these seem to do OK… induced trees
are usually small, and only use “relevant” features

22

Feature Selection

� Perhaps we can learn a lesson from the way
decision trees do things: select only the features
that seem relevant to the problem!� This should not only improve the classifier, but
might even speed up learning
– Will result in fewer weights to optimize, fewer

probabilities to estimate, dimensions with which to
compute distance, etc…

� But how to know what features are important??

23

Feature Selection

� One possibility is to… well… induce a decision
tree and use the features that it used
– This sometimes works alright

� But since other learning algorithms don’ t produce
the logical tree structure, we have problems:
– The logical relationship between the features is lost

– In the worst case, the tree could overfit and use all of
the features: then we didn’ t gain anything

24

Ranked Feature Selection

� Another possibility is to use some scoring function
to rank each feature in the problem, and then
choose the best k features
– Could choose the top 10%, 25%, 50%, etc.

– Could also look for statistically significant gaps in the
rankings and take those that are above the gap

� So what would make a good ranking function for
feature selection for, say, text classification?

5

25

Ranked Feature Selection

� One possibility is to choose the features that have the most
consistent values
– For text classification, this means ranking the features (words) by

how often they appear in the corpus (training set)
– Still doesn’ t tell us much about correlation between the word and

the various topics
– In fact, if a word appears a lot in every document, then it probably

is not very informative about the topics!

� Another common ranking function is… believe it or not…
information gain!
– Estimates how well the feature (word) “ separates” the data into the

different class labels

26

RFS for Text Classificiation

�
G. Forman, “An Extensive Empirical Study of
Feature Selection Metrics for Text Classification,”
Hewlett-Packard Technical Note, 2003

� Compared 12 feature selection methods on the
Reuters news articles text classification dataset
– Included “ frequency” and “ information gain” feature

selection methods
– Usually use linear models (naïve Bayes, perceptron,

support vector machines) for these problems

27

RFS for Text Classificiation

28

RFS for Text Classificiation

� Clearly the document frequency metric didn’ t
“make the headlines”

� Information gain, however, was able to reduce the
feature set from 12,500 words to 50 words without
reducing performance
– That’s a final feature set that’s 0.4% the size of the

original vocabulary!

� The “ federalist papers” example earlier also used
feature selection to chose the 3 words

29

Other Selection Methods

� Unfortunately, most of the features we can
rank with a scoring function to must be
Boolean (or at least discrete)

� But k-nearest neighbors or neural networks
deal with continuous features so naturally!
– Is there some way to do efficiently select

continuous features too?

30

Feature Selection as Search

� The answer is to try and perform an optimization
search to find the best feature set:
– States: subsets of the available features
– Actions: add/remove features
– Objective function: maximize performance of the

chosen algorithm on the problem

� This sort of feature selection generalizes well to
all features, all algorithms, and all problems (even
to regression tasks!)

6

31

Feature Selection as Search

� There are two common, efficient ways to search
for a feature set like this…
– Forward chaining: begin with an empty feature set, and

gradually add the feature that most improves
performance of the algorithm, until it begins to drop

– Backward chaining: begin with all available features,
and remove them one at a time until performance drops� This solves the dilemma of trying to pick a good

initial state, but if we have a slow training
algorithm (e.g. neural network) the entire process
can take a while…

32

Feature Induction

� Feature selection can help keep hypotheses from
becoming overly expressive
– Throws out irrelevant features
– Often reduces overfitting for naïve Bayes, k-nearest

neighbors, and sometimes neural networks

� However, sometimes the feature set we have isn’ t
expressive enough
– In this case, we might want to create new features that

suit the problem well… this is called feature induction

33

Feature Induction

� Consider a decision tree being trained on this data set:

x = 110; f(x) = 0
x = 100; f(x) = 1

x = 010; f(x) = 1
x = 001; f(x) = 0

ID3 might learn this tree:

x1
0

0 1

1 0

x2
0

1 0

x3
1 0

But the real concept is probably:

x1

x2

1 0

1 0

0

x2

0 1

1 0

1

34

Feature Induction

� Features x1 and x2 are at the core of the concept
function (x1 ⊗ x2)

� But each feature alone yields an information gain
of zero (so ID3 won’ t choose it)

� Perhaps we could make use of a technique that can
create a new feature (x1 ⊗ x2), and consider it in
learning as well

35

Feature Induction

� Another example: recall that naïve Bayes assumes
that each feature is independent
– For text classification, this means that each word has

nothing to do with the other words in the vocabulary� Consider classifying newspaper articles:
– If the word “box” occurs in a document, it probably

isn’ t very informative about any news topic
– Likewise, if the word “office” appears, it might be more

about business, but still not too helpful
– But if we add a new feature, “box office,” this feature is

now highly correlated with “entertainment”
36

Feature Induction

� In practice the best way to perform feature
induction is similar to feature selection:
– Begin with the base set of features

– Exhaustively propose new features that are logical
operations on the base features

• Again we have trouble with continuous features, which must
be descretized somehow

– Either rank the new features by some scoring function
and add the best k, or do an optimization search like
forward chaining

7

37

Feature Induction

�
A. McCallum, “Efficiently Inducing Features of
Conditional Random Fields,” UAI, 2003.
– Used models called conditional random fields (CRFs)

to learn to extract entity names (people, locations,
organizations, etc.) from labeled text documents

– Induced novel Boolean features using a forward-
chaining sort of approach

89.0%80.0%84.4%92.4%93.2%With induction

73.3%77.2%63.5%86.7%61.9%W/O induction

AllMiscOrgLocPer

38

Summary

� When describing inductive learning tasks as vector
of n features, we create a feature space
– Examples can be though of as “points” in n-D space� What classification algorithms do is to find an

optimal way of partitioning that feature space up
into the correct classes� We can use feature selection to remove many
irrelevant features from the feature set� We can also use feature induction to add new and
potentially more relevant features the feature set

