Burr H. Settles CS-540, UW-Madison www.cs.wisc.edu/~cs540-1 Summer 2003

Announcements

- Homeworks #4/#5 are due next Tuesday (7/29)
- Project papers/reports are due one week from today (Friday, 8/1)
- The near future:
 - Next week we have a few more lectures
 - Mon-Wed of the week afterward will be project presentations (sign up sheet at the front)
 - Review for final exam a week from Thursday (8/7)
 - Final exam in class that Friday (8/8)

2

What is a Feature Space?

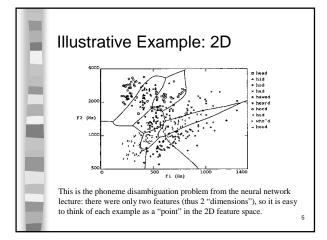
- So far in artificial intelligence, we've discussed all kinds of high-demensional "spaces," for example:
 - Search space: the set of states that can be reached in a search problem
 - Hypothesis space: the set of hypothesis that can be generated by a machine learning algorithm
- In this lecture, we'll talk about feature spaces, and the role that they play in machine learning

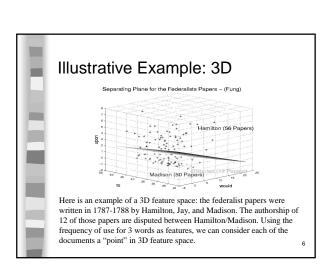
3

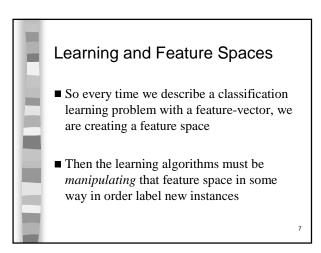
What is a Feature Space?

- Chances are, you already understand the idea of feature spaces even if you don't know it yet
- Recall that in our inductive learning framework, we usually represent examples as a vector of features: $\langle x_1, x_2, ..., x_n \rangle$
- Each feature can be thought of as a "dimension" of the problem... and each example, then is a "point" in an *n*-demensional feature space

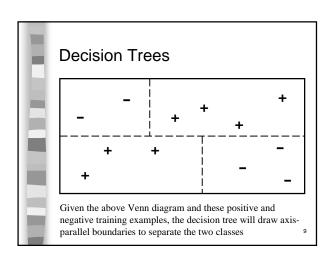
4

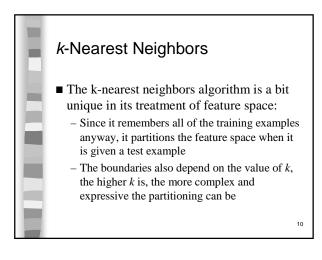


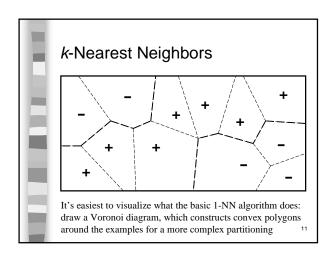


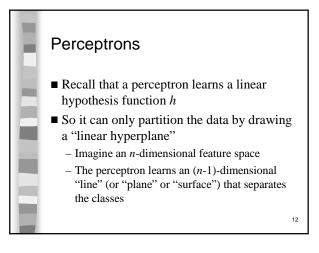


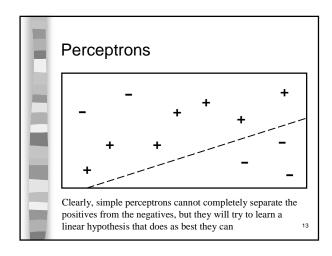
■ Let's think about decision trees and what they are doing to the feature space: - Each feature is a dimension in feature space - A decision tree recursively splits up the examples (points in feature space) based on one feature at a time So a decision tree essentially draws dividing lines in a dimension of feature space, and recursively subdivides along other dimensions - These lines are parallel to the axis of that dimension - We say that decision-trees create axis-parallel splits

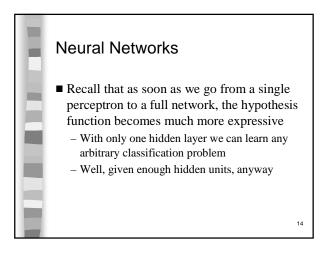


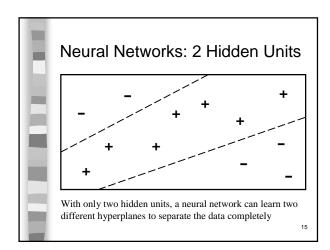


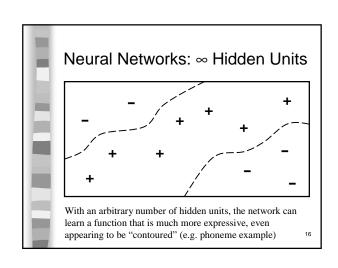


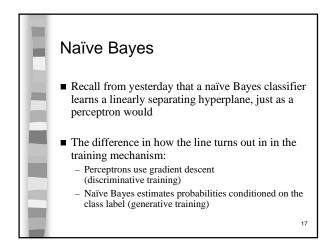


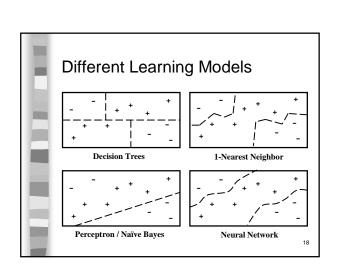


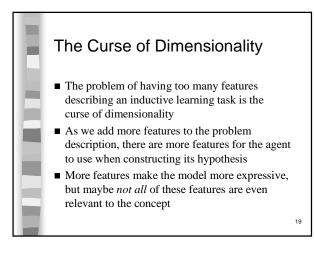












Case Study: Text Classification

- One classic problem that illustrates the curse of dimensionality is the text classification task:
 - Each document is an "example"
 - The documents are labeled from a set of topics, which are classes in our inductive learning framework
 - Every word in the vocabulary is a Boolean feature: either it is in the document or not
- A given document can be hundreds of thousands of words long, and most of them will not have anything to do with the topic label!

20

The Curse of Dimensionality

- Which algorithms suffer most from the curse of dimensionality?
 - k-nearest neighbors: clearly suffers... it uses all features to compute the distance between examples
 - Naïve Bayes: also considers every feature as equally relevant to the concept function
 - Neural networks: can reduce the weights of irrelevant features close to zero, but it might take BP a long time to converge, and more likely to find a local minimum
 - Decision trees: these seem to do OK... induced trees are usually small, and only use "relevant" features

21

Feature Selection

- Perhaps we can learn a lesson from the way decision trees do things: select only the features that seem relevant to the problem!
- This should not only improve the classifier, but might even speed up learning
 - Will result in fewer weights to optimize, fewer probabilities to estimate, dimensions with which to compute distance, etc...
- * But how to know what features are important??

22

Feature Selection

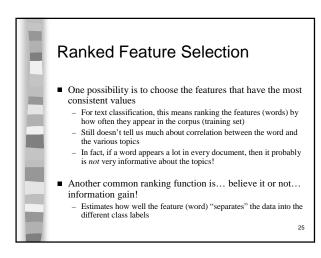
- One possibility is to... well... induce a decision tree and use the features that it used
 - This sometimes works alright
- But since other learning algorithms don't produce the logical tree structure, we have problems:
 - The logical relationship between the features is lost
 - In the worst case, the tree could overfit and use all of the features: then we didn't gain anything

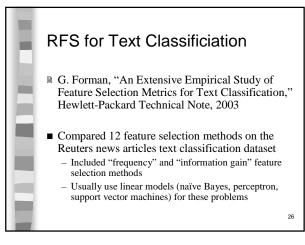
Ranked Feature Selection

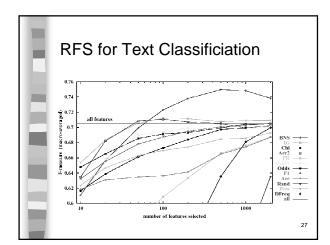
- Another possibility is to use some scoring function to rank each feature in the problem, and then choose the best *k* features
 - Could choose the top 10%, 25%, 50%, etc.
 - Could also look for statistically significant gaps in the rankings and take those that are above the gap
- So what would make a good ranking function for feature selection for, say, text classification?

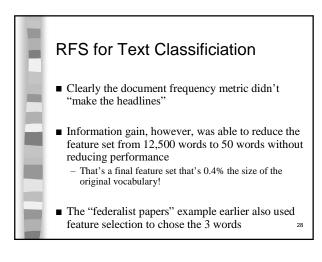
24

23

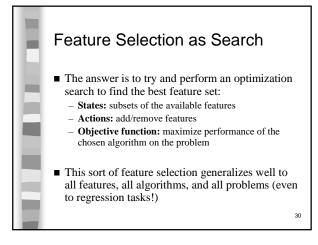


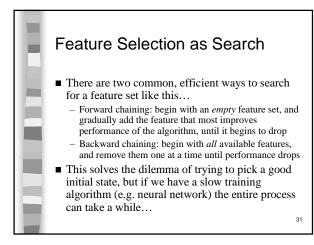


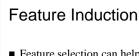




Other Selection Methods Unfortunately, most of the features we can rank with a scoring function to must be Boolean (or at least discrete) But k-nearest neighbors or neural networks deal with continuous features so naturally! Is there some way to do efficiently select continuous features too?







- Feature selection can help keep hypotheses from becoming *overly* expressive
 - Throws out irrelevant features
 - Often reduces overfitting for naïve Bayes, k-nearest neighbors, and sometimes neural networks
- However, sometimes the feature set we have isn't expressive *enough*
 - In this case, we might want to create new features that suit the problem well... this is called feature induction

32

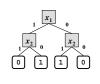
Feature Induction

■ Consider a decision tree being trained on this data set:

x = 110; f(x) = 0x = 100; f(x) = 1 x = 010; f(x) = 1x = 001; f(x) = 0

ID3 might learn this tree:

But the real concept is probably:



Feature Induction

- Features x_1 and x_2 are at the core of the concept function $(x_1 \otimes x_2)$
- But each feature alone yields an information gain of zero (so ID3 won't choose it)
- Perhaps we could make use of a technique that can create a new feature $(x_1 \otimes x_2)$, and consider it in learning as well

34

Feature Induction

- Another example: recall that naïve Bayes assumes that each feature is independent
 - For text classification, this means that each word has nothing to do with the other words in the vocabulary
- Consider classifying newspaper articles:
 - If the word "box" occurs in a document, it probably isn't very informative about any news topic
 - Likewise, if the word "office" appears, it might be more about business, but still not too helpful
 - But if we add a new feature, "box office," this feature is now highly correlated with "entertainment"

35

Feature Induction

- In practice the best way to perform feature induction is similar to feature selection:
 - Begin with the base set of features
 - Exhaustively propose new features that are logical operations on the base features
 - Again we have trouble with continuous features, which must be descretized somehow
 - Either rank the new features by some scoring function and add the best k, or do an optimization search like forward chaining

36

