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T. Introduction

In 1870 Bouniakowsky [2 J publ ished an algorithm to solve the congruence

aX _ bMOD (q). While his algorithm contained several clever ideas useful for small

numbers, its asymptotic complexity was O(q). Despite its long history, no fast

algorithm has ever emerged for the Discrete Logarithm Problem and the best published

method, due to Shanks [lOJ requires O(ql/2) in time and space. The problem has

attracted renewed interest in recent years because of its use in cryptography [7 ],

[15J,[19J. In particular, the security of the Diffie-Hellman Public Key Distribution

Sy s t em [7 J II de pen d s c r ucia 11yon the d iff i c u1t Y 0 f com put i ng log a r i t hms MOD q II •

We present a new algorithm for this problem which runs in RTIME better than O(qE)

for all E > O.t While no effort is made to present the most efficient incarnation of

*Research sponsored by National Science Foundation Grant MCS78-04343.

tActually our algorithm runs in RTIME O(2(O(/10g(q)loglog(q))). RTIME denotes Random Time and

refers to algorithms which may use random numbers in their processing. For example, the well known

composite testing algorithms of Solovay &Strassen [21J, Miller [11J and Rabin [16J run in

RTIME (0(log3(q))). For precise definitions see [1], [llJ and [9J.
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the new algorithm, it is clearly practical for numbers of moderate size and this has

consequences for the Diffie-Hellman scheme. We will discuss these consequences in

Section III.

I I. The r~ethod

In 1971 Morrison and Brillhart [12J introduced a new heuristic for factoring
7

and used it to factor F7 (22 + 1). While hundreds of heuristics for factoring have

been proposed in the past, most have applications only in special cases, and have poor

worst case behaviors. Even those which seem to have good running times, often rely

on assumptions which are currently unprovable. The Morrison-Brillhart method is

different. Not only is it (or its refinement due to Schroeppel) the fastest algorithm

in practice, but it is based on provable principles. Dixon [8 J has recently done an

analysis of the method, and his results can be seen to show that it works in

RTIME (O(2 0 (/log(q)log1og(q))).

The Morrison-Brillhart scheme makes use of the long known result that a dis-

proportionately large portion of numbers not only have a small prime factor but are

entirely composed of small prime factors. We will base our discrete logarithms

algorithm on the same idea:

Definition For all a,b s IN, a is smooth t with respect to the bound b <==> (\fp s IN)

[[p s primes & plaJ ~ p < b].

K e.
. h' h b h II 1 hNotice that if a 1S smoot w1t respect to t en a = i=l Pi were

Pl ,P2'··· ,PK are the primes less than b. Thus for each smooth a we have an associated
~

vector <e l ,e 2 , ... ,e
K

>. We will denote this vector a.

Below we present a restricted form of the algorithm which works when q is

prime and a,b are generators (this is a typical case for cryptographic use). We wi 11

then show how to use the algorithm to handle the general case. The constant c in

the algorithm is probably small.

lion input a,b,q:
e

l
e

2
e z

1. (Using Morrison-Brillhart) Factor q-l Pl P2" Pz
e~

2. Fo'r each p~ Iq proceed in steps until m~ is obtained:

t The term smooth for such numbers was suggested by R. Rivest.
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STEP i:

(a)
r . s .

(By guessing and checking) find r. ,so such that a 1 MOD (q) and ba 1 MOD (q)
1 1

are smooth with respect to the bound 2c/log(q)10glog(q). (In more

syntactical terms, what we are seeking are numbers all of whose prime

factors have length about the square root of the length of q)

such thata. IS
J

>

(Using Gaussian elimination) check if over l e£
p£

( b )

s .
ba 1 MOD (q) is dependent on

rl ;> r . >
{a MOD (q), ... ,a 1 MOD (q)}. If yes, calculate

>. >

baSi MOD (q) =: [.~ a. /i MOD (q)J MOD (p~Q,)
J = 1 J N

then m£ = [. ~ a. r. J IvlO D (p: Q,) - S .
J=l J J 1

3. (Using Chinese Remainder Theorem)
e£

cal c u1ate and 0ut put x s uc h t hat x :: m£ r~ a0 (p £) £ 1 ,2 , ... ,Z II

To handle the cases where q is not prime or a or b are not generators do the

following:

(I) If q is prime (checkable in our time bound) and a and b are not generators

(checkable in our time bound) then

a) guess a generator g (these are abundant)

b) sol ve (u sin g I I below) gx :: a MOD (q), gy :: b r~ 0 0 (q)

c) calculate w = GCO(x,y,q-l), calculate z such that (~)z - (Y)MOD(q-l)
w w

then a Z
:: bMOO (q) (if such a Z exists).

(II) If q is prime a is a generator but b is not then

1. find (by guessing & checking) a random K such that b ' - baKMOD(q) is

a generator

2. use the original algorithm to find z such that a Z
- b'MOD(q).

then a Z
-

K :: b MOD (q)

(III) If q is composite then factor q (using Morrison-Brillhart) and solve modulo

each prime power divisor. Reconcile the results using Chinese Remainder

Theorem.
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The Diffie-Hellman Public Key Distribution System [7 J is used as follows:

1. A prime q and generator 9 are made publicly available

2. When A wishes to communicate with B:

a ) A chooses a random number a and sends gaMOD(q) to B

b) B chooses a random number b and sends 9 br~o 0 ( q ) to A

c) A & B both compute gabMOD(q) and use t his as a key for future

communications.

A tapper has g, q, gaMOD(q), gbMOD(q) so if he can take discrete logs he can

calculate gabMOD(q) and compromise communications.

As Diffie & Hellman state:

liThe security of our system depends crucially on the
difficulty of computing logarithms modq .... For now we
assume the best known algorithm for computin~ logs mod q
is in fact close to optimal and hence that q~ is a good
measure of the problems complexity.1I

Diffie & Hellman then argue that if q is chosen to be approximately 200 bits

long then their system would be secure. In fact the best known algorithm (Shanks')

would have required approximately 3 x 10 16 years on a 1 microsecond per operation

machine to crack the system. We think it prudent to assume that our new algorithm

would run in e/loge(q)logeloge(q) . We base this assumption on arguments made by

Schroeppel in reference to his (already running) refinement of the Morrison-Brillhart

factoring algorithm [20J. Accordingly, our new algorithm could be expected to

compromise a system based on a 200 bit q in 2.6 days on a 1 microsecond per operation

machine. This is not to suggest that the Diffie-llellman system is insecure, rather

that larger moduli are required (see [18J).

IV. Proof of Correctness (outline)

were calculated0'. . IS
J

smooth, and the

(i) We first argue that the output x is loga(b). It is enough to show that
e

m£ = 10ga(b)MOD(P~£) £ = 1,2, ... ,z. To see this consider y = 109 a (b)

- m£ MO 0 ( q - 1 ) .

then
y mQ,

a ) a a / b MO 0 (q) and

b) a Y a(-):ajfj )MOD(P~Q,)aSib MOD (q)

r . s i
but the a J MOD (q) and a b MOD (q) are
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to insure that
e(-IaJ.r.)MOD(P
Q

£) s.
c) a J 'a 'b

f
l

f')
d d L

1 2

f
d w

w

where d] ... d
w

are the primes less than bound 2c / 1og (q)log1og(q) and

f - ,e Q )
K :: U I~ 0 0 t p 9. ~. I< = 1 , . . . ,w .

e
I t f a1 low s fro m b) and c) t hat ay i sap 9v Q

, t h res i due ~1 0 D( q) and t hu s
e

y := 0 r~ 0 0 (p £ 9> ) •

( i i )
r . s .

That the rea res uf fie i e nt 1y man yr. and s. for wh i c h a ' r~ 0 0 ( q) and a ' b jvl0 0 (q), ,
are smooth with respect to 2c / 1og (q)log1ogm follows from deep number

the 0 ret i ere s u 1t s [1 3 ] [ 1 7 ] [ 4 J[ 5 ] [ 6 ] [ 3 J con c ern i n9 the fun c t ion l~ ( X , Y)

the number of numbers less than x all of whose prime factors are less than y.

The analysis needed for this algorithm is carried out in Dixon [8].
-s-.--~

produce an si such that ba lMOD(q)To see that we vlill with h'igh probabilityf1-·--:,,-r-.---~
is dependent on fa MOD(q), ... ,a 'MOD(q)}, consider the following argument.

s . r .
If in step i we replace ba 'MOD(q) with a 'MOD(q) ~ then after

n(2 cIT09Tq )loglogrq}) + y steps we would have had at least y dependencies

( sin c e the dim ens ion 0 f the spa c e i s TT ( 2c /TOg ( q ) log 1o-gTCl) ) ). Howe ve r, a tan y
s .

par tic u1a f' s tag e, a ' r·1 0 0 ( q) l S a ran d 0 m c hoi c e fro m the set (1, 2 , . . . , q - 1 } ,
r.

and so i sal b MO 0 (q) . It follows that at any particular stage there is
----+ ...._---_.;>r . C •

equal probability that a lMOD(q) or aJ'lb MOD (q) will be dependent. Thus
-----~

the odds that a dependent aSib MOD (q) wi 11 not have been found are smaller

( iii )

than 1/2 Y.

( i v ) When e> 1 then II eQ, is not a field and the theory of vector spaces imp 1 i cit
Q, PQJ

i n t he use 0 f Gau s s ian El i III ina t ion i s nolo n 9 e r d ire c t 1yap p1 i cab 1e . Howe v e r ,

much of the theory extends to the case where we are working over a ring

rather than a field (module theory) and no problems arise. c: p p fl 11 l
- - - L' • -l •

Thanks to Ron Rivest and Adi Shamir for their contributions to this paper.

Also to the participants in this year's Diophantine Complexity seminar at M.l.T.

for suggestions which helped clarify the proof.

The author would also like to acknowledge Ralph Merkle [14J who has worked on

this problem and independently produced several of the key ideas. Also Nick

Pippenger for suggesting the use of the theory of modules.
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