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SUMMARY

Q-Morph is a new algorithm for generating all-quadrilateral meshes on bounded three-dimensional
surfaces. After first triangulating the surface, the triangles are systematically transformed to create an
all-quadrilateral mesh. An advancing front algorithm determines the sequence of triangle transformations.
Quadrilaterals are formed by using existing edges in the triangulation, by inserting additional nodes, or by
performing local transformations to the triangles. A method typically used for recovering the boundary of
a Delaunay mesh is used on interior triangles to recover quadrilateral edges. Any number of triangles may be
merged to form a single quadrilateral. Topological clean-up and smoothing are used to improve final
element quality. Q-Morph generates well-aligned rows of quadrilaterals parallel to the boundary of the
domain while maintaining a limited number of irregular internal nodes. The proposed method also offers the
advantage of avoiding expensive intersection calculations commonly associated with advancing front
procedures. A series of examples of Q-Morph meshes are also presented to demonstrate the versatility of the
proposed method. Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Automatic meshing algorithms for three-dimensional surfaces have become valuable tools in the
process of design and analysis. The resulting elements may be used as shell elements or as input to
an automated tet or hex meshing algorithm. Because triangle meshing algorithms can be
relatively simple to implement and tend to have convenient and provable mathematical proper-
ties, surface meshing algorithms including Delaunay1—3 and advancing front4—7 methods dominate
much of the literature. In spite of this, many analysts prefer to use quadrilateral elements, noting
their superior performance for various applications.8 A smaller set of literature exists that
describes quadrilateral meshing algorithms. Quadrilateral meshing does not have the convenient
mathematical properties demonstrated by triangle meshing, and hence require more heuristic
methods.

When the geometry of the domain is suitable, quadrilateral mapped meshing,9 or sub-map-
ping10 methods produce very high quality elements. These methods break the domain into
a structured set of quadrilaterals, where all interior nodes have exactly four adjacent elements.
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Where applicable, it is clear that these methods are faster and more reliable. Unfortunately, since
only a limited class of problems may be easily resolved using mapping methods, more general
‘unstructured’ approaches must be formulated.

Unstructured quadrilateral meshing algorithms can, in general, be grouped into two main
categories: direct and indirect approaches. With an indirect approach, the domain is first meshed
with triangles. Various algorithms are then employed to convert the triangles into quadrilaterals.
With a direct approach, quadrilaterals are placed on the surface directly, without first going
through the process of triangle meshing.

1.1. Indirect methods

A simple approach to indirect quadrilateral mesh generation includes inserting a node at the
centroid of each triangle dividing it into three quadrilaterals. This method guarantees an
all-quadrilateral mesh, but a high number of irregular nodes are introduced into the mesh often
resulting in poor element quality. An irregular node is an interior node that has more or less than
four adjacent quadrilateral elements. An alternate method is to combine adjacent pairs of
triangles to form a single quadrilateral. While the element quality may increase using this method,
a large number of triangles may be left in the mesh.

The method of combining triangles may be improved, if care is taken in the order in which
triangles are combined. In an effort to maximize the number of quadrilaterals, Lo11 suggested
several heuristic procedures for the order in which triangles may be combined. This resulted in
a quad-dominant mesh containing a minimal number of triangles. Johnston et al.12 later
proposed additional local element splitting and swapping strategies to increase the number and
quality of quads. Lee and Lo13 developed an enhancement of Lo’s strategy by including local
triangle splitting. Additionally, an advancing front approach was used over the initial triangles.
A set of fronts were defined consisting of the edges of triangles at the boundary of the domain.
Triangles were systematically combined at the front, advancing towards the interior of the area.
Each time a set of triangles were combined, the front was advanced. The front always defined the
division between quadrilaterals already formed and triangles yet to be combined. With this
technique, an all-quadrilateral mesh was guaranteed, provided the initial number of edges on the
boundary was even.

Since all operations are local, indirect methods have the advantage of being very fast. Global
intersection checks are not necessary as is required with advancing front direct methods. The
drawback to indirect methods is that there are typically many irregular nodes left in the mesh.
Even if few irregular nodes exist, there is no guarantee that the elements will align with the
boundary—a desirable property for some applications. To reduce the number of irregular nodes,
most indirect methods employ topological clean-up operations14—16 as a post-processing step to
meshing. These operations consist of various local topological modifications to the mesh with the
objective of maintaining exactly or close to four elements adjacent to each node.

1.2. Direct methods

Many methods for direct generation of quad meshes have been proposed in the literature, and
they may be divided into two main categories. The first are methods that rely on some form of
decomposition of the domain into simpler, convex, or mappable regions. Geometry decomposi-
tion techniques include methods proposed by Baehmann et al.,17 Talbert and Parkinson,18
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Figure 1. (a) First row of elements placed using paving algorithm illustrating interference of opposing elements; (b) large
element size differences between opposing fronts often encountered in paving leading to poor meshes

Tam and Armstrong19 and Joe,20 among others. The second category consists of methods that
utilize the advancing front method for element formation. Zhu et al.21 proposed a quadrilateral
meshing algorithm which starts with an initial placement of nodes on the boundary. Individual
elements were then formed by projecting edges towards the interior. Two triangles were formed
using traditional triangle advancing front methods22 and then combined to form a single
quadrilateral. Blacker and Stephenson,23 presents a method, known as paving, where complete
rows of elements were formed starting from the boundary and working towards the interior. Cass
et al.24 further developed paving, by generalizing the method for three-dimensional surfaces.
White and Kinney25 recently proposed enhancements to the paving algorithm suggesting
individual placement of elements rather than complete rows.

Blacker and Stephenson,23 described some of the characteristics of a quadrilateral mesh which
are desirable for finite element analysis: ‘(a) Boundary sensitive: Mesh contours should closely
follow the contours of the boundary. This characteristic is of particular importance since
well-shaped elements are usually desirable near the boundary, (b) Orientation insensitive: Rotating
or translating a given geometry should not change the resulting mesh topology. A mesh generated
in a transformed geometry should be equivalent to the original mesh transformed, and (c) Few
irregular nodes. This is a critical mesh topology feature because the number of elements sharing
a node controls the final shape of the elements, even after smoothing. Thus a mesh with few
irregular nodes, especially near the boundary where element shape is critical, is often preferred.’

Of the methods previously discussed, only mapping methods and paving provide all of these
desirable features on a consistent basis. Since mapping methods are only applicable to specific
geometry configurations, the paving method is particularly attractive.

While recognizing the desirable features of paving, there are some weaknesses that need to be
addressed. Figure 1(a) illustrates the intersection problem common to all advancing front
meshing schemes. As the elements advance towards the interior of the domain, intersection checks
must be made to ensure that elements do not overlap. The detection and resolution of intersec-
tions can be very time consuming and also susceptible to floating point errors. If an intersection
is missed, the paving algorithm has the potential to go on forever, over-meshing itself. The
intersection problem is especially acute when dealing with three-dimensional surfaces.24

Another problem often encountered in paving occurs when fronts containing elements of
greatly differing size must meet as in Figure 1(b). Heuristic decisions are made to make the fronts
combine at this point, but in general poor element quality may result in this region.

This paper proposes an alternative to the traditional paving algorithm. The proposed Quad-
morphing (Q-Morph) algorithm maintains the desirable features of paving while addressing some
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of its weaknesses. Q-Morph can be categorized as an unstructured, indirect method that utilizes
an advancing front algorithm to form an all-quad mesh. As an indirect method it is able to take
advantage of local topology information from the initial triangulation. Although similar to Lee
and Lo’s13 indirect method, Q-Morph utilizes additional features that help maintain well-aligned
rows of elements and reduce the number of internal irregular nodes.

2. OUTLINE OF Q-MORPH ALGORITHM

The Q-Morph advancing front quadrilateral mesh generation algorithm is briefly outlined in the
following steps:

1. Background mesh: The surface is first triangulated. This may be done using any surface
triangulation method. Any sizing26 or adaptivity information should be built into the
background mesh. The local sizing for the final quadrilateral mesh will roughly follow that
of the background mesh.

2. Front definition: The initial front is defined from the background mesh. Any edge
in the triangulation that is adjacent to only one triangle becomes part of the initial
front.

3. Front edge classification: Each edge in the front is initially sorted according to its state. The
state of a front edge defines how the edge will eventually be used in forming a quadrilateral.
Angles between adjacent front edges determine the state of an individual front. Front edges
will be updated and reshuffled as the algorithm proceeds. Figure 2 shows the four possible
states of a front, where the front edge is indicated by the bold line.

4. Front edge processing: Each front edge is individually processed to create a new quadrilat-
eral from the triangles in the background mesh. Figure 3(a) shows front N

A
—N

B
in the

triangulation ready to be processed. Front edges are handled differently according to their
current state classification. As quadrilaterals are formed, the front is redefined and adjacent
front edge states updated. The current front always defines the interface between quadrilat-
eral elements in the final mesh and triangle elements in the initial triangle mesh. This process
can be further subdivided into the following substeps:

(a) Side edge definition: Using the front edge as the initial base edge of the quadrilateral,
side edges are defined. Side edges may be defined by using an existing edge in the
background mesh, by swapping the diagonal of adjacent triangles, or by splitting
triangles to create a new edge. In Figure 3(b), side edge N

B
—N

C
shows the use of an

existing edge, while the side edge N
A
—N

D
was formed from a local swap operation.

(b) Top edge recovery: The final edge on the quadrilateral is created by an edge recovery
process, which modifies the local triangulation using local edge swaps to enforce an edge
between the two nodes at the ends of the two side edges. Edge N

C
—N

D
in Figure 3(c) was

formed from a single swap operation. Any number of swaps may be required to form the
top edge.

(c) Quadrilateral formation: The final quadrilateral is formed by merging any triangles
bounded by the front edge, and the newly created side edges and top edge as shown in
Figure 3(d).

(d) Local smoothing: The mesh is smoothed locally to improve both quadrilateral and
triangle element quality as shown in Figure 3(e).
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Figure 2. States of a front edge: (a) state 0—0; (b) state 1—0; (c) state 0—1; (d) state 1—1

Figure 3. Steps demonstrating process of generating a quadrilateral from Front N
A
—N

B
: (a) initial front; (b) side edge

definition; (c) top edge recovery; (d) quadrilateral formation; (e) local smooth

(e) Local front reclassification: The front is advanced by removing edges from the front that
have two quadrilateral adjacencies and adding edges to the front that have one triangle
and one quadrilateral adjacency. New front edges are classified by state. Existing fronts
that may have been adjusted in the smoothing process are reclassified.

Front edge processing continues until all edges on the front have been depleted, in which
case an all-quadrilateral mesh will remain, assuming an even number of initial front edges.
When an odd number of boundary intervals is provided, a single triangle must be generated,
usually towards the interior of the mesh.

5. Topological clean-up: Element quality is improved by performing local quadrilateral trans-
formations in an attempt to improve the individual edge valences at the nodes of the mesh.

6. Smoothing: A final smoothing pass is performed further improving the element qualities.

3. IMPLEMENTATION

The following is a description of some of the implementation specifics of the Q-Morph algorithm.
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3.1. Background mesh triangulation

While maintaining that any triangulation method may be successfully used as a background
mesh, the final quadrilateral mesh may differ somewhat based on the initial node placement. To
adequately represent the geometry with quadrilaterals, it is necessary that the initial triangles be
of a sufficient density to capture model features and surface curvature. Triangles with excessively
high aspect ratio may also result in poor quadrilaterals. In practice, a parametric space,
advancing front triangulation algorithm27 that takes into account surface curvature26 and model
details28 is used. It is conceivable that a more judicious initial node placement scheme that places
nodes in orthogonal alignment to the boundary would be advantageous to the algorithm,
however this has not yet been investigated.

3.2. Front definition and classification

After initially triangulating the domain, the first step in the advancing front process is to define
an initial set of front edges. The initial front is defined by examining edges in the background
triangle mesh for edges with only one triangle adjacency. Edges should be oriented consistently so
that a traversal of the edges will result in a counter-clockwise traversal of the domain. Front edges
interior to the domain, or interior loops, should be oriented clockwise. Correct orientation for the
front edges can be naturally achieved provided all triangles in the background mesh have
a consistent counter-clockwise definition. Maintaining a consistent orientation for the edges on
the front assists in local topology inquiries such as determining element adjacencies and front
adjacencies.

The state of a front edge is determined by computing the angle at the nodes on either end of the
edge with each of its adjacent front edges. Practically, the state of a front edge is defined by two
bits, the first representing the state at the left node and the second, the state at the right node. If
the angle at either node is less than a specified tolerance, (currently set to 3n/4) the node bit is set
(1), otherwise it is unset (0).

Edges are placed on one of four state lists as shown in Figure 2. Classifying front edges
according to states serves two purposes. First, it defines which edges must be generated before
a complete quadrilateral can be formed. Side edges must be defined only at the side of the front
where the state bit has not been set. Second, it prioritizes which fronts will be processed first.
Front edges in state 1—1 are given first priority followed by edges in states 0—1 and 1—0, followed
by edges in state 0—0.

3.2.1. Angle calculation. In order to classify the state of a front edge, angle calculations must be
done quite frequently. Computation of angles on an arbitrary three-dimensional surface can be
computationally expensive. Cass et al.24 suggests a method, which involves direct geometric
evaluation of surface normals. A less expensive method, taking advantage of triangles in the
background mesh is described here. The angle, a

k
at node N

k
on the front may be defined by

summing the angles between triangle edges adjacent to N
k
,

a
k
"

n
+
i/1

a
i
where a

i
"cos~1 A

A
i
)B

i
EA

i
E ) EB

i
EB (1)
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Figure 4. Definition of angle a
k

at a node on the front

with vectors A
i
and B

i
defined by the node N

k
and two edges of an adjacent triangle shown in

Figure 4 and n representing the total number of triangles adjacent to N
k
.

3.3. Front edge processing

Front edges are processed one at a time to form quadrilaterals from the background mesh.
A front edge is popped from one of the four state lists, drawing from the higher states first. Priority
is also given to the lowest level edge on the list. Edges in level zero are those on the initial front;
level one are those on the front after the first row of quadrilaterals have been placed; level two
after the second row; and so on. This ensures that an entire row of quadrilaterals will be placed
before starting a new row.

Where large transitions are required, experience has shown that placing smaller quads first
generally improves mesh grading. To accomplish this, it is sometimes necessary to select short,
higher level fronts before selecting longer lower level fronts. The criteria used for selecting the next
front to be processed is, therefore, based not only the current state and level of the front but also
on its size.

3.3.1. Side edge definition. The current state of a front edge determines how the edge is
processed. Front edges in state 0—0, 1—0 and 0—1 must first define either one or two side edges.
A side edge may be formed in one of three ways: (1) an existing edge in the background mesh may
be used, (2) the diagonal between two adjacent triangles may be swapped, or (3) an edge may be
created by splitting a pair of triangles.

Figure 5 shows a situation in which an existing edge is used. A new side edge is to be defined at
node N

k
, a node on the front between edges E

F1
and E

F2
. The ideal vector V

k
for the new side edge

is defined by bisecting the vectors formed by E
F1

and E
F2

. Angles h
i
are computed between V

k
and

all edges, E
i
, of triangles sharing node N

k
. The edge with the smallest angle h is selected as the

candidate side edge. The edge is selected, provided h is less than a constant e (currently defined as
n/6). Edge E

2
in Figure 5 is selected as the side edge in this situation.

When there is no angle h
i
less than e, one of two options may be used. The opposite edge, E

0
in

Figure 6 may either be swapped or split. The swap option is used if the angle b between V
k
and

V
m

is less than e. The split option is performed if b'e or the resulting length of E
k
from a swap is
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Figure 5. Side edge selection

Figure 6. Side edge creation: (a) swap; (b) split
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Algorithm 1. Edge recovery

1. LET S be the line segment from N
C

to N
D

2. LET K(S) be a list of edges E
i
that are intersected by S (see Algorithm 2)

3. FOR EACH E
i
3K(S)

4. LET ¹(E
i
) be the set of 2 triangles adjacent E

i
5. LET ¹~1(E

i
) be the set of 2 triangles where the diagonal edge E

i
has

been swapped.
6. IF area of both triangles in ¹~1(E

i
)'0 THEN

7. Form ¹~1(E
i
)

8. Delete E
i
from K(S)

9. LET E
j
be the edge common to both triangles in ¹~1(E

i
)

10. IF E
j
intersects S add E

j
last on K(S),

11. ELSE,
Place E

i
last on K(S)

12. NEXT E
i
on K(S)

Figure 7. Edge recovery process: (a) initial triangulation; (b) swap 1, 2; (c) swap 3; (d) swap 4 edge recovered

excessively long compared to E
F1

and E
F2

. In this latter case, a new node N
n
is defined, splitting

edge E
0

at the intersection of vector V
k

and edge E
0
. Edges E

k
and E

m
are also added to the

triangle mesh, splitting the two triangles adjacent to edge E
0
. Edge E

k
is then used as the side edge

of the prototype quad. The following shows a summary of the criteria for selection or creation of
edge E

k
, to be used as a side edge in the new quadrilateral:

E
k
"G

E
i

for h
i
(e

swapNN
k
N

m
for b(e and EN

k
N

m
E(J3

EE
F1

E#EE
F2

E
2

splitNN
k
N

n
otherwise

(2)
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Figure 8. Example of procedure described in Algorithm 2

Algorithm 2. Formation of K(S)

1. LET ¹(N
C
) be the ordered set of ccw triangles and quads adjacent

N
C
, ¹

k
(N

C
)3¹(N

C
)

2. LET E(N
C
) be the ordered set of ccw edges adjacent N

C
; E

k
(N

C
)3E(N

C
),

where E
k
(N

C
) and E

k`1
(N

C
) are on ¹

k
(N

C
)

3. LET V
k

be the vector normal to edge E
k
(N

C
) and tangent to surface

4. LET V
S

be the vector from N
C

to N
D

5. FOR EACH ¹
k
(N

C
)3¹(N

C
)

IF V
s
)V

k
'0 and V

s
)V

k`1
(0, LET ¹

i
(E

i
)"¹

k
(N

C
)

6. LET E
i
be the edge opposite N

C
on ¹

k
(N

C
)

7. IF E
i
is not on front THEN, Add E

i
to K(S), ELSE fail

8. WHILE not done
9. LET ¹

i`1
(E

i
) be the triangle adjacent E

i
where ¹

i`1
(E

i
)O¹

i
(E

i
)

10. IF N
D

is on ¹
i`1

(E
i
), THEN done

11. ¹
i
(E

i
)"¹

i`1
(E

i
)

12. LET N
i
be the node opposite E

i
on ¹

i
(E

i
)

13. LET V
i
be the vector normal to segment N

C
N

i
and tangant to surface

14. LET E
n
be the next ccw edge on ¹

i
(E

i
) from E

i
15. LET E

n`1
be the next cw edge on ¹

i
(E

i
) from E

i
16. IF V

S
)V

i
(0, THEN E

i
"E

n
, ELSE E

i
"E

n`1
17. IF E

i
is not on front THEN, Add E

i
to K(S), ELSE fail

18. CONTINUE

3.3.2. ¹op edge recovery. Once the base and the two sides of the quadrilateral have been
formed, the next step is to define the top edge. This is done by recovering the edge between the end
nodes of the two sides. Edge recovery is a technique used commonly in boundary constrained
Delaunay triangle meshing, and presented independently in the literature by Jones29, Sloan30 and
George et al.31

If nodes N
C

and N
D

in Figure 3(b) are existing nodes in the triangle surface mesh inside or on
the current front, the method for recovering edge N

C
—N

D
from the triangulation can be described
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by Algorithm 1. An example of an edge recovery process is shown in Figure 7. The triangulation
before recovery is shown at the top left with the successive swaps numbered. In this example
a total of four local swaps were required to recover the edge N

C
—N

D
from the triangulation.

One of the critical aspects of the edge recovery procedure is the determination of K(S) in step
2 of Algorithm 1. K(S) is the list of edges that intersect the line segment S. This can be
accomplished by taking advantage of the local triangle topology, avoiding expensive global
intersection calculations. If N

C
and N

D
are not already connected by an existing edge in the

triangulation, Algorithm 2 may be used for defining K(S). Algorithm 2 first locates the triangle
adjacent to N

C
containing segment S. It then traverses from one triangle to the next adding edges

to K(S) until it finally terminates at N
D
. Figure 8 shows an example of the procedure described in

Algorithm 2.
It should be noted that edge E

i
in Algorithm 2 cannot be an edge in the current front. Steps

7 and 17 indicate that during the formation of K(S), if E
i
is an edge on the front, then Algorithm

2 will fail. In the event of a failure, the current front is placed back on its appropriate state list and
an alternate front is selected for processing.

In some cases segment S may intersect another node between N
C

and N
D
. This special case can

be detected when the result of the dot product calculation in steps 5 or 16 of Algorithm 2 is within
a floating point tolerance of zero. In practice, the node intersected can be moved out of the way
using a simple Laplacian smoothing algorithm.32 Algorithm 2 must then be restarted. Alterna-
tively, the intersected node can be perturbed slightly from its current location normal to the
direction V

S
in the plane of the surface.

3.3.3. 3D edge recovery. Algorithm 2 assumes a planar domain. Modifications must be made
to ensure that the algorithm will operate correctly on a three-dimensional surface. Specifically,
the dot product calculations of steps 5 and 16 must be performed on vectors in a plane that is
tangent to the surface. The tangent plane can be approximated from the neighbouring triangles.
For example, the tangent plane normal P

i
at edge E

i
can be estimated from the average normal

vector of triangles ¹
i
(E

i
) and ¹

i`1
(E

i
). The dot product calculation in step 16 can then be replaced

as:

((P
i
]V

S
)]P

i
) ) ((P

i
]V

i
)]P

i
)(0 (3)

Step 5 can be modified in a similar manner. An approximated tangent plane normal, P
C
, at

N
C

can be defined as the average normal vector of the triangles in ¹(N
C
). The dot product

calculation can then be replaced as:

((P
C
]V

S
)]P

C
) ) ((P

C
]V

k
)]P

C
)'0 and ((P

C
]V

S
)]P

C
) ) ((P

C
]V

k`1
)]P

C
)'0 (4)

Equations (3) and (4) have proven to be reliable provided the background mesh triangles
reasonably represent the underlying surface geometry. In rare cases where overlapping or
inverted triangles would be created, the current front is placed back on its state list and an
alternate front is selected to process.

3.4. Quadrilateral formation

The quadrilateral is formed from the edge on the front, two side edges, and recovered top edge.
Before forming the quadrilateral, the triangles contained within the four edges must first be
deleted. This can be accomplished with a procedure that starts with the triangle adjacent the front
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Figure 9. Definition of edge length l
D

at node on front N
k

edge and recursively advancing to adjacent triangles deleting them as it proceeds. Unused nodes
and edges are also removed. The recursion continues until the top or side edges of the prototype
quadrilateral are encountered.

3.5. ¸ocal smoothing

Smoothing is an important part of the Q-Morph algorithm. Node locations local to the new
quadrilateral are readjusted to improve element shape. This must be accomplished before
processing the next front, as smoothing angles between adjacent fronts will affect the front states
and hence the final topology of the quadrilateral mesh. In practice, any node on the new
quadrilateral and any node connected by an edge are smoothed. Nodes on the front must be
handled differently when compared to those behind or ahead of the front.

3.5.1. Interior smoothing. For nodes not located on the current front, a simple Laplacian32

smooth is adequate. With this method, the node is placed at the centroid of its surrounding nodes.
Alternatively, a modified length weighted Laplacian smooth for interior nodes can be used as
suggested by Blacker and Stephenson.23 This procedure, although slightly more expensive, can be
beneficial.

3.5.2. Front smoothing. Since it is at the front where the new quadrilateral elements are
formed, it is more critical at these nodes that the smoothing produce well proportioned quadrilat-
erals. A modified form of the smoothing process suggested by Blacker and Stephenson23 is used
for the row nodes defined in that reference. These are nodes connected to exactly two adjacent
quadrilaterals at the front. The smoothing process presented by Blacker and Stephenson involves
an isoparametric smooth,33 followed by corrections for squareness and angle smoothness. For
cases where large transitions may be involved, it is useful to take advantage of sizing information
provided by the triangles ahead of the front. As a result, an improved transition can be achieved.

Let l
D

be the length of the edge N
k
—N

j
where N

k
is the node on the front to be smoothed as

shown in Figure 9. Where a very large transition in element size is required, l
D

can be defined as
the average length of any edge connected to N

k
. For smaller transitions, fewer irregular nodes will
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be created if equation (5) is used. Let n be the number of nodes ahead of the front connected to N
i
,

then l
D

can be defined as an average of edge lengths on adjacent quadrilaterals and edges ahead of
the front as follows:

l
D
"

EN
k~1

!N
j~1

E#EN
j~1

!N
j
E#EN

k`1
!N

j`1
E#EN

j`1
!N

j
E#+n

i/1
EN

k
!N

ti
E

4#n
(5)

The method used for computing l
D

is decided purely on heuristics. For the current implementa-
tion, if the ratio of largest to smallest edge length, t

r
, on the boundary is less than 2)5, then the

smoothing method proposed by Blacker and Stephenson23 is used unmodified. This method is
preferred since it tends to produce the fewest number of irregular nodes. As t

r
increases, it is

necessary to introduce irregular nodes so that a smooth transition may be afforded. Equation (5)
is used for l

D
when t

r
is greater than 2)5, and the average size of adjacent edges is used when t

r
is

greater than 20.

3.5.3. Smoothing adjustment. When smoothing nodes at the front, as a result of improving the
quadrilaterals, it is possible that the triangles immediately ahead of the front become inverted.
While the Q-Morph algorithm does not require triangles to be near equilateral, it does rely on the
fact that all triangles are uninverted throughout the meshing process. An inverted element is one
whose normal is opposite that of the surface normal and the elements immediately adjacent to it.
It typically manifests itself as a region where elements appear to be overlapping. To ensure that
this does not occur, triangles and quadrilaterals neighbouring the smoothed node must be
checked for consistent normals. In the case of an inverted element, an adjustment must be made
to the new node location. The node location can be adjusted incrementally on a vector from the
old location to the new location until all neighbouring elements are no longer inverted.

3.6. Local update and reclassification of fronts

Once a new quadrilateral has been formed it becomes necessary to update the current list of
fronts. To do this, the four edges on the new quadrilateral are examined. Any edge that is adjacent
to exactly two quadrilaterals or is on a boundary is removed from its appropriate front state list.
Edges adjacent to a triangle must be added to the state lists. New fronts are added to the top of
their respective state lists. This ensures that the next front to be processed is typically immediately
adjacent the last quadrilateral formed.

In addition to the edges on the current quadrilateral, other nearby edges on the front may need
to be updated. By smoothing nodes on the front, angles between adjacent fronts may have been
changed; perhaps enough to move the front into another state. To facilitate the reclassification of
the front edges during the local smoothing process, any edge on the front connected to a node
that is smoothed is marked. Once smoothing is complete, the angle at the front at each end of
a marked front edge can be recomputed and the front edge reclassified according to its new state.

3.7. Closing the front

With any advancing front method, a facility must be provided for detecting when opposing
fronts meet or intersect. It must also provide some process for merging or closing the fronts to
define a continuous mesh. Blacker and Stephenson23 and Cass et al.24 propose a method for
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Figure 10. Selection of side edge forming of new front loop

Figure 11. Splitting of side edge to maintain even loop

detecting when a front is to be closed by computing intersections of combinations of edges on the
current front. Q-Morph avoids these intersection calculations by naturally handling the interfer-
ence of opposing fronts by taking advantage of the background triangle mesh topology.

When defining a new side edge, the opposite node, N
m
, as shown in Figure 10, may lie on an

opposing front. Edge E
k
may have been selected from the existing triangles as in Figure 5, or from

a swap operation as in Figure 6. In either case, E
k
can only be used if the number of edges on each

resulting front loop is even. A front loop may be defined as all edges on a front comprising
a continuous unbroken ring. Any number of loops may be active at a given time in the process of
meshing. In order to ensure an all-quadrilateral mesh it is required that any individual loop be
comprised of an even number of edges. Selecting an edge to be used as a new side edge may result
in the formation of a loop with an odd number of front edges. To avoid this occurrence, the
potential number of front edges on the new loop about to be formed is first determined. If the
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Figure 12. Seaming operation: (a) front to be seamed; (c) seam closed

number of edges is even, then the selection is made and a new loop is defined. If the number of
edges on the new loop is odd, no connection is made. Instead the edge, E

k
, is split creating a new

node, N
n
, as shown in Figure 11. This permits a subsequent side selection operation to define an

even number of front edges on adjacent loops.
If the side edge is to be created from a swap or split operation, as in Figure 6, the edge E

0
should

first be checked to see if it is part of the opposing front. Since swapping or splitting E
0

would
destroy the continuity of the front, the operation should not be performed. For this reason, it is
advantageous, when N

m
is on an opposing front to allow for a larger value of e. This increases the

chances of selecting an existing edge and closing the front.

3.8. Seams

When the angle, a, between two adjacent edges on the front is small, then a seaming operation
is performed. Although paving23 incorporates a seaming operation, it must be defined within the
context of the Q-Morph algorithm, in order to account for triangles ahead of the front. In
addition to angle a, the criteria for seaming is also based on the number of quadrilateral elements,
n
Q
, adjacent the node to be seamed. Blacker and Stephenson23 proposes that a node be seamed if:

G
a(e

1
for n

Q
*5

a(e
2

otherwise H where e
1
(e

2
(6)

To accomplish the seam, nodes N
k~1

and N
k`1

, shown in Figure 12, must be merged. Let N
k
be

the node on the front whose angle, a, satisfies equation (6). The temporary edge, E
0
, connecting

N
k~1

and N
k`1

, if not already part of the background mesh, is first recovered using Algorithm
1 above. Knowing E

0
, its adjacent triangle comprising nodes N

k~1
, N

k`1
, N

t
, can be determined.

With this information, all triangles and nodes bounded by the quadrilateral composed of nodes
N

k~1
, N

k
, N

k`1
, N

t
can be deleted. Finally nodes N

k~1
and N

k`1
can be merged at a location

midway between their initial positions. Local smoothing is then performed, followed by an
update of the states of any adjacent fronts that may have changed. In rare occasions, the new
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Figure 13. Transition seam operation: (a) split larger of E
F1

and E
F2

; (b) define E
F

as front in state 1—1; (c) from now
transition quad; (d) smooth and reclassify fronts

location of node N
k`1

may result in one or more inverted elements. In this case, an optimization
based smoothing algorithm34 is employed which adjusts the node location with the objective of
improving a local shape metric for neighbouring elements.

Another operation described by Blacker and Stephenson23 is the transition seam. This is
required when there is a large difference in size between adjacent fronts. In Figure 13 E

F1
and

E
F2

are the edges on the front adjacent to N
k
. If the ratio of lengths between E

F1
and E

F2
is greater

than 2)5, then a transition seam operation is performed. The longer of the two edges, E
F1

and E
F2

,
is first split at its midpoint adding node N

k~1@2
or N

k`1@2
. In Figure 13(b), E

F1
is split, dividing its

adjacent triangle and quadrilateral as shown. Edges E
F
, E

FL
, and E

FR
can then be defined as front

edges. With this new configuration, edge E
F

can be processed as a front in state 1—1, requiring
only the recovery of the top edge between N

k~1@2
and N

k`1
as in Figure 13(c). Finally, the

transition seam is completed after local smoothing and updating of the front as shown in Figure
13(d).

3.9. Transition split

An operation useful for improving transitions is shown in Figure 14. Although similar to the
transition seam operation in Figure 13, it is applicable when a'e

1
or a'e

2
(see equation (6)).
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Figure 14. Transition split operation: (a) split Q
1
; (b) define E

F
as front in state 1—1; (c) form transition quad and smooth

The transition split operation is performed when the ratio of lengths between E
F1

and E
F2

is
greater than 2)5. Let Q

1
be the quadrilateral adjacent the longer of E

F1
or E

F2
. Q

1
is split into two

quadrilaterals and a single triangle, as shown in Figure 14(a). Front E
F1

in Figure 14(a) is split at
its midpoint also splitting its adjacent triangle, and adding an additional node to the centroid of
Q

1
. As a result, new front edges, E

F
, E

FL
and E

FR
, can be defined as shown in Figure 14(b). Similar

to the transition seam, E
F
can now be defined as a front in state 1—1 and processed to create a new

quadrilateral. Figure 14(c) shows the configuration after smoothing and reclassification of fronts.

3.10. ¹opological clean-up and smoothing

Once all of the front edges have been processed and an all-quadrilateral mesh is generated, it is
often beneficial to perform local topological clean-up operations to decrease the number of
irregular nodes. Although Q-Morph attempts to minimize the number of irregular nodes, they
may, as a necessity, be introduced as a result of non-orthogonal boundaries or from element
size transitions. Irregular nodes may also be introduced when the local nodal density and
connectivity, provided by the background triangle mesh, is insufficient to generate equilateral
quadrilaterals. Many of these irregular nodes can be eliminated through local topological
clean-up. Topological clean-up modifies the connectivity of the quadrilaterals through a series of
single-step operations including edge swaps, face opens, face closes, and two-edge node
removals/insertions.14—16 In addition, these single operation modifications can be combined into
multi-step modifications14 to further decrease the number of irregular nodes. By reducing
irregular nodes through topological clean-up, the mesh contours can more closely follow the
contours of the boundary.

The final smoothing step involves a limited number of iterations of a constrained Laplacian
smoothing algorithm. Each node is moved to the centroid of its neighbours only if an improve-
ment in element shape metric13 would result. In situations where Laplacian smoothing produces
poor results, an optimization based smoothing34 operation may be performed.
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4. EXAMPLE PROBLEMS

Five example problems, shown in Figures 15—19, demonstrate various features of the Q-Morph
algorithm. The first example, shown in Figure 15, demonstrates the progression of the Q-Morph
algorithm on a simple planar domain with two holes. Figure 15(a) shows the initial background
triangle mesh before Q-Morph begins. In this case an advancing front triangle mesher35 was used
to create the triangles. The method used for triangulation is unimportant, inasmuch as the
appropriate nodal density is provided. Figures 15(b)—15(g) show the progression of the algorithm
as each successive layer of elements is completed. Figure 15(c) shows an additional layer of small
elements meshed on the internal circle loop before meshing the larger elements of the outer loop.
To improve element transitions, provision is made in Q-Morph to mesh loops with smaller
elements before those with larger elements. The mesh is completed in Figure 15(h) after a final
pass of clean-up and smoothing.

Figures 16 and 17 compare Q-Morph against Lee and Lo’s13 quad meshing algorithm, which
uses an indirect method, coupled with an advancing front scheme to combine triangles into
quadrilaterals. The toroidal surface of Figure 16 is composed of four surface patches represented
as rational B-splines. Q-Morph utilizes projection and geometric evaluation routines as part of
the local and final smoothing procedures to maintain nodal locations on the three-dimensional
surface. Both Figures 16(a) and 16(b) were generated using the same initial triangle mesh as well as
the same clean-up and smoothing procedures. Despite using an advancing front scheme, Lee’s
algorithm shown in Figure 16(b), has difficulty maintaining well-aligned rows of elements
introducing many irregular internal nodes. Figure 17 further illustrates the ability of the

Figure 15. Progression of Q-Morph: (a) initial; (b) 1 layer; (c) 2 layers; (d) 3 layers; (e) 4 layers; (f ) 5 layers; (g) 6 layers; (h)
clean-up and smoothing
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Figure 16. Results of Q-Morph compared with Lee’s13 advancing front indirect method on toroidal surface: (a) Q-Morph;
(b) Lee’s algorithm

Figure 17. Comparison of Q-Morph with Lee’s Algorithm illustrating element boundary alignment: (a) Q-Morph; (b)
Lee’s algorithm

Q-Morph algorithm to generate well-aligned rows of elements parallel to a complex domain
boundary, while still maintaining the required element size transitions.

Figure 18 demonstrates the use of Q-Morph with a planar surface requiring a high degree of
transition. Figure 18(a) shows the partially completed quad mesh with two layers of quads placed.
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Figure 18. Large transition mesh for CFD application: (a) partially completed quad Mesh; (b) mesh after clean-up and
smoothing

Figure 18(b) shows the same area after final clean-up and smoothing. In order to maintain
a specified nodal density near the top of the area, a sizing function26 was used during the triangle
meshing process. The algorithm’s ability to maintain the desired mesh density while still enforcing
well-aligned rows of elements transitioning quickly to larger size elements is demonstrated in this
example.

The final example in Figure 19 is an industrial application of the Q-Morph algorithm. For this
example, the model consisting of 104 separate areas was first constructed using a commercial
CAD software application. Surfaces are once again represented by rational B-splines. In practice,
the Q-Morph algorithm is used as part of a set of meshing tools that also include mapping
methods.9 In this example, the narrow fillet regions are better represented with a mapped
meshing technique, which can more appropriately create elements of high aspect ratio. Q-Morph
is better suited to generating near-equilateral, isotropic quadrilaterals. Selection of the appropri-
ate quad meshing method can be done automatically based on the number of lines comprising the
area and its aspect ratio. After assigning line divisions, each area is first meshed with triangles and
then transformed into quadrilaterals.

5. PERFORMANCE

Both speed and element quality of the resulting elements from Q-Morph was evaluated as part
of this study. Table I shows performance results from two of the example problems above. For
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the models in Figures 16 and 18, various element densities were specified and their results
noted.

5.1. Speed

Table I shows CPU times for both the quad-conversion and the clean-up and smoothing
portions of the Q-Morph algorithm. Tests were performed on a 195 MHz SGI UNIX worksta-
tion. For the toroidal surface in Figure 16, times are necessarily affected by the number of
geometric evaluations required. Times range from 141 to 242 quads converted per CPU second.
This is in contrast to the flat surface of Figure 18, where times ranged from 313 to 369 quads
converted per CPU second. Clean-up and smoothing times were however slower for Figure 18
than for Figure 16 as the transition in element size defined by the quad conversion required
additional iterations to converge. A wide variety of factors can affect the overall speed of the
algorithm. Table I illustrates two cases where geometry and element transitions are critical.

5.2. Element quality

Element quality was measured by shape metric, b similar to that described by Lo and his
coworkers11,13 and Canann et al.34 For this implementation, b is defined as the minimum

Figure 19. Industrial application of Q-Morph
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Table I. Performance results from Q-Morph

Triangle to Quad conversion Clean-up and smoothing

Model
Num.
quads

Num.
tris

Min.
metric

Avg.
metric

CPU
time (s)

Num.
quads

Num.
tris

Min.
metric

Avg.
metric

CPU
time (s)

Figure 15 351 0 0)371 0)893 1)45 350 0 0)515 0)905 0)44
1208 0 0)391 0)905 5)31 1206 0 0)529 0)925 1)89
4870 0 0)170 0)936 25)4 4845 0 0)376 0)948 10)9

19 209 0 !0)155 0)940 136 19 070 0 0)359 0)949 34)2

Figure 17 727 1 0)00 0)740 2)32 696 1 0)255 0)802 2)23
1892 0 0)00 0)790 5)19 1785 0 0)344 0)859 4)36
4472 1 0)00 0)811 12)1 4288 1 0)370 0)889 15)7

10 581 0 !0)155 0)817 33)4 10 231 0 0)382 0)889 31)4

triangle shape metric, a, defined by any of the four possible triangles formed by the vertices of the
quadrilateral. A b value of 1)0 represents a perfect square, while a value of 0)0 represents
a quadrilateral with a single corner angle of n. Concave or inverted quadrilaterals may be
represented by negative values of b.

Both minimum and average metrics immediately following quad conversion and after clean-up
and smoothing are shown in Table I. In some cases, inverted or poorly shaped quadrilaterals can
be created during the quad conversion as indicated by the negative or zero metrics. Average
metrics are however very high. In all cases tested, clean-up and smoothing improved the poorly
shaped quads to well within usable limits. Table I also shows cases where a single triangle is
created in the mesh. This occurs automatically in order to resolve situations where an odd
number of boundary intervals are specified.

5.3. Robustness

A diversity of surfaces has been meshed using the Q-Morph algorithm and is currently
part of a commercial FEA software release.36 As such, it has been successfully ported to a wide
variety of platforms, including Windows, NT and UNIX environments. In general, the Q-Morph
algorithm is most beneficial on surfaces where the geometric feature sizes are larger than the
specified element size. In addition, high quality quadrilaterals can be expected, provided the
background triangle mesh captures the details of the surface and the background triangles are
of reasonable quality (i.e. a'0)1). In most cases where these conditions are not met, Q-Morph
will be successful, however element quality may suffer.

6. CONCLUSION

The Q-Morph algorithm is an indirect quadrilateral meshing algorithm that utilizes an advanc-
ing front approach to transform triangles into quadrilaterals. It generates an all-quadrilateral
mesh, provided the number of intervals on the boundary is even. The resulting mesh has few
irregular internal nodes and produces elements whose contours, in general, follow the boundary
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of the domain. Overall element quality is excellent. The Q-Morph algorithm borrows many of its
techniques from the paving method,23 but adapts them for use as an indirect method, operating
on an existing set of triangles. In so doing, it is able to improve upon the paving technique by
resolving some of its inherent difficulties. Relying on the topology of the initial triangle mesh to
close opposing fronts eliminates the intersection problem, common to most direct methods of
advancing front meshing. Improvements also include facility for handling individual element
placement through the use of states for classifying front edges. Facility for handling transition in
element sizes has also been addressed through the use of sizing information provided by the
background triangle mesh and the definition of specific transformations that enable improved
mesh transitions. Additionally, the background triangle mesh provides information that reduces
the cost of direct evaluations on three-dimensional surface geometry.
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