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Floating-point arithmetic is considered an esotoric subject by many people. This is
rather surprising, because floating-point is ubiquitous in computer systems: Almost
every language has a floating-point datatype; computers from PCs to supercomputers
have floating-point accelerators; most compilers will be called upon to compile
floating-point algorithms from time to time; and virtually every operating system must
respond to floating-point exceptions such as overflow This paper presents a tutorial on
the aspects of floating-point that have a direct impact on designers of computer
systems. It begins with background on floating-point representation and rounding
error, continues with a discussion of the IEEE floating-point standard, and concludes
with examples of how computer system builders can better support floating point,
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INTRODUCTION

Builders of computer systems often need
information about floating-point arith-
metic. There are however, remarkably
few sources of detailed information about
it. One of the few books on the subject,
Floating-Point Computation by Pat Ster-
benz, is long out of print. This paper is a
tutorial on those aspects of floating-point
arithmetic ( floating-point hereafter) that
have a direct connection to systems
building. It consists of three loosely con-
nected parts. The first (Section 1) dis-
cusses the implications of using different
rounding strategies for the basic opera-

tions of addition, subtraction, multipli-
cation, and division. It also contains
background information on the two
methods of measuring rounding error,
ulps and relative error. The second part
discusses the IEEE floating-point stand-
ard, which is becoming rapidly accepted
by commercial hardware manufacturers.
Included in the IEEE standard is the
rounding method for basic operations;
therefore, the discussion of the standard
draws on the material in Section 1. The
third part discusses the connections be-
tween floating point and the design of
various aspects of computer systems.
Topics include instruction set design,
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optimizing compilers, and exception
handling.
All the statements made about float-

ing-point are provided with justifications,
but those explanations not central to the
main argument are in a section called
The Details and can be skipped if de-
sired. In particular, the proofs of many of
the theorems appear in this section. The
end of each m-oof is marked with the H
symbol; whe~ a proof is not included, the
❑ appears immediately following the
statement of the theorem.

1. ROUNDING ERROR

Squeezing infinitely many real numbers
into a finite number of bits requires an
approximate representation. Although
there are infinitely many integers, in
most programs the result of integer com-
putations can be stored in 32 bits. In
contrast, given any fixed number of bits,
most calculations with real numbers will
produce quantities that cannot be exactly
represented using that many bits. There-
fore, the result of a floating-point calcu-
lation must often be rounded in order to

fit back into its finite representation. The
resulting rounding error is the character-
istic feature of floating-point computa-
tion. Section 1.2 describes how it is
measured.
Since most floating-point calculations

have rounding error anyway, does it
matter if the basic arithmetic operations
introduce a bit more rounding error than
necessary? That question is a main theme
throughout Section 1. Section 1.3 dis-
cusses guard digits, a means of reducing
the error when subtracting two nearby
numbers. Guard digits were considered
sufficiently important by IBM that in
1968 it added a guard digit to the double
precision format in the System/360 ar-
chitecture (single precision already had a
guard digit) and retrofitted all existing
machines in the field. Two examples are
given to illustrate the utility of guard
digits.
The IEEE standard goes further than

just requiring the use of a guard digit. It
gives an algorithm for addition, subtrac-
tion, multiplication, division, and square
root and requires that implementations
produce the same result as that algo-
rithm. Thus, when a program is moved
from one machine to another, the results
of the basic operations will be the same
in every bit if both machines support the
IEEE standard. This greatly simplifies
the porting of programs. Other uses of
this precise specification are given in
Section 1.5.

2.1 Floating-Point Formats

Several different representations of real
numbers have been proposed, but by far
the most widely used is the floating-point
representation.’ Floating-point represen-
tations have a base O (which is always
assumed to be even) and a precision p. If
6 = 10 and p = 3, the number 0.1 is rep-
resented as 1.00 x 10-1. If P = 2 and
P = 24, the decimal number 0.1 cannot

lExamples of other representations are floatzng
slas;, aud szgned logan th m [Matula and Kornerup
1985; Swartzlander and Alexopoulos 1975]
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Figure 1. Normalized numbers when (3 = 2, p = 3, em,n = – 1, emax = 2.

be represented exactly but is approxi-
mately 1.10011001100110011001101 x
2-4. In general, a floating-point num-
ber will be represented as ~ d. dd “ . . d
x /3’, where d. dd . . . d is called the
significand2 and has p digits. More pre-
cisely, kdO. dld2 “.” dp_l x b’ repre-
sents the number

(+ do + dl~-l + ““. +dP_l&(P-l))&,

o<(il <~. (1)

The term floating-point number will
be used to mean a real number that can
be exactly represented in the format un-
der discussion. Two other parameters
associated with floating-point represen-
tations are the largest and smallest al-
lowable exponents, e~~X and e~,~. Since
there are (3P possible significands and
emax — e~i. + 1 possible exponents, a
floating-point number can be encoded in
L(1°g2 ‘ma. – ‘m,. + 1)] + [log2((3J’)] + 1
its, where the final + 1 is for the sign

bit. The precise encoding is not impor-
tant for now.
There are two reasons why a real num-

ber might not be exactly representable as
a floating-point number. The most com-
mon situation is illustrated by the deci-
mal number 0.1. Although it has a finite
decimal representation, in binary it has
an infinite repeating representation.
Thus, when D = 2, the number 0.1 lies
strictly between two floating-point num-
bers and is exactly representable by nei-
ther of them. A less common situation is
that a real number is out of range; that
is, its absolute value is larger than f? x

2This term was introduced by Forsythe and Moler
[196’71and has generally replaced the older term
mantissa.

o‘m= or smaller than 1.0 x ~em~. Most of
this paper discusses issues due to the
first reason. Numbers that are out of
range will, however, be discussed in Sec-
tions 2.2.2 and 2.2.4.
Floating-point representations are not

necessarily unique. For example, both
0.01 x 101 and 1.00 x 10-1 represent
0.1. If the leading digit is nonzero [ do # O
in eq. (1)], the representation is said to
be normalized. The floating-point num-
ber 1.00 x 10-1 is normalized, whereas
0.01 x 101 is not. When ~ = 2, p = 3,
e~i~ = – 1, and e~~X = 2, there are 16
normalized floating-point numbers, as
shown in Figure 1. The bold hash marks
correspond to numbers whose significant
is 1.00. Requiring that a floating-point
representation be normalized makes the
representation unique. Unfortunately,
this restriction makes it impossible to
represent zero! A natural way to repre -
sent O is with 1.0 x ~em~- 1, since this
preserves the fact that the numerical or-
dering of nonnegative real numbers cor-
responds to the lexicographical ordering
of their floating-point representations. 3
When the exponent is stored in a k bit
field, that means that only 2 k – 1 values
are available for use as exponents, since
one must be reserved to represent O.
Note that the x in a floating-point

number is part of the notation and differ-
ent from a floating-point multiply opera-
tion. The meaning of the x symbol
should be clear from the context. For
example, the expression (2.5 x 10-3, x
(4.0 X 102) involves only a single float-
ing-point multiplication.

3This assumes the usual arrangement where the
exponent is stored to the left of the significant
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1.2 Relative Error and Ulps x /3’/~’+1. That is,

Since rounding error is inherent in float-
:(Y’ s ;Ulp s ;6-’.ing-point computation, it is important to (2)

have a way to measure this error. Con- 2
sider the floating-point format with ~ = ~
10 and p = 3, which will be used

n particular, the relative error corre -

throughout this section. If the result of a
spending to 1/2 ulp can vary by a factor

floating-point computation is 3.12 x 10’2
of O. This factor is called the wobble.
Setting E = (~ /2)~-P to the largest of

and the answer when computed to infi- the bounds in (2), we can say that when a
nite precision is .0314, it is clear that real number is rounded to the closest
this is in error by 2 units in the last floating-point number, the relative error
place. Similarly, if the real number is always bounded by c, which is referred
.0314159 is represented as 3.14 x 10-2, to as machine epsilon
then it is in error by .159 units in the In the example above, the relative er-
last place. In general, if the floating-point ~or was .oo159i3, ~4159 = 0005. To avoid
number d. d . . . d x fle is used to repre- such small numbers, the relative error is
sent z, it is in error by Id. d . . . d–
( z//3’) I flp - 1 units in the last place.4 The

normally written as a factor times 6,

term ulps will be used as shorthand for
which in this case is c = (~/2)P-P =
5(10) -3 = .005. Thus, the relative error

“units in the last place. ” If the result of
a calculation is the floating-point num -

would be expressed as ((.00159/

ber nearest to the correct result, it still
3.14159) /.oo5)e = O.l E.
To illustrate the difference between

might be in error by as much as 1/2 ulp.
Another way to measure the difference

ulps and relative error, consider the real

between a floating-point number and the
number x = 12.35. It is approximated by
Z = 1.24 x 101. The error is 0.5 ulps; the

real number it is approximating is rela-
tive error, which is the difference be-

relative error is 0.8 e. Next consider the
computation 8x. The exact value is 8 x =

tween the two numbers divided by the 98.8, whereas, the computed value is 81
real number. For example, the relative = 9.92 x 101. The error is now 4.0 ulps,
error committed when approximating but the relative error is still 0.8 e. The
3.14159 by 3.14 x 10° is .00159 /3.14159
= .0005.

error measured in ulps is eight times

To compute the relative error that cor-
larger, even though the relative error is
the same. In general, when the base is (3,

responds to 1/2 ulp, observe that when a a fixed relative error expressed in ulps
real number is approximated by the can wobble by a factor of up to (3. Con-
closest possible floating-point number

P versely, as eq. (2) shows, a fixed error of
d dd ~. dd X ~e, the absolute error can be 1/2 ulps results in a relative error that

u can wobble by (3.
as large as ‘(Y x /3’ where & is The most natural way to measure
the digit ~/2. This error is ((~/2)&P) x rounding error is in ulps. For example,
/3’ Since numb... of the form d. dd --- rounding to the neared flo~ting.point

dd x /3e all have this same absolute error number corresponds to 1/2 ulp. When
but have values that range between ~’ analyzing the rounding error caused by
and O x fle, the relative error ranges be- various formulas, however, relative error
tween ((&/2 )~-’) x /3’//3’ and ((~/2)&J’) is a better measure. A good illustration

of this is the analysis immediately fol-
lowing the proof of Theorem 10. Since ~
can overestimate the effect of rounding

4Un1ess the number z is larger than ~em=+ 1 or
to the nearest floating-point number b;

smaller than (lem~. Numbers that are out of range the wobble factor of (3, error estimates of
in this fashion will not be considered until further formulas will be tighter on machines with
notice. a small p.
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When only the order of magnitude of
rounding error is of interest, ulps and e
may be used interchangeably since they
differ by at most a factor of ~. For exam-
ple, when a floating-point number is in
error by n ulps, that means the number
of contaminated digits is logD n. If the
relative error in a computation is ne,
then

contaminated digits = log,n. (3)

1.3 Guard Digits

One method of computing the difference
between two floating-point numbers is to
compute the difference exactly, then
round it to the nearest floating-point
number. This is very expensive if the
operands differ greatly in size. Assuming
P = 3, 2,15 X 1012 – 1.25 X 10-5 would
be calculated as

x = 2.15 X 1012
y = .0000000000000000125 X 1012

X – y = 2.1499999999999999875 X 1012,

which rounds to 2.15 x 1012. Rather than
using all these digits, floating-point
hardware normally operates on a fixed
number of digits. Suppose the number of
digits kept is p and that when the
smaller operand is shifted right, digits
are simply discarded (as opposed to
rounding). Then, 2.15 x 1012 – 1.25 x
10-5 becomes

x = 2.15 X 1012
‘y = 0.00 x 1012

x–y =2.15x1012.

The answer is exactly the same as if the
difference had been computed exactly
then rounded. Take another example:
10.1 – 9.93. This becomes

x= 1.01 x 101
‘y = 0.99 x 101

X–yz .02 x 101.

The correct answer is .17, so the com-
puted difference is off by 30 ulps and is

Floating-Point Arithmetic g 9

wrong in every digit! How bad can the
error be?

Theorem 1

Using a floating-point format with pa-
rameters /3 and p and computing differ-
ences using p digits, the relative error of
the result can be as large as b – 1.

Proofi A relative error of 13– 1 in
the expression x – y occurs when x =
1.00””” Oandy=. pp. ””p, wherep=
@– 1. Here y has p digits (all equal to
Q). The exact difference is x – y = P‘p.
When computing the answer using only
p digits, however, the rightmost digit of
y gets shifted off, so the computed differ-
ence is P–p+l. Thus, the error is p-p –
@-P+l = ~-P(~ – 1), and the relative er-
ror is $-P((3 – l)/O-p = 6 – 1. H

When f? = 2, the absolute error can be
as large as the result, and when 13= 10,
it can be nine times larger. To put it
another way, when (3 = 2, (3) shows that
the number of contaminated digits is
log2(l/~) = logJ2 J’) = p. That is, all of
the p digits in the result are wrong!
Suppose one extra digit is added to

guard against this situation (a guard
digit). That is, the smaller number is
truncated to p + 1 digits, then the result
of the subtraction is rounded to p digits.
With a guard digit, the previous example
becomes

x = 1.010 x 101
y = 0.993 x 101

x–y= .017 x 101,

and the answer is exact. With a single
guard digit, the relative error of the re -
suit may be greater than ~, as
8.59:

x= 1.1OX 102
y = .085 X 102

z–y= 1.015 x 102

This rounds to 102, compared

in 110 –

with the
correct answer of 101.41, for a relative
error of .006, which is greater than

ACM Computing Surveys, Vol 23, No. 1, March 1991
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e = .005. In general, the relative error of
the result can be only slightly larger than
c. More precisely, we have Theorem 2.

Theorem 2

If x and y are floating-point numbers in a
format with 13and p and if subtraction is
done with p + 1 digits (i. e., one guard
digit), then the relative rounding error in
the result is less than 2 ~.

This theorem will be proven in Section
4.1. Addition is included in the above
theorem since x and y can be positive
or negative.

1.4 Cancellation

Section 1.3 can be summarized by saying
that without a guard digit, the relative
error committed when subtracting two
nearby quantities can be very large. In
other words, the evaluation of any ex-
pression containing a subtraction (or an
addition of quantities with opposite signs)
could result in a relative error so large
that all the digits are meaningless (The-
orem 1). When subtracting nearby quan-
tities, the most significant digits in the
operands match and cancel each other.
There are two kinds of cancellation:
catastrophic and benign.

Catastrophic cancellation occurs when
the operands are subject to rounding er-
rors. For example, in the quadratic for-
mula, the expression bz – 4 ac occurs.
The quantities 62 and 4 ac are subject to
rounding errors since they are the re-
sults of floating-point multiplications.
Suppose they are rounded to the nearest
floating-point number and so are accu-
rate to within 1/2 ulp. When they are
subtracted, cancellation can cause many
of the accurate digits to disappear, leav-
ing behind mainly digits contaminated
by rounding error. Hence the difference
might have an error of many ulps. For
example, consider b = 3.34, a = 1.22,
and c = 2.28. The exact value of b2 --
4 ac is .0292. But b2 rounds to 11.2 and
4 ac rounds to 11.1, hence the final an-
swer is .1, which is an error by 70 ulps
even though 11.2 – 11.1 is exactly equal

to .1. The subtraction did not introduce
any error but rather exposed the error
introduced in the earlier multiplications.

Benign cancellation occurs when sub-
tracting exactly known quantities. If x
and y have no rounding error, then by
Theorem 2 if the subtraction is done with
a guard digit, the difference x – y has a
very small relative error (less than 2 e).
A formula that exhibits catastrophic

cancellation can sometimes be rear-
ranged to eliminate the problem. Again
consider the quadratic formula

–b+ ~b2–4ac

–b–~
r2 =

2a “
(4)

When b2 P ac, then b2 – 4 ac does not
involve a cancellation and ~ =
\ b 1. But the other addition (subtraction)
in one of the formulas will have a catas-
trophic cancellation. To avoid this, mul-
tiply the numerator and denominator of
r-l by – b – ~ (and similarly
for r2 ) to obtain

2C
rl =

–b–~’
2C

rz =
–b+~”

(5)

If b2 % ac and b >0, then computing rl
using formula (4) will involve a cancella-
tion. Therefore, use (5) for computing rl
and (4) for rz. On the other hand, if
b <0, use (4) for computing rl and (5)
for r2.
The expression X2 – y2 is another for-

mula that exhibits catastrophic cancella-
tion. It is more accurate to evaluate it as
( x – y)( x + y). 5 Unlike the quadratic

5Although the expression ( x – .Y)(x + y) does not
cause a catastrophic cancellation, it IS shghtly less
accurate than X2 – y2 If x > y or x < y In this
case, ( x – -Y)(x + y) has three rounding errors, but
X2 – y2 has only two since the rounding error com-
mitted when computing the smaller of x 2 and y 2
does not affect the final subtraction.
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formula, this improved form still has a
subtraction, but it is a benign cancella-
tion of quantities without rounding er-
ror, not a catastrophic one. By Theorem
2, the relative error in x – y is at most
2 e. The same is true of x + y. Multiply-
ing two quantities with a small relative
error results in a product with a small
relative error (see Section 4.1).
To avoid confusion between exact and

computed values, the following notation
is used. Whereas x – y denotes the exact
difference of x and y, x @y denotes the
computed difference (i. e., with rounding
error). Similarly @, @, and @ denote
computed addition, multiplication, and
division, respectively. All caps indicate
the computed value of a function, as in
LN( x) or SQRT( x). Lowercase functions
and traditional mathematical notation
denote their exact values as in ln( x)
and &.
Although (x @y) @ (x @ y) is an ex-

cellent approximation of x 2 – y2, the
floating-point numbers x and y might
themselves be approximations to some
true quantities 2 and j. For example, 2
and j might be exactly known decimal
numbers that cannot be expressed ex-
actly in binary. In this case, even though
x ~ y is a good approximation to x – y,
it can have a huge relative error com-
pared to the true expression 2 – $, and
so the advantage of ( x + y)( x – y) over
X2 – y2 is not as dramatic. Since comput -
ing ( x + y)( x – y) is about the same
amount of work as computing X2 – y2, it
is clearly the preferred form in this case.
In general, however, replacing a catas-
trophic cancellation by a benign one is
not worthwhile if the expense is large
because the input is often (but not al-
ways) an approximation. But eliminat -
ing a cancellation entirely (as in the
quadratic formula) is worthwhile even if
the data are not exact. Throughout this
paper, it will be assumed that the float-
ing-point inputs to an algorithm are ex -
.aGtand Qxat the results are computed as
accurately as possible.
The expression X2 – y2 is more accu-

rate when rewritten as (x – y)( x + y)
because a catastrophic cancellation is

replaced with a benign one. We next pre-
sent more interesting examples of formu-
las exhibiting catastrophic cancellation
that can be rewritten to exhibit only
benign cancellation.
The area of a triangle can be expressed

directly in terms of the lengths of its
sides a, b, and c as

A = ~s(s - a)(s - b)(s - c) ,

a+b+c
where s =

2
. (6)

Suppose the triangle is very flat; that is,
a = b + c. Then s = a, and the term
(s – a) in eq. (6) subtracts two nearby
numbers, one of which may have round-
ing error. For example, if a = 9.0, b = c
= 4.53, then the correct value of s is
9.03 and A is 2.34. Even though the
computed value of s (9.05) is in error by
only 2 ulps, the computed value of A is
3.04, an error of 60 ulps.
There is a way to rewrite formula (6)

so that it will return accurate results
even for flat triangles [Kahan 1986]. It is

A= [(la+ (b+c))(c - (a-b))

X(C+ (a– b))(a+ (b– c))] ’/’/4,

a? b?c. (7)

If a, b, and c do not satisfy a > b > c,
simply rename them before applying (7).
It is straightforward to check that the
right-hand sides of (6) and (7) are alge-
braically identical. Using the values of
a, b, and c above gives a computed area
of 2.35, which is 1 ulp in error and much
more accurate than the first formula.
Although formula (7) is much more

accurate than (6) for this example, it
would be nice to know how well (7) per-
forms in general.

Theorem 3

The rounding error incurred when using
(T) #o compuie the area of a t.icqqle ie at
most 11 e, provided subtraction is per-
formed with a guard digit, e <.005, and
square roots are computed to within 1/2
Ulp.
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The condition that c s .005 is met in
virtually every actual floating-point sys-
tem. For example, when 13= 2, p >8
ensures that e < .005, and when 6 = 10,
p z 3 is enough.
In statements like Theorem 3 that dis-

cuss the relative error of an expression,
it is understood that the expression is
computed using floating-point arith-
metic. In particular, the relative error is
actually of the expression

The troublesome expression (1 + i/n)’
can be rewritten as exp[ n ln(l + i / n)],
where now the problem is to compute
In(l + x) for small x. One approach is to
use the approximation ln(l + x) = x, in
which case the payment becomes
$37617.26, which is off by $3.21 and even
less accurate than the obvious formula.
But there is a way to compute ln(l + x)
accurately, as Theorem 4 shows
[Hewlett-Packard 1982], This formula
yields $37614.07, accurate to within 2

(sQRT(a @(b @c))@ (C@(a @b)) cents!Theorem 4 assumes that LN( x) ap-

F3(c @(a @b))@ (a @(b @c)))
proximate ln( x) to within 1/2 ulp. The
problem it solves is that when x is small,

@4. (8) LN(l @ x) is not close to ln(l + x) be-
cause 1 @ x has lost the information in
the low order bits of x. That is, the com-

Because of the cumbersome nature of (8), puted value of ln(l + x) is not close to its
in the statement of theorems we will actual value when x < 1.
usually say the computed value of E
rather than writing out E with circle Theorem 4
notation.
Error bounds are usually too pes-

simistic. In the numerical example given
above, the computed value of (7) is 2.35,
compared with a true value of 2.34216
for a relative error of O.7c, which is much
less than 11 e. The main reason for com-
puting error bounds is not to get precise
bounds but rather to verify that the
formula does not contain numerical
problems.
A final example of an expression that

can be rewritten to use benign cancella-
tion is (1 + x)’, where x < 1. This ex-
pression arises in financial calculations.
Consider depositing $100 every day into
a bank account that earns an annual
interest rate of 6~o, compounded daily. If
n = 365 and i = ,06, the amount of
money accumulated at the end of one
year is 100[(1 + i/n)” – 11/(i/n) dol-
lars. If this is computed using ~ = 2 and
P = 24, the result is $37615.45 compared
to the exact answer of $37614.05, a
discrepancy of $1.40. The reason for
the problem is easy to see. The expres-
sion 1 + i/n involves adding 1 to
.0001643836, so the low order bits of i/n
are lost. This rounding error is amplified
when 1 + i / n is raised to the nth power.

If ln(l – x) is computed using the for-
mula

ln(l + x)

Ix forl~x=l
——1xln(l + x)

(1 +X)-1
forl G3x#l

the relative error is at most 5 c when O <
x < 3/4, provided subtraction is per-
formed with a guard digit, e <0.1, and
in is computed to within 1/2 ulp.

This formula will work for any value of
x but is only interesting for x + 1, which
is where catastrophic cancellation occurs
in the naive formula ln(l + x) Although
the formula may seem mysterious, there
is a simple explanation for why it works.
Write ln(l + x) as x[ln(l + x)/xl =
XV(x). The left-hand factor can be com-
puted exactly, but the right-hand factor
P(x) = ln(l + x)/x will suffer a large
rounding error when adding 1 to x. How-
ever, v is almost constant, since ln(l +
x) = x. So changing x slightly will not
introduce much error. In other words, if
z= x, computing XK( 2) will be a good
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approximation to xp( x) = ln(l + x). Is
there a value for 5 for which 2 and
5 + 1 can be computed accurately? There
is; namely, 2 = (1 @ x) e 1, because
then 1 + 2 is exactly equal to 1 @ x.
The results of this section can be sum-

marized by saying that a guard digit
guarantees accuracy when nearby pre-
cisely known quantities are subtracted
(benign cancellation). Sometimes a for-
mula that gives inaccurate results can be
rewritten to have much higher numeri -
cal accuracy by using benign cancella-
tion; however, the procedure only works
if subtraction is performed using a guard
digit. The price of a guard digit is not
high because is merely requires making
the adder 1 bit wider. For a 54 bit double
precision adder, the additional cost is less
than 2%. For this price, you gain the
ability to run many algorithms such as
formula (6) for computing the area of a
triangle and the expression in Theorem 4
for computing ln(l + ~). Although most
modern computers have a guard digit,
there are a few (such as Crays) that
do not.

1.5 Exactly Rounded Operations

When floating-point operations are done
with a guard digit, they are not as accu-
rate as if they were computed exactly
then rounded to the nearest floating-point
number. Operations performed in this
manner will be called exactly rounded.
The example immediately preceding
Theorem 2 shows that a single guard
digit will not always give exactly rounded
results. Section 1.4 gave several exam-
ples of algorithms that require a guard
digit in order to work properly. This sec-
tion gives examples of algorithms that
require exact rounding.
So far, the definition of rounding has

not been given. Rounding is straightfor-
ward, with the exception of how to round
halfway cases; for example, should 12.5
mnnd to 12 OP12? Ofie whool of thought
divides the 10 digits in half, letting
{0, 1,2,3,4} round down and {5,6,’7,8,9}
round up; thus 12.5 would round to 13.
This is how rounding works on Digital

Equipment Corporation’s VAXG comput -
ers. Another school of thought says that
since numbers ending in 5 are halfway
between two possible roundings, they
should round down half the time and
round up the other half. One way of ob -
taining this 50’%0behavior is to require
that the rounded result have its least
significant digit be even. Thus 12.5
rounds to 12 rather than 13 because 2 is
even. Which of these methods is best,
round up or round to even? Reiser and
Knuth [1975] offer the following reason
for preferring round to even.

Theorem 5

Let x and y be floating-point numbers,
and define X. = x, xl=(xOey)O
y,...,=(x(ley)@y)If@If@ and
e are exactly rounded using round to
even, then either x. = x for all n or x. = xl
foralln >1. ❑

To clarify this result, consider ~ = 10,
p = 3 and let x = 1.00, y = –.555.
When rounding up, the sequence be-
comes X. 9 Y = 1.56, Xl = 1.56 9 .555
= 1.01, xl e y ~ LO1 Q .555 = 1.57,
and each successive value of x. in-
creases by .01. Under round to even, x.
is always 1.00. This example suggests
that when using the round up rule, com-
putations can gradually drift upward,
whereas when using round to even the
theorem says this cannot happen.
Throughout the rest of this paper, round
to even will be used.
One application of exact rounding oc-

curs in multiple precision arithmetic.
There are two basic approaches to higher
precision. One approach represents float -
ing-point numbers using a very large sig-
nificant, which is stored in an array of
words, and codes the routines for manip-
ulating these numbers in assembly lan-
guage. The second approach represents
higher precision floating-point numbers
as an array of ordinary floating-point

‘VAX is a trademark of Digital Equipment
Corporation.
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numbers, where adding the elements of
the array in infinite precision recovers
the high precision floating-point number.
It is this second approach that will be
discussed here. The advantage of using
an array of floating-point numbers is that
it can be coded portably in a high-level
language, but it requires exactly rounded
arithmetic.
The key to multiplication in this sys-

tem is representing a product xy as a
sum, where each summand has the same
precision as x and y. This can be done
by splitting x and y. Writing x = x~ + xl
and y = y~ + yl, the exact product is xy
= xhyh + xhyl + Xlyh + Xlyl. If X and y
have p bit significands, the summands
will also have p bit significands, pro-
vided XI, xh, yh? Y1 carI be represented
using [ p/2] bits. When p is even, it is
easy to find a splitting. The number
Xo. xl ““” xp_l can be written as the sum
of Xo. xl ““” xp/2–l and O.O.. .OXP,Z
. . . XP ~. When p is odd, this simple
splitting method will not work. An extra
bit can, however, be gained by using neg-
ative numbers. For example, if ~ = 2,
P = 5, and x = .10111, x can be split as
x~ = .11 and xl = – .00001. There is
more than one way to split a number. A
splitting method that is easy to compute
is due to Dekker [1971], but it requires
more than a single guard digit.

Theorem 6

Let p be the floating-point precision, with
the restriction that p is even when D >2,

ulps. Using Theorem 6 to write b = 3.5
– .024, a = 3.5 – .037, and c = 3.5 –
.021, b2 becomes 3.52 – 2 x 3.5 x .024
+ .0242. Each summand is exact, so b2
= 12.25 – .168 + .000576, where the
sum is left unevaluated at this point.
Similarly,

ac = 3.52 – (3.5 x .037 + 3.5 x .021)

+ .037 x .021
= 12.25 – .2030 + .000777.

Finally, subtracting these two series term
by term gives an estimate for b2 – ac of
O @ .0350 e .04685 = .03480, which is
identical to the exactly rounded result.
To show that Theorem 6 really requires
exact rounding, consider p = 3, P = 2,
and x = 7. Then m = 5, mx = 35, and
m @ x = 32. If subtraction is performed
with a single guard digit, then ( m @ x)
e x = 28. Therefore, x~ = 4 and xl = 3,
~~e xl not representable with \ p/2] =

As a final example of exact rounding,
consider dividing m by 10. The result is
a floating-point number that will in gen-
eral not be equal to m /10. When P = 2,
however, multiplying m @10 by 10 will
miraculously restore m, provided exact
rounding is being used. Actually, a more
general fact (due to Kahan) is true. The
proof is ingenious, but readers not inter-
ested in such details can skip ahead to
Section 2.

and assume that fl;ating-point operations
are exactly rounded. Then if k = ~p /2~ is
half the precision (rounded up) and m =
fik + 1, x can je split as x = Xh + xl,
where xh=(m Q9x)e (m@ Xe x), xl
—— x e Xh, and each x, is representable
using ~p/2] bits of precision.

To see how this theorem works in an
example, let P = 10, p = 4, b = 3.476,
a = 3.463, and c = 3.479. Then b2 – ac
rounded to the nearest floating-point
number is .03480, while b @ b = 12.08,
a @ c = 12.05, and so the computed value
of b2 – ac is .03. This is an error of 480

Theorem 7

When O = 2, if m and n are integers with
~m ~ < 2p-1 and n has the special form
n=2z+2J then (m On)@n=m,
provided fi?~ating-point operations are
exactly rounded.

Proof Scaling by a power of 2 is
harmless, since it changes only the expo-
nent not the significant. If q = m /n,
then scale n so that 2P-1 s n < 2P and
scale m so that 1/2 < q < 1. Thus, 2P–2
< m < 2P. Since m has p significant
bits, it has at most 1 bit to the right of
the binary point. Changing the sign of m
is harmless, so assume q > 0.
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If ij = m @ n, to prove the theorem
requires showing that

That is because m has at most 1 bit right
of the binary point, so nij will round to
m. TO deal with the halfway case when
I T@– m I = 1/4, note that since the ini-
tial unscaled m had I m I < 2‘- 1, its
low-order bit was O, so the low-order bit
of the scaled m is also O. Thus, halfway
cases will round to m.
Suppose q = .qlqz “.. , and & g =

. . . qP1. To estimate I nq – m 1,
ifs? compute I ~ – q I = I N/2p+1 –
m/nl, where N is an odd integer.
Since n=2’+2J and 2P-l <n <2p,
it must be that n = 2P–1 + 2k for some
~ < p – 2, and thus

(2~-’-k + ~) N- ~p+l-km
——

n~p+l–k

The numerator is an integer, and since
N is odd, it is in fact an odd integer.
Thus, I ~ – q ] > l/(n2P+l-k). Assume
q < @ (the case q > Q is similar). Then
nij < m, and

Im-n@l= m-nij=n(q-@)

= n(q – (~ – 2-P-1))

(

1
< n 2–P–1 —

n2 p+1–k )

= (2 P-1 +2’)2-’-’ +2-P-’+’=:.

This establishes (9) and proves the theo-
rem. ❑

The theorem holds true for any base 6,
as long as 2 z + 2 J is replaced by (3L+ DJ.
As 6 gets larger. however, there are
fewer and fewer denominators of the
form ~’ + p’.
We are now in a position to answer the

question, Does it matter if the basic

arithmetic operations introduce a little
more rounding error than necessary? The
answer is that it does matter, because
accurate basic operations enable us to
prove that formulas are “correct” in the
sense they have a small relative error.
Section 1.4 discussed several algorithms
that require guard digits to produce cor-
rect results in this sense. If the input to
those formulas are numbers representing
imprecise measurements, however, the
bounds of Theorems 3 and 4 become less
interesting. The reason is that the be-
nign cancellation x – y can become
catastrophic if x and y are only approxi-
mations to some measured quantity. But
accurate operations are useful even in
the face of inexact data, because they
enable us to establish exact relationships
like those discussed in Theorems 6 and 7.
These are useful even if every floating-
point variable is only an approximation
to some actual value.

2. IEEE STANDARD

There are two different IEEE standards
for floating-point computation. IEEE 754
is a binary standard that requires P = 2,
p = 24 for single precision and p = 53
for double precision [IEEE 19871. It also
specifies the precise layout of bits in a
single and double precision. IEEE 854
allows either L?= 2 or P = 10 and unlike
754, does not specify how floating-point
numbers are encoded into bits [Cody et
al. 19841. It does not require a particular
value for p, but instead it specifies con-
straints on the allowable values of p for
single and double precision. The term
IEEE Standard will be used when dis-
cussing properties common to both
standards.
This section provides a tour of the IEEE

standard. Each subsection discusses one
aspect of the standard and why it was
included. It is not the purpose of this
paper to argue that the IEEE standard is
the best possible floating-point standard
but rather to accept the standard as given
and provide an introduction to its use.
For full details consult the standards
[Cody et al. 1984; Cody 1988; IEEE 19871.
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2.1 Formats and Operations

2. 1.1 Base

It is clear why IEEE 854 allows ~ = 10.
Base 10 is how humans exchange and
think about numbers. Using (3 = 10 is
especially appropriate for calculators,
where the result of each operation is dis-
played by the calculator in decimal.
There are several reasons w~y IEEE

854 requires that if the base is not 10, it
must be 2. Section 1.2 mentioned one
reason: The results of error analyses are
much tighter when ~ is 2 because a
rounding error of 1/2 ulp wobbles by a
factor of fl when computed as a relative
error, and error analyses are almost al-
ways simpler when based on relative er-
ror. A related reason has to do with the
effective precision for large bases. Con-
sider fi = 16, p = 1 compared to ~ = 2,
p = 4. Both systems have 4 bits of signif-
icant. Consider the computation of 15/8.
When ~ = 2, 15 is represented as 1.111
x 23 and 15/8 as 1.111 x 2°, So 15/8 is
exact. When p = 16, however, 15 is rep-
resented as F x 160, where F is the hex-
adecimal digit for 15. But 15/8 is repre-
sented as 1 x 160, which has only 1 bit
correct. In general, base 16 can lose up to
3 bits, so a precision of p can have an
effective precision as low as 4p – 3
rather than 4p.
Since large values of (3 have these

problems, why did IBM choose 6 = 16 for
its system/370? Only IBM knows for sure,
but there are two possible reasons. The
first is increased exponent range. Single
precision on the system/370 has ~ = 16,
p = 6. Hence the significant requires 24
bits. Since this must fit into 32 bits, this
leaves 7 bits for the exponent and 1 for
the sign bit. Thus, the magnitude of rep-
resentable numbers ranges from about
16-2’ to about 1626 = 228. To get a simi-
lar exponent range when D = 2 would
require 9 bits of exponent, leaving only
22 bits for the significant. It was just
pointed out, however, that when D = 16,
the effective precision can be as low as
4p – 3 = 21 bits. Even worse, when B =
2 it is possible to gain an extra bit of

precision (as explained later in this sec-
tion), so the ~ = 2 machine has 23 bits of
precision to compare with a range of
21-24 bits for the ~ = 16 machine.
Another possible explanation for

choosing ~ = 16 bits has to do with shift-
ing. When adding two floating-point
numbers, if their exponents are different,
one of the significands will have to be
shifted to make the radix points line up,
slowing down the operation. In the /3 =
16, p = 1 system, all the numbers be-
tween 1 and 15 have the same exponent,
so no shifting is required when adding
any of the ()

15 = 105 possible pairs of
distinct numb~rs from this set. In the
b = 2, P = 4 system, however, these
numbers have exponents ranging from O
to 3, and shifting is required for 70 of the
105 pairs.
In most modern hardware, the perform-

ance gained by avoiding a shift for a
subset of operands is negligible, so the
small wobble of (3 = 2 makes it the
preferable base. Another advantage of
using ~ = 2 is that there is a way to gain
an extra bit of significance .V Since float-
ing-point numbers are always normal-
ized, the most significant bit of the
significant is always 1, and there is no
reason to waste a bit of storage repre-
senting it. Formats that use this trick
are said to have a hidden bit. It was
pointed out in Section 1.1 that this re-
quires a special convention for O. The
method given there was that an expo-
nent of e~,~ – 1 and a significant of all
zeros represent not 1.0 x 2 ‘mln–1 but
rather O.
IEEE 754 single precision is encoded

in 32 bits using 1 bit for the sign, 8 bits
for the exponent, and 23 bits for the sig-
nificant. It uses a
so the significant
even though it is
23 bits.

hidden bit, howeve~,
is 24 bits (p = 24),
encoded using only

‘This appears to have first been published by Gold-
berg [1967], although Knuth [1981 page 211] at-
tributes this Idea to Konrad Zuse
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2. 1.2 Precision

The IEEE standard defines four different
precision: single, double, single ex-
tended, and double extended. In 754, sin-
gle and double precision correspond
roughly to what most floating-point
hardware provides. Single precision oc-
cupies a single 32 bit word, double preci-
sion two consecutive 32 bit words.
Extended precision is a format that offers
just a little extra precision and exponent
range (Table 1). The IEEE standard only
specifies a lower bound on how many
extra bits extended precision provides.
The minimum allowable double-extended
format is sometimes referred to as 80-bit
format, even though the table shows it
using 79 bits. The reason is that hard-
ware implementations of extended preci-
sion normally do not use a hidden bit and
so would use 80 rather than 79 bits.8
The standard puts the most emphasis

on extended precision, making no recom-
mendation concerning double precision
but strongly recommending that
Implementations should support the extended
format corresponding to the widest basic format
supported,

One motivation for extended precision
comes from calculators, which will often
display 10 digits but use 13 digits inter-
nally. By displaying only 10 of the 13
digits, the calculator appears to the user
~ } a black box that computes exponen-
tial, cosines, and so on, to 10 digits of
accuracy. For the calculator to compute
functions like exp, log, and cos to within
10 digits with reasonable efficiency, how-
ever, it needs a few extra digits with
which to work. It is not hard to find a
simple rational expression that approxi-
mates log with an error of 500 units in
the last place. Thus, computing with 13
digits gives an answer correct to 10 dig-
its. By keeping these extra 3 digits hid-

*According to Kahan, extended precision has 64
bits of significant because that was the widest
precision across which carry propagation could be
done on the Intel 8087 without increasing the cycle
time [Kahan 19881.

den, the calculator presents a simple
model to the operator.
Extended precision in the IEEE stand-

ard serves a similar function. It enables
libraries to compute quantities to within
about 1/2 ulp in single (or double) preci-
sion efficiently, giving the user of those
libraries a simple model, namely, that
each primitive operation, be it a simple
multiply or an invocation of log, returns
a value accurate to within about 1/2 ulp.
When using extended precision, however,
it is important to make sure that its use
is transparent to the user. For example,
on a calculator, if the internal represen-
tation of a displayed value is not rounded
to the same precision as the display, the
result of further operations will depend
on the hidden digits and appear unpre-
dictable to the user.
To illustrate extended precision fur-

ther, consider the problem of converting
between IEEE 754 single precision and
decimal. Ideally, single precision num-
bers will be printed with enough digits so
that when the decimal number is read
back in, the single precision number can
be recovered. It turns out that 9 decimal
digits are enough to recover a single pre-
cision binary number (see Section 4.2).
When converting a decimal number back
to its unique binary representation, a
rounding error as small as 1 ulp is fatal
because it will give the wrong answer.
Here is a situation where extended preci-
sion is vital for an efficient algorithm.
When single extended is available, a
straightforward method exists for con-
verting a decimal number to a single
precision binary one. First, read in the 9
decimal digits as an integer N, ignoring
the decimal point. From Table 1, p >32,
and since 109 < 232 = 4.3 x 109, N can
be represented exactly in single ex-
tended. Next, find the appropriate power
10P necessary to scale N. This will be a
combination of the exponent of the deci-
mal number, and the position of the
(up until now) ignored decimal point.
Compute 10 I ‘l. If \ P I s 13, this is also
represented exactly, because 1013 =
213513 and 513<232. Finally, multiply
(or divide if P < 0) N and 10’ P‘. If this
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Table 1. IEEE 754 Format Parameters

Format

Parameter Single Single Extended Double Double Extended

P 24 > 32 53 > 64
emax + 127 z + 1023 + 1023 > + 16383
emln – 126 < – 1022 – 1022 < – 163$32
Exponent width in bits 8 > 11 11 2 15
Format width in bits 32 2 43 64 2 79

last operation is done exactly, the closest
binary number is recovered. Section 4.2
shows how to do the last multiply (or
divide) exactly. Thus, for I P I s 13, the
use of the single-extended format enables
9 digit decimal numbers to be converted
to the closest binary number (i. e., ex-
actly rounded). If I P I > 13, single-
extended is not enough for the above
algorithm to compute the exactly rounded
binary equivalent always, but Coonen
[1984] shows that it is enough to guaran-
tee that the conversion of binary to deci-
mal and back will recover the original
binary number.
If double precision is supported, the

algorithm above would run in double
precision rather than single-extended,
but to convert double precision to a 17
digit decimal number and back would
require the double-extended format.

2.1.3 Exponent

Since the exponent can be positive or
negative, some method must be chosen to
represent its sign. Two common methods
of representing signed numbers are
sign/magnitude and two’s complement.
Sign/magnitude is the system used for
the sign of the significant in the IEEE
formats: 1 bit is used to hold the sign; the
rest of the bits represent the magnitude
of the number. The two’s complement
representation is often used in integer
arithmetic. In this scheme, a number
is represented by the smallest nonneg-
ative number that is congruent to it
modulo 2 ~.
The IEEE binary standard does not

use either of these methods to represent
the exponent but instead uses a- biased

representation. In the case of single pre-
cision, where the exponent is stored in 8
bits, the bias is 127 (for double precisiog
it is 1023). What this means is that if k
is the value of the exponent bits inter-
preted as an unsigned integer, then the
exponent of the floating-point number is
~ – 127. This is often called the biased
exponent to di~tinguish from the unbi-
ased exponent k. An advantage of’ biased
representation is that nonnegative flout-
ing-point numbers can be treated as
integers for comparison purposes.
Referring to Table 1, single precision

has e~~, = 127 and e~,~ = – 126. The
reason for having I e~l~ I < e~,X is so that
the reciprocal of the smallest number
(1/2 ‘mm)will not overflow. Although it is
true that the reciprocal of the largest
number will underflow, underflow is usu-
ally less serious than overflow. Section
2.1.1 explained that e~,~ – 1 is used for
representing O, and Section 2.2 will in-
troduce a use for e~,X + 1. In IEEE sin-
gle precision, this means that the biased
exponents range between e~,~ – 1 =
– 127 and e~.X + 1 = 128 whereas the
unbiased exponents range between O
and 255, which are exactly the nonneg-
ative numbers that can be represented
using 8 bits.

2. 1.4 Operations

The IEEE standard requires that the re-
sult of addition, subtraction, multiplica-
tion, and division be exactly rounded.
That is, the result must be computed
exactly then rounded to the nearest float-
ing-point number (using round to even).
Section 1.3 pointed out that computing
the exact difference or sum of two float-
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ing-point numbers can be very expensive
when their exponents are substantially
different. That section introduced guard
digits, which provide a practical way of
computing differences while guarantee-
ing that the relative error is small. Com-
puting with a single guard digit,
however, will not always give the same
answer as computing the exact result
then rounding. By introducing a second
guard digit and a third sticky bit, differ-
ences can be computed at only a little
more cost than with a single guard digit,
but the result is the same as if the differ-
ence were computed exactly then rounded
[Goldberg 19901. Thus, the standard can
be implemented efficiently.
One reason for completely specifying

the results of arithmetic operations is to
improve the portability of software. When
a .Program IS moved between two ma-
chmes and both support IEEE arith-
metic, if any intermediate result differs,
it must be because of software bugs not
differences in arithmetic. Another ad-
vantage of precise specification is that it
makes it easier to reason about floating
point. Proofs about floating point are
hard enough without having to deal with
multiple cases arising from multiple
kinds of arithmetic. Just as integer pro-
grams can be proven to be correct, so can
floating-point programs, although what
is proven in that case is that the round-
ing error of the result satisfies certain
bounds. Theorem 4 is an example of such
a proof. These proofs are made much eas-
ier when the operations being reasoned
about are precisely specified. Once an
algorithm is proven to be correct for IEEE
arithmetic, it will work correctly on any
machine supporting the IEEE standard.
Brown [1981] has proposed axioms for

floating point that include most of the
existing floating-point hardware. Proofs
in this system cannot, however, verify
the algorithms of Sections 1.4 and 1.5,
which require features not present on all
hardware. Furthermore, Brown’s axioms
are more complex than simply defining
operations to be performed exactly then
rounded. Thus, proving theorems from
Brown’s axioms is usually more difficult

than proving them assuming operations
are exactly rounded.
There is not complete agreement on

what operations a floating-point stand-
ard should cover. In addition to the basic
operations +, –, x, and /, the IEEE
standard also specifies that square root,
remainder, and conversion between inte-
ger and floating point be correctly
rounded. It also requires that conversion
between internal formats and decimal be
correctly rounded (except for very large
numbers). Kulisch and Miranker [19861
have proposed adding inner product to
the list of operations that are precisely
specified. They note that when inner
products are computed in IEEE arith-
metic, the final answer can be quite
wrong. For example, sums are a special
case of inner products, and the sum ((2 x
10-30 + 1030) – 10--30) – 1030 is exactly

30 but on a machine withequal to 10-
IEEE arithme~ic the computed result
will be – 10 –30. It is possible to compute
inner products to within 1 ulp with less
hardware than it takes to imple-
ment a fast multiplier [Kirchner and
Kulisch 19871.9
All the operations mentioned in the

standard, except conversion between dec-
imal and binary, are required to be
exactly rounded. The reason is that effi-
cient algorithms for exactly rounding all
the operations, except conversion, are
known. For conversion, the best known
efficient algorithms produce results that
are slightly worse than exactly rounded
ones [Coonen 19841.
The IEEE standard does not require

transcendental functions to be exactly
rounded because of the table maker’s
dilemma. To illustrate, suppose you are
making a table of the exponential func-
tion to four places. Then exp(l.626) =
5.0835. Should this be rounded to 5.083
or 5.084? If exp(l .626) is computed more
carefully, it becomes 5.08350, then

‘Some arguments against including inner product
as one of the basic operations are presented by
Kahan and LeBlanc [19851.
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5.083500, then 5.0835000. Since exp is
transcendental, this could go on arbitrar-
ily long before distinguishing whether
exp(l.626) is 5.083500 “ “ “ Oddd or
5.0834999 “ “ “ 9 ddd. Thus, it is not prac-
tical to specify that the precision of tran-
scendental functions be the same as if
the functions were computed to infinite
precision then rounded. Another ap-
proach would be to specify transcenden-
tal functions algorithmically. But there
does not appear to be a single algorithm
that works well across all hardware ar-
chitectures. Rational approximation,
CORDIC,1° and large tables are three
different techniques used for computing
transcendental on contemporary ma-
chines. Each is appropriate for a differ-
ent class of hardware, and at present no
single algorithm works acceptably over
the wide range of current hardware.

2.2 Special Quantities

On some floating-point hardware every
bit pattern represents a valid floating-
point number. The IBM System/370 is
an example of this. On the other hand,
the VAX reserves some bit patterns to
represent special numbers called re-
served operands. This idea goes back to
the CDC 6600, which had bit patterns for
the special quantities INDEFINITE and
INFINITY.
The IEEE standard continues in this

tradition and has NaNs (Not a Number,
pronounced to rhyme with plan) and in-
finities. Without special quantities, there
is no good way to handle exceptional sit-
uations like taking the square root of a
negative number other than aborting
computation. Under IBM System/370
FORTRAN, the default action in re-
sponse to computing the square root of a
negative number like – 4 results in the
printing of an error message. Since every

10CORDIC is an acronym for Coordinate Rotation
Digital Computer and is a method of computing
transcendental funct~ons that uses mostly shifts
and adds (i. e., very few multiplications and divi-
sions) [Walther 1971], It is the method used on both
the Intel 8087 and the Motorola 68881.

Table 2. IEEE 754 Special Values

Exponent Fraction Represents

~=~ nun –1 f=o *O
e = ‘ml. -1 f#o O fx 2’mLn

e~,n 5 e 5 emax 1 fx2’
e=emay+l f:o
e=g ~ay + 1 f#o N%;

bit pattern represents a valid num-
ber, the return value of square root
must be some floating-point number.
In the case of System/370 FORTRAN,
~ = 2 is returned. In IEEE arith-
metic, an NaN is returned in this
situation.
The IEEE standard specifies the fol-

lowing special values (see Table 2): f O,
denormalized numbers, + co and NaNs
(there is more than one NaN, as ex-
plained in the next section). These
special values are all encoded with
exponents of either e~.X + 1 or e~,~ – 1
(it was already pointed out that O has an
exponent of e~,. – 1).

2.2.1 NaNs

Traditionally, the computation of 0/0 or
4 – 1 has been treated as an unrecover-
able error that causes a computation to
halt. There are, however, examples for
which it makes sense for a computation
to continue in such a situation. Consider
a subroutine that finds the zeros of a
function f, say zero(f). Traditionally,
zero finders require the user to input an
interval [a, b] on which the function is
defined and over which the zero finder
will search. That is, the subroutine is
called as zero(f, a, b). A more useful zero
finder would not require the user to in-
put this extra information. This more
general zero finder is especially appropri-
ate for calculators, where it is natural to
key in a function and awkward to then
have to specify the domain. It is easy,
however, to see why most zero finders
require a domain. The zero finder does
its work by probing the function f at
various values. If it probed for a value
outside the domain of f, the code for f
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Table 3. Operations that Produce an NaN

Operation NaN Produced by

+ W+(–w)
x Oxw
I 0/0, cO/03

REM x REM O,m REM y
fi(when x < O)\

might well compute 0/0 or ~, and
the computation would halt, unnecessar-
ily aborting the zero finding process.
This problem can be avoided by intro-

ducing a special value called NaN and
specifying that the computation of ex-
pressions like 0/0 and ~ produce
NaN rather than halting. (A list of some
of the situations that can cause a NaN is
given in Table 3.) Then, when zero(f)
probes outside the domain of f, the code
for f will return NaN and the zero finder
can continue. That is, zero(f) is not
“punished” for making an incorrect
guess. With this example in mind, it is
easy to see what the result of combining
a NaN with an ordinary floating-point
number should be. Suppose the final
statement off is return( – b + sqrt(d))/
(2* a). If d <0, then f should return a
NaN. Since d <0, sqrt(d) is an NaN,
and – b + sqrt(d) will be a NaN if the
sum of an NaN and any other number
is a NaN. Similarly, if one operand
of a division operation is an NaN,
the quotient should be a NaN. In
general, whenever a NaN participates
in a floating-point operation, the
result is another NaN.
Another approach to writing a zero

solver that does not require the user to
input a domain is to use signals. The
zero finder could install a signal handler
for floating-point exceptions. Then if f
were evaluated outside its domain and
raised an exception, control would be re-
turned to the zero solver. The problem
with this approach is that every lan-
guage has a different method of handling
signals (if it has a method at all), and so
it has no hope of portability.
In IEEE 754, NaNs are represented as

floating-point numbers with the expo-

nent e~~X + 1 and nonzero significands.
Implementations are free to put system-
dependent information into the signifi-
cant. Thus, there is not a unique NaN
but rather a whole family of NaNs. When
an NaN and an ordinary floating-point
number are combined, the result should
be the same as the NaN operand. Thus,
if the result of a long computation is an
NaN, the system-dependent information
in the significant will be the information
generated when the first NaN in the
computation was generated. Actually,
there is a caveat to the last statement. If
both operands are NaNs, the result will
be one of those NaNs but it might not be
the NaN that was generated first.

2.2.2 Infinity

Just as NaNs provide a way to continue
a computation when expressions like 0/0
or ~ are encountered, infinities pro-
vide a way to continue when an overflow
occurs. This is much safer than simply
returning to the largest representable
number. As an example, consider com-
puting ~~, when b = 10, p = 3,
and e~~X = 98. If x = 3 x 1070 and
y = 4 X 1070, th en X2 will overflow and
be replaced by 9.99 x 1098. Similarly yz
and X2 + yz will each overflow in turn
and be replaced by 9.99 x 1098. So the
final result will be (9.99 x 1098)112=
3.16 x 1049, which is drastically wrong.
The correct answer is 5 x 1070. In IEEE
arithmetic, the result of X2 is CO,as is
yz, X2 + yz, and -. SO the final
result is m, which is safer than
returning an ordinary floating-point
number that is nowhere near the correct
answer.”
The division of O by O results in an

NaN. A nonzero number divided by O,
however, returns infinity: 1/0 = ~,
– 1/0 = – co. The reason for the distinc-
tion is this: If f(x) -0 and g(x) + O as

llFine point: Although the default in IEEE arith-
metic is to round overflowed numbers to ~, it is
possible to change the default (see Section 2.3.2).
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x approaches some limit, then f( x)/g( x)
could have any value. For example,
when f’(x) = sin x and g(x) = x, then
~(x)/g(x) ~ 1 as x + O. But when ~(x)
=l– COSX, f(x)/g(x) ~ O. When
thinking of 0/0 as the limiting situation
of a quotient of two very small numbers,
0/0 could represent anything. Thus, in
the IEEE standard, 0/0 results in an
NaN. But when c >0 and f(x) ~ c, g(x)
~ O, then ~(x)/g(*) ~ * m for any ana-
lytic functions f and g. If g(x) <0 for
small x, then f(x)/g(x) ~ – m; other-
wise the limit is + m. So the IEEE stan-
dard defines c/0 = & m as long as c # O.
The sign of co depends on the signs of c
and O in the usual way, so – 10/0 = – co
and –10/–0= +m. You can distin-
guish between getting m because of over-
flow and getting m because of division by
Oby checking the status flags (which will
be discussed in detail in Section 2.3.3).
The overflow flag will be set in the first
case, the division by O flag in the second.
The rule for determining the result of

an operation that has infinity as an
operand is simple: Replace infinity with
a finite number x and take the limit as
x + m. Thus, 3/m = O, because
Iim ~+~3/x = O. Similarly 4 – co = – aI
and G = w. When the limit does not
exist, the result is an NaN, so m/co will
be an NaN (Table 3 has additional exam-
ples). This agrees with the reasoning used
to conclude that 0/0 should be an NaN.
When a subexpression evaluates to a

NaN, the value of the entire expression
is also a NaN. In the case of & w, how-
ever, the value of the expression might
be an ordinary floating-point number be-
cause of rules like I/m = O. Here is a
practical example that makes use of the
rules for infinity arithmetic. Consider
computing the function x/( X2 + 1). This
is a bad formula, because not only will it
overflow when x is larger than
fib’”” iz but infinity arithmetic will
give the &rong answer because it will
yield O rather than a number near 1/x.
However, x/( X2 + 1) can be rewritten as
1/( x + x- l). This improved expression
will not overflow prematurely and be-
cause of infinity arithmetic will have the

correct value when x = O: 1/(0 + 0-1) =
1/(0 + CO)= l/CO = O. Without infinity
arithmetic, the expression 1/( x + x-1)
requires a test for x = O, which not only
adds extra instructions but may also dis-
rupt a pipeline. This example illustrates
a general fact; namely, that infinity
arithmetic often avoids the need for spe -
cial case checking; however, formulas
need to be carefully inspected to make
sure they do not have spurious behavior
at infinity [as x/(X2 + 1) did].

2.2.3 Slgnea Zero

Zero is represented by the exponent
emm – 1 and a zero significant. Since the
sign bit can take on two different values,
there are two zeros, + O and – O. If a
distinction were made when comparing
-t O and – O, simple tests like if (x = O)
would have unpredictable behavior, de-
pending on the sign of x. Thus, the IEEE
standard defines comparison so that
+0= –O rather than –O< +0. Al-
though it would be possible always to
ignore the sign of zero, the IEEE stan-
dard does not do so. When a multiplica-
tion or division involves a signed zero,
the usual sign rules apply in computing
the sign of the answer. Thus, 3(+ O) = -t O
and +0/– 3 = – O. If zero did not have a
sign, the relation 1/(1 /x) = x would fail
to hold when x = *m. The reason is
that 1/– ~ and 1/+ ~ both result in O,
and 1/0 results in + ~, the sign informa-
tion having been lost. One way to restore
the identity 1/(1 /x) = x is to have
only one kind of’ infinity; however,
that would result in the disastrous
consequence of losing the sign of an
overflowed quantity.
Another example of the use of signed

zero concerns underflow and functions
that have a discontinuity at zero such as
log. In IEEE arithmetic, it is natural to
define log O = – w and log x to be an
NaN whe”n x <0. Suppose” x represents
a small negative number that has under-
flowed to zero. Thanks to signed zero, x
will be negative so log can return an
NaN. If there were no signed zero,
however, the log function could not
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distinguish an underflowed negative
number from O and would therefore have
to return – m. Another example of a
function with a discontinuity at zero is
the signum function, which returns the
sign of a number.
Probably the most interesting use of

signed zero occurs in complex arithmetic.
As an example, consider the equation
~ = ~/&. This is certainly true
when z = O. If z = —1. the obvious com-
putation gives ~~ = ~ = i and
I/n= I/i = –i. Thus, ~#
1/W ! The problem can be traced to the
fact that square root is multivalued, and
there is no way to select the values so
they are continuous in the entire com-
plex plane. Square root is continuous,
however, if a branch cut consisting of all
negative real numbers is excluded from
consideration. This leaves the problem of
what to do for the negative real numbers,
which are of the form – x + iO, where
x > 0. Signed zero provides a perfect way
to resolve this problem. Numbers of the
form – x + i( + O) have a square root of
i&, and numbers of the form – x +
i( – O) on the other side of the branch cut
have a square root with the other sign
(– i ~). In fact, the natural formulas for
computing ~ will give these results.
Let us return to ~ = l/fi. If z =

–1= –l+iO, then

1/2 = 1/(-1 + iO)

1(-1 -iO)——
(-1+ iO)(-1-iO)

= (-1 - iO)/(( -1)2 - 02)

= –l+i(–0),

so ~= – 1+ i(–0) = –i, while
I/&= l/i = –i, Thus, IEEE arith-
metic preserves this identity for all z.
Some more sophisticated examples are
given by Kahan [1987]. Although distin-
guishing between + O and – Ohas advan-
tages, it can occasionally be confusing.
For example, signed zero destroys the
relation x = y * I/x = l/y, which is
false when x = +0 and y = –O. The

IEEE committee decided, however, that
the advantages of using signed zero out-
weighed the disadvantages.

2.2.4 Denormalized Numbers

Consider normalized floating-point num-
bers with O = 10, p = 3, and e~,. = –98.
The numbers %= 6.87 x 10-97 and y =
6.81 x 10-97 appear to be perfectly ordi-
nary floating-point numbers, which are
more than a factor of 10 larger than the
smallest floating-point number 1.00 x
10-98. They have a strange property,
however: x 0 y = O even though x # y!
The reason is that x – y = .06 x 10-97
——6.0 x 10- ‘g is too small to be repre-
sented as a normalized number and so
must be flushed to zero.
How important is it to preserve the

property

X=yex–y=o? (lo)

It is very easy to imagine writing the
code fragment if (x # y) then z = 1/
(x – y) and later having a program fail
due to a spurious division by zero. Track-
ing down bugs like this is frustrating
and time consuming. On a more philo-
sophical level, computer science text -
books often point out that even though it
is currently impractical to prove large
programs correct, designing programs
with the idea of proving them often re -
suits in better code. For example, intro-
ducing invariants is useful, even if they
are not going to be used as part of a
proof. Floating-point code is just like any
other code: It helps to have provable facts
on which to depend. For example, when
analyzing formula (7), it will be helpful
toknowthat x/2<y <2x*x Oy=x
—y (see Theorem 11). Similarly, know-
ing that (10) is true makes writing reli-
able floating-point code easier, If it is
only true for most numbers, it cannot be
used to prove anything.
The IEEE standard uses denormal-

ized12 numbers, which guarantee (10), as

12They are called subnormal in 854, denormal in
754.
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Figure 2. Flush to zero compared with gradual underflow.

well as other useful relations. They are
the most controversial part of the stan-
dard and probably accounted for the long
delay in getting 754 approved. Most
high-performance hardware that claims
to be IEEE compatible does not support
denormalized numbers directly but
rather traps when consuming or produc-
ing denormals, and leaves it to software
to simulate the IEEE standard. 13 The
idea behind denormalized numbers goes
back to Goldberg [19671 and is simple.
When the exponent is e~,., the signifi-
cant does not have to be normalized. For
example, when 13= 10, p = 3, and e~,.
—— – 98, 1.00 x 10-98 is no longer the
smallest floating-point number, because
0.98 x 10 -‘8 is also a floating-point
number.
There is a small snag when P = 2 and

a hidden bit is being used, since a num-
ber with an exponent of e~,. will always
have a significant greater than or equal
to 1.0 because of the implicit leading bit.
The solution is similar to that used to
represent O and is summarized in Table
2. The exponent e~,. – 1 is used to rep-
resent denormals. More formally, if the
bits in the significant field are bl,
b bz~...~ p–1 and the value of the expo-
nent is e, then when e > e~,~ – 1, the
number being represented is 1. bl bz . “ .
b ~ x 2’, whereas when e = e~,~ – 1,
t~e number being represented is 0.61 bz
. . . b ~_l x 2’+1. The + 1 in the exponent
is needed because denormals have an ex-
ponent of e~l., not e~,~ – 1.

13This M the cause of one of the most troublesome
aspects of the #,andard. Programs that frequently
underilow often run noticeably slower on hardware
that uses software traps.

Recall the example O = 10, p = 3, e~,.
—— –98, x = 6.87 x 10-97, and y = 6.81
x 10-97 presented at the beginning of
this section. With denormals, x – y does
not flush to zero but is instead repre -
sented by the denormalized number
.6 X 10-98. This behavior is called
gradual underflow. It is easy to verify
that (10) always holds when using
gradual underflow.
Figure 2 illustrates denormalized

numbers. The top number line in the
figure shows normalized floating-point
numbers. Notice the gap between O and
the smallest normalized number 1.0 x
~em~. If the result of a floating-point cal-
culation falls into this gulf, it is flushed
to zero. The bottom number line shows
what happens when denormals are added
to the set of floating-point numbers. The
“gulf’ is filled in; when the result of a
calculation is less than 1.0 x ~’m~, it is
represented by the nearest denormal.
When denormalized numbers are added
to the number line, the spacing between
adjacent floating-point numbers varies in
a regular way: Adjacent spacings are ei-
ther the same length or differ by a factor
of f3. Without denormals, the spacing
abruptly changes from B‘P+ lflem~ to ~em~,
which is a factor of PP–1, rather than the
orderly change by a factor of ~, Because
of this, many algorithms that can have
large relative error for normalized num-
bers close to the underflow threshold are
well behaved in this range when gradual
underflow is used.
Without gradual underflow, the simple

expression x + y can have a very large
relative error for normalized inputs, as
was seen above for x = 6.87 x 10–97 and
y = 6.81 x 10-97. L arge relative errors
can happen even without cancellation, as
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the following example shows [Demmel
1984]. Consider dividing two complex
numbers, a + ib and c + id. The obvious
formula

a+ib ac + bd be – ad— + i
c+id–c2+d2 C2 -F d2

suffers from the problem that if either
component of the denominator c + id is
larger than fib ‘m= /2, the formula will
overflow even though the final result may
be well within range. A better method of
computing the quotients is to use Smith’s
formula:

a + b(d/c) b - a(d/c)

c+d(d/c) ‘Zc+d(d/c)
a+ib ifldl<lcl—
c+id–

<
b + a(c/d) –a+ b(c/d)

d + c(c/d) + i d + c(c/d)

Applying Smith’s formula to
g .10-98 + i10-98

4 “ 10-98 + i(2 “ 10-98)

gives the correct answer of 0.5 with grad-
ual underflow. It yields O.4 with flush to
zero, an error of 100 ulps. It is typical for
denormalized numbers to guarantee er-
ror bounds for arguments all the way
down to 1.0 x fiem~.

2.3 Exceptions, Flags, and Trap Handlers

When an exceptional condition like divi-
sion by zero or overflow occurs in IEEE
arithmetic, the default is to deliver a
result and continue. Typical of the de-
fault results are NaN for 0/0 and ~
and m for 1/0 and overflow. The preced-
ing sections gave examples where pro-
ceeding from an exception with these
default values was the reasonable thing
to do. When any exception occurs, a sta-
tus flag is also set. Implementations of
the IEEE standard are required to pro-
vide users with a way to read and write
the status flags. The flags are “sticky” in

that once set, they remain set until ex-
plicitly cleared. Testing the flags is the
only way to distinguish 1/0, which is a
genuine infinity from an overflow.
Sometimes continuing execution in the

face of exception conditions is not appro-
priate. Section 2.2.2 gave the example of
x/(x2 + 1). When x > ~(3e-xf2, the
denominator is infinite, resulting in a
final answer of O, which is totally wrong.
Although for this formula the problem
can be solved by rewriting it as 1/
(x + x-l), rewriting may not always
solve the problem. The IEEE standard
strongly recommends that implementa-
tions allow trap handlers to be installed.
Then when an exception occurs, the trap
handler is called instead of setting the
flag. The value returned by the trap
handler will be used as the result of
the operation. It is the responsibility
of the trap handler to either clear or set
the status flag; otherwise, the value of
the flag is allowed to be undefined.
The IEEE standard divides exceptions

into five classes: overflow, underflow, di-
vision by zero, invalid operation, and in-
exact. There is a separate status flag for
each class of exception. The meaning of
the first three exceptions is self-evident.
Invalid operation covers the situations
listed in Table 3. The default result of an
operation that causes an invalid excep-
tion is to return an NaN, but the con-
verse is not true. When one of the
operands to an operation is an NaN, the
result is an NaN, but an invalid excep -
tion is not raised unless the operation
also satisfies one of the conditions in
Table 3.
The inexact exception is raised when

the result of a floating-point operation is
not exact. In the p = 10, p = 3 system,
3.5 @ 4.2 = 14.7 is exact, but 3.5 @ 4.3
= 15.0 is not exact (since 3.5 “ 4.3 =
15.05) and raises an inexact exception.
Section 4.2 discusses an algorithm that
uses the inexact exception. A summary
of the behavior of all five exceptions is
given in Table 4.
There is an implementation issue con-

nected with the fact that the inexact ex-
ception is raised so often. If floating-point
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Table4. Exceptions mlEEE 754a

Exception Result When Traps Disabled Argument to Trap Handler

Overflow fm or *xmaY Round(x2-”)
Underflow O, + 2em~ ordenormal Round(x2”)
Divide by zero Operands
Invalid ~amN Operands
Inexact round(x) round(x)

‘.x Is the exact result of the operation, a = 192 for single precision, 1536 for
double, and xm,, = 1.11...11 x23m*.

hardware does not have flags of’ its own
but instead interrupts the operating sys-
tem to signal a floating-point exception,
the cost of inexact exceptions could be
prohibitive. This cost can be avoided by
having the status flags maintained by
software. The first time an exception is
raised, set the software flag for the ap -
propriate class and tell the floating-point
hardware to mask off that class of excep-
tions. Then all further exceptions will
run without interrupting the operating
system. When a user resets that status
flag, the hardware mask is reenabled.

2.3.1 Trap Handlers
One obvious use for trap handlers is for
backward compatibility. Old codes that
expect to be aborted when exceptions oc-
cur can install a trap handler that aborts
the process. This is especially useful for
codes with a loop like do S until (x > =
100). Since comparing a NaN to a num-
berwith <,<, >,~, or= (but not
#) always returns false, this code will go
into an infinite loop if x ever becomes
an NaN.
There is a more interesting use for

trap handlers that comes up when com-
puting products such as H ~=~x, that could
potentially overflow. One solution is to
use logarithms and compute exp(X log x,)
instead. The problems with this ap-
proach are that it is less accurate and
costs more than the simple expression
IIx,, even if there is no overflow. There is
another solution using trap handlers
called over / underfZo w counting that
avoids both of these problems [Sterbenz
1974].
The idea is as follows: There is a global

counter initialized to zero. Whenever the

partial product p~ = H ~=~xi overflows for
some k, the trap handler increments the
counter by 1 and returns the overflowed
quantity with the exponent wrapped
around. In IEEE 754 single precision,
emax = 127, so if p~ = 1.45 x 2130, it will
overflow and cause the trap handler to be
called, which will wrap the exponent back
into range, changing ph to 1.45 x 2-62
(see below). Similarly, if p~ underflows,
the counter would be decremented and
the negative exponent would get wrapped
around into a positive one. When all the
multiplications are done, if the counter is
zero, the final product is p.. If the
counter is positive, the product is over-
flowed; if the counter is negative, it un-
derflowed. If none of the partial products
is out of range, the trap handler is never
called and the computation incurs no ex-
tra cost. Even if there are over/under-
flows, the calculation is more accurate
than if it had been computed with loga-
rithms, because each pk was computed
from p~ _ ~ using a full-precision multi-
ply. Barnett [1987] discusses a formula
where the full accuracy of over/under-
flow counting turned up an error in ear-
lier tables of that formula.
IEEE 754 specifies that when an over-

flow or underflow trap handler is called,
it is passed the wrapped-around result as
an argument. The definition of wrapped
around for overflow is that the result is
computed as if to infinite precision, then
divided by 2”, then rounded to the rele-
vant precision. For underflow, the result
is multiplied by 2a. The exponent a is
192 for single precision and 1536 for dou-
ble precision. This is why 1.45 x 2130 was
transformed into 1.45 x 2-62 in the ex-
ample above.
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2.3.2 Rounding Modes

In the IEEE standard, rounding occurs
whenever an operation has a result that
is not exact, since (with the exception of
binary decimal conversion) each opera-
tion is computed exactly then rounded.
By default, rounding means round to-
ward nearest. The standard requires that
three other rounding modes be provided;
namely, round toward O, round toward
+ m, and round toward – co. When used
with the convert to integer operation,
round toward – m causes the convert to
become the floor function, whereas, round
toward + m is ceiling. The rounding mode
affects overflow because when round to-
ward O or round toward – m is in effect,
an overflow of positive magnitude causes
the default result to be the largest repre-
sentable number, not + m. Similarly,
overflows of negative magnitude will
produce the largest negative number
when round toward + m or round toward
O is in effect.
One application of rounding modes oc-

curs in interval arithmetic (another is
mentioned in Section 4.2). When using
interval arithmetic, the sum of two num-
bers x and y is an interval [Z, 21, where
g is x @ y rounded toward – co and 2 is
x @ y rounded toward + m. The exact
result of the addition is contained within
the interval [Z, 21. Without rounding
modes, interval arithmetic is usually im-
plemented by computing z = (x @ Y)
(1 – c) and Z = (x @ y)(l + e), where ~
is machine epsilon. This results in over-
estimates for the size of the intervals.
Since the result of an operation in inter-
val arithmetic is an interval, in general
the input to an operation will also be an
interval. If two intervals [g, 11 and [y, y]
are added, the result is [g, .21,where-g is
g @ y with the rounding mode set to
roun~ toward – ~, and Z is Z @ 2 with
the rounding mode set toward + ~.
When a floating-point calculation is

performed using interval arithmetic, the
final answer is an interval that contains
the exact result of the calculation. This
is not very helpful if the interval turns
out to be large (as it often does), since the

correct answer could be anywhere in that
interval. Interval arithmetic makes more
sense when used in conjunction with a
multiple precision floating-point pack-
age. The calculation is first performed
with some precision p. If interval arith-
metic suggests that the final answer may
be inaccurate, the computation is redone
with higher and higher precision until
the final interval is a reasonable size.

2.3.3 Flags

The IEEE standard has a number of flags
and modes. As discussed above, there is
one status flag for each of the five excep-
tions: underflow, overflow, division by
zero, invalid operation, and inexact.
There are four rounding modes: round
toward nearest, round toward + w, round
toward O, and round toward – m. It is
strongly recommended that there be an
enable mode bit for each of the five ex-
ceptions. This section gives some exam-
ples of how these modes and flags can be
put to good use. A more sophisticated
example is discussed in Section 4.2.
Consider writing a subroutine to com-

pute x‘, where n is an integer. When
n > 0, a simple routine like

PositivePower(x,n) {
while (n is even) {
X=X*X
n = n/2

}
U.x
while (true) {
n = n/2
if (n = = O)return u
X=X*X
if(nisodcl)u=u*x

will compute x n.
If n <0, the most accurate way to

compute x” is not to call Positive-
Power(l /x, – n) but rather 1/Posi-
tivePower(x, – n), because the first
expression multiplies n quantities, each
of which has a rounding error from the
division (i.e., 1/x). In the second expres-
sion these are exact (i.e., x) and the final
division commits just one additional
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rounding error. Unfortunately, there is a
slight snag in this strategy. If Positive-
Power(x, – n) underflows, then either
the underflow tra~ handler will be called1

or the underflow status flag will be set.
This is incorrect, because if x-n under-
flow, then x‘ will either overflow or be
in range. 14 But since the IEEE standard
gives the user access to all the flags, the
subroutine can easilv correct for this.
It turns off the overflow and underflow
trap enable bits and saves the overflow
and underflow status bits. It then com-
tmtes 1 /PositivePower(x. – n). If nei-
~her th~ overflow nor underflow status
bit is set, it restores them together with
the trap enable bits. If one of the status
bits is set, it restores the flags and redoes
the calculation using PositivePower
(1/x, – n), which causes the correct ex-
ceptions to occur.
Another example of the use of flags

occurs when computing arccos via the
formula

rl–xarccos x = 2 arctan —
1+X”

If arctan(co) evaluates to m/2, then arc-
COS(– 1) will correctly evaluate to
2 arctan(co) = r because of infinity arith-
metic. There is a small snag, however,
because the computation of (1 – x)/
(1 i- x) will cause the divide by zero ex-
ception flag to be set, even though arc-
COS(– 1) is not exceptional. The solution
to this problem is straightforward. Sim-
ply save the value of the divide by zero
flag before computing arccos, then re-
store its old value after the computation.

3. SYSTEMS ASPECTS

The design of almost every aspect of a
computer system requires knowledge
about floating point. Computer architec-

141t can be in range because if z <1, n <0, and
x –” is just a tiny bit smaller than the underflow
threshold 2em,n, then x“ = 2 ‘em~ < 2em= and so
may not overflow, since in all IEEE precision,
– emln < em...

tures usually have floating-point instruc-
tions, compilers must generate those
floating-point instructions, and the oper-
ating system must decide what to do
when exception conditions are raised for
those floating-point instructions. Com-
puter system designers rarely get guid-
ance from numerical analysis texts,
which are typically aimed at users and
writers of software not at computer
designers.
As an example of how plausible design

decisions can lead to unexpected behav-
ior, consider the following BASIC
program:

q = 3.0/7.0
if q = 3.0/7.0 then print “Equal”:
else print “Not Equal”

When compiled and run using Borland’s
Turbo Basic15 on an IBM PC, the pro-
gram prints Not Equal! This example
will be analyzed in Section 3.2.1.
Incidentally, some people think that

the solution to such anomalies is never to
compare floating-point numbers for
equality but instead to consider them
equal if they are within some error bound
E. This is hardly a cure all, because it
raises as many questions as it answers.
What should the value of E be? If x <0
and y > 0 are within E, should they re-
ally be considered equal, even though
they have different signs? Furthermore,
the relation defined by this rule, a - b &
I a - b I < E, is not an equivalence rela-
tion because a - b and b - c do not
imply that a - c.

3.1 Instruction Sets

It is common for an algorithm to require
a short burc.t of higher precision in order
to produce accurate results. One example
occurs in the quadratic formula [ – b
t ~/2a. As discussed in Sec-
tion 4.1, when b2 = 4 ac, rounding error
can contaminate up to half the digits in
the roots computed with the quadratic

15Turbo Basic is a registered trademark of Borland
International, Inc.
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formula. By performing the subcalcula-
tion of b2 – 4 ac in double precision, half
the double precision bits of the root are
lost, which means that all the single pre-
cision bits are preserved.
The computation of b2 – 4 ac in double

precision when each of the quantities a,
b, and c are in single precision is easy if
there is a multiplication instruction that
takes two single precision numbers and
produces a double precision result. To
produce the exactly rounded product of
two p-digit numbers, a multiplier needs
to generate the entire 2p bits of product,
although it may throw bits away as it
proceeds. Thus, hardware to compute a
double-precision product from single-pre-
cision operands will normally be only a
little more expensive than a single-preci-
sion multiplier and much less expensive
than a double-precision multiplier. De-
spite this, modern instruction sets tend
to provide only instructions that produce
a result of the same precision as the
operands. 16
If an instruction that combines two

single-precision operands to produce a
double-precision product were only useful
for the quadratic formula, it would not be
worth adding to an instruction set. This
instruction has many other uses, how-
ever. Consider the problem of solving a
system of linear equations:

which can be written in matrix form as
Ax = b, where

IsThis is probably because designers like “orthogo-
nal” instruction sets, where the precision of a
floating-point instruction are independent of the
actual operation. Making a special case for multi-
plication destroys this orthogonality,

Suppose a solution x(l) is computed by
some method, perhaps Gaussian elimina-
tion. There is a simple way to improve
the accuracy of the result called iteratiue
improvement. First compute

Then solve the system

(13)

Note that if x(l) is an exact solution,
then & is the zero vector, as is y.
In general, the computation of & and y
will incur rounding error, so Ay = & =
Ax(l) – b = A(x(lJ – x), where x is the
(unknown) true solution. Then y =
x(l) – x, so an improved estimate for the
solution is

X(2) = .Jl) _ Y. (14)

The three steps (12), (13), and (14) can be
repeated, replacing x(l) with X(2), and
X(2) with X(3). This argument that x(’ +1)
is more accurate than X(L) is only infor-
mal. For more information, see Golub
and Van Loan [1989].
When performing iterative improve-

ment, $ is a vector whose elements are
the difference of nearby inexact floating-
point numbers and so can suffer from
catastrophic cancellation. Thus, iterative
improvement is not very useful unless
~ = Ax(l) – b is computed in double pre-
cision. Once again, this is a case of com-
puting the product of two single-precision
numbers ( A and X(l)), where the full
double-precision result is needed.
To summarize, instructions that multi-

ply two floating-point numbers and re-
turn a product with twice the precision of
the operands make a useful addition to a
floating-point instruction set. Some of the
implications of this for compilers are dis-
cussed in the next section.

3.2 Languages and Compilers

The interaction of compilers and floating
point is discussed in Farnum [19881, and
much of the discussion in this section is
taken from that paper.
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3.2.1 Ambiguity

Ideally, a language definition should de-
fine the semantics of the language pre-
cisely enough to prove statements about
programs. Whereas this is usually true
for the integer part of a language, lan -
guage definitions often have a large gray
area when it comes to floating point
(modula-3 is an exception [Nelson 19911).
Perhaps this is due to the fact that many
language designers believe that nothing
can be preven about floating point, since
it entails rounding error. If so, the previ-
ous sections have demonstrated the fal-
lacy in this reasoning. This section
discusses some common mav areas in
language definitions and “gi~es sugges-
tions about how to deal with them.
Remarkably enough, some languages

do not clearly specify that if x is a float-
ing-point variable (with say a value of
3.0/10.0), then every occurrence of (say)
10.0 * x must have the same value. For
example Ada,~7 which is based on
Brown’s model, seems to imply that
floating-point arithmetic only has to sat-
isfy Brown’s axioms, and thus expres
sions can have one of many possible
values. Thinking about floating point in
this fuzzy way stands in sharp contrast
to the IEEE model, where the result of
each floating-point operation is precisely
defined. In the IEEE model, we can prove
that (3.0/10.0) * 3.0 evaluates to 3 (Theo-
rem 7), In Brown’s model, we cannot.
Another ambiguity in most language

definitions concerns what happens on
overflow, underflow, and other excep-
tions. The IEEE standard precisely spec-
ifies the behavior of exceptions, so
languages that use the standard as a
model can avoid any ambiguity on this
Boint..
Another gray area concerns the inter-

pretation of parentheses. Due to roundoff
errors, the associative laws of algebra do
not necessarily hold for floating-point

17Ada is a registered trademark of the U S. Govern-
ment Ada joint program office

numbers. For example, the expression
(x + y) + z has a totally different answer
than x + (y + z) when x = 1030,
y = –1030 and z = 1 (it is 1 in the for-
mer case, ‘O in the latter). The impor-
tance of preserving parentheses cannot
be overemphasized. The algorithms pre-
sented in Theorems 3, 4, and 6 all depend
on it. For example, in Theorem 6, the
formula x. = mx – ( mx – x) would re -
duce to x~”= x if it were not for paren-
theses, thereby destroying the entire
algorithm. A language definition that
does not require parentheses to be
honored is useless for floating-point
calculations.
Subexpression evaluation is impre-

cisely defined in many languages. Sup-
pose ds is double precision, but x and y
are single precision. Then in the expres-
sion ds + x *y, is the product performed
in single or double precision? Here is
another examde: In x + m h where m.
and n are integers, is the division an
integer operatio; or a floating-point one?
There are two ways to deal with this
problem, neither of which is completely
satisfactory. The first is to require that
all variables in an expression have the
same type. This is the simplest solution
but has some drawbacks. First, lan-
guages like Pascal that have subrange
types allow mixing subrange variables
with integer variables, so it is somewhat
bizarre to prohibit mixing single- and
double-precision variables. Another prob-
lem concerns constants. In the expres-
sion 0.1 *x, most languages interpret 0.1
to be a single-precision constant. Now
suppose the programmer decides to
change the declaration of all the
floating-point variables from single to
double precision. If 0.1 is still treated as
a single-precision constant, there will be
a compile time error. The programmer
will have to hunt down and change every
floating-point constant.
The second approach is to allow mixed

expressions, in which case rules for
subexpression evaluation must be pro-
vided. There are a number of guiding
examples. The original definition of C
required that every floating-point expres -
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sion be computed in double precision
[Kernighan and Ritchie 19781. This leads
to anomalies like the example immedi-
ately proceeding Section 3.1. The expres-
sion 3.0/7.0 is computed in double
precision, but if q is a single-precision
variable, the quotient is rounded to sin-
gle precision for storage. Since 3/7 is a
repeating binary fraction, its computed
value in double precision is different from
its stored value in single precision. Thus,
the comparison q = 3/7 fails. This sug-
gests that computing every expression in
the highest precision available is not a
good rule.
Another guiding example is inner

products. If the inner product has thou-
sands of terms, the rounding error in the
sum can become substantial. One way to
reduce this rounding error is to accumu-
late the sums in double precision (this
will be discussed in more detail in Sec-
tion 3.2. 3). If d is a double-precision
variable, and X[ 1 and y[ 1are single preci-
sion arrays, the inner product loop will
look like d = d + x[i] * y[i]. If the multi-
plication is done in single precision, much
of the advantage of double-precision ac-
cumulation is lost because the product is
truncated to single precision just before
being added to a double-precision
variable.
A rule that covers the previous two

examples is to compute an expression in
the highest precision of any variable that
occurs in that expression. Then q =
3.0/7.0 will be computed entirely in sin-
gle precisionlg and will have the Boolean
value true, whereas d = d + x[il * y[il
will be computed in double precision,
gaining the full advantage of double-pre-
cision accumulation. This rule is too sim-
plistic, however, to cover all cases
cleanly. If dx and dy are double-preci-
sion variables, the expression y = x +
single(dx – dy) contains a double-preci-
sion variable, but performing the sum in
double precision would be pointless be-

18This assumes the common convention that 3.0 is
a single-precision constant, whereas 3.ODO is a dou-
ble-precision constant.

cause both operands are single precision,
as is the result.
A more sophisticated subexpression

evaluation rule is as follows. First, as-
sign each operation a tentative precision,
which is the maximum of the precision of
its operands. This assignment has to be
carried out from the leaves to the root of
the expression tree. Then, perform a sec-
ond pass from the root to the leaves. In
this pass, assign to each operation the
maximum of the tentative precision and
the precision expected by the parent. In
the case of q = 3.0/7.0, every leaf is sin-
gle precision, so all the operations are
done in single precision. In the case of
d = d + x[il * y[il, the tentative precision
of the multiply operation is single preci-
sion, but in the second pass it gets pro-
moted to double precision because its
parent operation expects a double-preci-
sion operand. And in y = x + single
(dx – dy), the addition is done in single
precision. Farnum [1988] presents evi-
dence that this algorithm is not difficult
to implement.
The disadvantage of this rule is that

the evaluation of a subexpression de-
pends on the expression in which it is
embedded. This can have some annoying
consequences. For example, suppose you
are debugging a program and want to
know the value of a subexpression. You
cannot simply type the subexpression to
the debugger and ask it to be evaluated
because the value of the subexpression in
the program depends on the expression
in which it is embedded. A final com-
ment on subexpression is that since con-
verting decimal constants to binary is an
operation, the evaluation rule also af-
fects the interpretation of decimal con-
stants. This is especially important for
constants like 0.1, which are not exactly
representable in binary.
Another potential gray area occurs

when a language includes exponentia -
tion as one of its built-in operations. Un-
like the basic arithmetic operations, the
value of exponentiation is not always ob-
vious [Kahan and Coonen 19821. If * *
is the exponentiation operator, then
( – 3) * * 3 certainly has the value – 27.
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However, (–3.0)**3.O is problematical.
If the * * operator checks for integer pow-
ers, it would compute (–3.0)**3.O as
– 3.03 = –27. On the other hand, if the

Y k x is used to define * *formula x Y = e-
for real arguments, then depending on
the log function, the result could be a
NaN (using the natural definition of
log(x) = NaN when x < O). If the FOR-
TRAN CLOG function is used, however,
the answer will be – 27 because the ANSI
FORTRAN standard defines CLOG
( – 3.0) to be i~ log 3 [ANSI 1978]. The
programming language Ada avoids this
problem by only defining exponentia-
tion for integer powers, while ANSI
FORTRAN prohibits raising a negative
number to a real power.
In fact, the FORTRAN standard says

that
Any arithmetic operation whose result M not
mathematically defined is prohibited . .

Unfortunately, with the introduction
of + COby the IEEE standard, the mean-
ing of not mathematically defined is no
longer totally clear cut. One definition
might be to use the method of Section
2.2.2. For example, to determine the
value of ab, consider nonconstant ana-
lytic functions f and g with the property
that f(x)+ a and g(x)+ b as x~O. If
f’( X)g(’) always approaches the same
limit, this should be the value of ab. This
definition would set 2m = m, which seems
quite reasonable. In the case of 1.Om,
when f(x) = 1 and g(x) = I/x the limit
approaches 1, but when f(x) = 1 – x and
g(x) = l/x the limit is e. So l.0~ should
be an NaN. In the case of 0°, f(x)g(’) =
eg(x)log ~t’). Since f and g are analytical
and take on the value of O at O, f(x) =
alxl+az x2+ .“” and g(x) = blxl +
bzxz+ . . .. Thus.

:~g(x)log f(x)

—— limxlog(x(al + CZzx+ .“. ))
x-o

So ~(x)g(’) + e“ = 1 for all f and g,

which means 00 = 1.19 Using this defini-
tion would unambiguously define the ex-
ponential function for all arguments and
in particular would define ( – 3.0) * * 3.0
to be –27.

3.2.2 IEEE Standard

Section 2 discussed many of the features
of the IEEE standard. The IEEE stan-
dard, however, says nothing about how
these features are to be accessed from a
programming language. Thus, there is
usually a mismatch between floating-
point hardware that supports the stan-
dard and programming languages like C,
Pascal, or FORTRAN. Some of the IEEE
capabilities can be accessed through a
library of subroutine calls. For example,
the IEEE standard requires that square
root be exactly rounded, and the square
root function is often implemented di -
rectly in hardware. This functionality is
easily accessed via a library square root
routine. Other aspects of the standard,
however, are not so easily implemented
as subroutines. For example, most com-
puter languages specify at most two
floating-point types, whereas, the IEEE
standard has four different precision (al-
though the recommended configurations
are single plus single extended or single,
double, and double extended). Infinity
provides another example. Constants to
represent + co could be supplied by a
subroutine. But that might make them
unusable in places that require constant
expressions, such as the initializer of a
constant variable.
A more subtle situation is manipulat -

ing the state associated with a computa-
tion, where the state consists of the
rounding modes, trap enable bits, trap
handlers, and exception flags. One ap-
proach is to provide subroutines for read-
ing and writing the state. In addition, a

lgThe conclusion that 00 = 1 depends on the re-
striction f be nonconstant. If this restriction is
removed, then letting ~ be the identically O func-
tion gives O as a possible value for lim ~- ~f( x)gt’~,
and so 00 would have to be defined to be a NaN.
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single call that can atomically set a new
value and return the old value is often
useful. As the examples in Section 2.3.3
showed, a common pattern of modifying
IEEE state is to change it only within
the scope of a block or subroutine. Thus,
the burden is on the programmer to find
each exit from the block and make sure
the state is restored. Language support
for setting the state precisely in the scope
of a block would be very useful here.
Modula-3 is one language that imple-
ments this idea for trap handlers
[Nelson 19911.
A number of minor points need to be

considered when implementing the IEEE
standard in a language. Since x – x =
+0 for all X,zo (+0) – (+0) = +0. How-
ever, – ( + O) = – O, thus – x should not
be defined as O – x. The introduction of
NaNs can be confusing because an NaN
is never equal to any other number (in-
cluding another NaN), so x = x is no
longer always true. In fact, the expres-
sion x # x is the simplest way to test for
a NaN if the IEEE recommended func-
tion Isnan is not provided. Furthermore,
NaNs are unordered with respect to all
other numbers, so x s y cannot be de-
fined as not z > y. Since the intro-
duction of NaNs causes floating-point
numbers to become partially ordered, a
compare function that returns one of
<,=, > , or unordered can make it
easier for the programmer to deal with
comparisons.
Although the IEEE standard defines

the basic floating-point operations to re -
turn a NaN if any operand is a NaN, this
might not always be the best definition
for compound operations. For example,
when computing the appropriate scale
factor to use in plotting a graph, the
maximum of a set of values must be
computed. In this case, it makes sense
for the max operation simply to ignore
NaNs.
Finally, rounding can be a problem.

The IEEE standard defines rounding pre -

20Unless the rounding mode is round toward – m,
in which case x – x = – O.

cisely, and it depends on the current
value of the rounding modes. This some-
times conflicts with the definition of im-
plicit rounding in type conversions or the
explicit round function in languages.
This means that programs that wish
to use IEEE rounding cannot use the
natural language primitives, and con-
versely the language primitives will be
inefficient to implement on the ever-
increasing number of IEEE machines.

3.2.3 Optimizers

Compiler texts tend to ignore the subject
of floating point. For example, Aho et al.
[19861 mentions replacing x/2.O with
x * 0.5, leading the reader to assume that
x/10.O should be replaced by 0.1 *x.
These two expressions do not, however,
have the same semantics on a binary
machine because 0.1 cannot be repre-
sented exactly in binary. This textbook
also suggests replacing x * y – x * z by
x *(y – z), even though we have seen that
these two expressions can have quite dif-
ferent values when y ==z. Although it
does qualify the statement that any alge-
braic identity can be used when optimiz-
ing code by noting that optimizers should
not violate the language definition, it
leaves the impression that floating-point
semantics are not very important.
Whether or not the language standard
specifies that parenthesis must be hon-
ored, (x + -y) + z can have a totally differ-
ent answer than x -F (y + z), as discussed
above.
There is a problem closely related to

preserving parentheses that is illus-
trated by the following code:

eps = 1
do eps = 0.5* eps while (eps + 1> 1)

This code is designed to give an estimate
for machine epsilon. If an optimizing
compiler notices that eps + 1 > 1 @ eps
>0, the program will be changed com-
pletely. Instead of computing the small-
est number x such that 1 @ x is still
greater than x(x = c = 8-F’), it will com-
pute the largest number x for which x/2
is rounded to O (x = (?em~).Avoiding this
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kind of “optimization” is so important
that it is worth presenting one more use-
ful algorithm that is totally ruined by it.
Many problems, such as numerical in-

tegration and the numerical solution of
differential equations, involve computing
sums with manv terms. Because each.
addition can potentially introduce an er-
ror as large as 1/2 ulp, a sum involving
thousands of terms can have quite a bit
of rounding error. A simple way to cor-
rect for this is to store the partial sum-
mand in a double-precision variable and
to perform each addition using double
precision. If the calculation is being done
in single precision, performing the sum
in double precision is easy on most com-
puter systems. If the calculation is al-
ready being done in double precision,
however, doubling the precision is not so
simple. One method that is sometimes
advocated is to sort the numbers and add
them from smallest to largest. There is a
much more efficient method, however,
that dramatically improves the accuracy
of sums, namely Theorem 8.

Theorem 8 (Kahan Summation Formula)

Suppose El: ~XJ is computed using the
following algorithm

s = X[l]
C=o
forj=2to N{
Y.xrjl-c
T=S+Y
C=(T– S)– Y
S=T

}

Then the computed sum S is equal to
Exj(l + dj) + 0(iVe2)X I xi 1, where I 6, I
s 2f.

Using the naive formula ~xl, the com-
puted sum is equal to Xx~(l + 6J) where
I 6, I < (n - j)e. Comparing this with the
error in the Kahan summation form-
ula shows a dramatic improvement.
Each summand is perturbed by only 2 e
instead of perturbations as large as n e
in the simple formula. Details are in
Section 4.3.

An optimizer that believed floating-
point arithmetic obeyed the laws of alge-
bra would conclude that C = [T – S] –
Y = [(S + Y) – S] – Y = O, rendering
the algorithm completely useless. These
examples can be summarized by saying
that optimizers should be extremely cau-
tious when applying algebraic identities
that hold for the mathematical real num-
bers to expressions involving floating-
point variables.
Another way that optimizers can

change the semantics of floating-point
code involves constants. In the expres-
sion 1.OE –40 *x, there is an implicit dec-
imal to binary conversion operation that
converts the decimal number to a binary
constant. Because this constant cannot
be represented exactly in binary, the in-
exact exception should be raised. In addi -
tion, the underflow flag should to be set
if the expression is evaluated in single
precision. Since the constant is inexact,
its exact conversion to binary depends on
the current value of the IEEE rounding
modes. Thus, an optimizer that converts
1.OE-40 to binary at compile time would
be changing the semantics of the pro-
gram. Constants like 27.5, however, that
are exactly representable in the smallest
available precision can be safely con-
verted at compile time, since they are
always exact, cannot raise any exception,
and are unaffected by the rounding
modes. Constants that are intended to be
converted at compile time should be done
with a constant declaration such as const
pi = 3.14159265.
Common subexpression elimination is

another example of an optimization that
can change floating-point semantics, as
illustrated by the following code:

C= A*B;
RndMode = Up
D= A*B;

Although A * B may appear to be a com-
mon subexpression, it is not because the
rounding mode is different at the two
evaluation sites. Three final examples
are x = x cannot be replaced by the
Boolean constant true, because it fails
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when x is an NaN; – x = O – x fails for
x = + O; and x < y is not the opposite of
x > y, because NaNs are neither greater
than nor less than ordinary floating-point
numbers.
Despite these examples, there are use-

ful optimizations that can be done on
floating-point code. First, there are alge -
braic identities that are valid for float-
ing-point numbers. Some examples in
IEEE arithmetic are x + y = y + x, 2 x
x=x+x. lxx=x. and O.5 XX =X12.
Even the’se simple ‘identities, however,
can fail on a few machines such as CDC
and Cray supercomputers. Instruction
scheduling and inline procedure substi-
tution are two other potentially useful

21As a final eXample) cOn-optimizations.
sider the expression dx = x * y, where x
and y are single precision variables and
dx is double m-ecision. On machines that
have an ins~ruction that multiplies two
single-precision numbers to produce a
double-precision number, dx = x * y can
get mapped to that instruction rather
than compiled to a series of instructions
that convert the operands to double then
perform a double-to-double precision
multiply.
Some compiler writers view restric-

tions that prohibit converting (x + y) -t z
to x + (y + z) as irrelevant, of interest
only to programmers who use unportable
tricks. Perham thev have in mind that
floating-point’ num~ers model real num-
bers and should obey the same laws real
numbers do. The problem with real num-
ber semantics is that thev are extremelv.
expensive to implement. Every time two
n bit numbers are multiplied, the prod-
uct will have 2 n bits. Every time two n
bit numbers with widely spaced expo-
nents are added, the sum will have 2 n
bits. An algorithm that involves thou-
sands of operations (such as solving a
linear system) will soon be operating on
huge numbers and be hopelessly slow.

‘lThe VMS math libraries on the VAX use a weak
form of inline procedure substitution in that they
use the inexpensive jump to subroutine call rather
than the slower CALLS and CALLG instructions.

The implementation of library functions
such as sin and cos is even more difficult,
because the value of these transcenden-
tal functions are not rational numbers.
Exact integer arithmetic is often pro-
vided by Lisp systems and is handy for
some problems. Exact floating-point
arithmetic is, however, rarely useful.
The fact is there are useful algorithms

(like the Kahan summation formula) that
exploit (x + y) + z # x + (y + z), and
work whenever the bound

afllb=(a+b)(l+d)

holds (as well as similar bounds for –,
x, and /). Since these bounds hold for
almost all commercial hardware not just
machines with IEEE arithmetic, it would
be foolish for numerical programmers to
ignore such algorithms, and it would be
irresponsible for compiler writers to de-
stroy these algorithms by pretending that
floating-point variables have real num-
ber semantics.

3.3 Exception Handling

The topics discussed up to now have pri-
marily concerned systems implications of
accuracy and precision. Trap handlers
also raise some interesting systems is-
sues. The IEEE standard strongly recom-
mends that users be able to specify a trap
handler for each of the five classes of
exceptions, and Section 2.3.1 gave some
applications of user defined trap han-
dlers, In the case of invalid operation
and division by zero exceptions, the han-
dler should be provided with the
operands, otherwise with the exactly
rounded result. Depending on the pro-
gramming language being used, the trap
handler might be able to access other
variables in the program as well. For all
exceptions, the trap handler must be able
to identify what operation was being
performed and the precision of its
destination.
The IEEE standard assumes that oper-

ations are conceptually serial and that
when an interrupt occurs, it is possible to
identify the operation and its operands.
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On machines that have pipelining or
multiple arithmetic units, when an ex-
ception occurs, it may not be enough sim-
ply to have the trap handler examine the
program counter. Hardware support for
identifying exactly which operation
trapped may be necessary.
Another problem is illustrated by the

following program fragment:

x=y*z
Z=X*W
a=b+c
d = a/x

Suppose the second multiply raises an
exception, and the trap handler wants to
use the value of a. On hardware that can
do an add and multiply in parallel,
an o~timizer would mobablv move the.
addi<ion operation ahead of the second
multiply, so that the add can proceed in
parallel with the first multiply. Thus,
when the second multiply traps, a = b +
c has already been executed, potentially
changing the result of a. It would not be
reasonable for a compiler to avoid this
kind of optimization because every float-
ing-point operation can potentially trap,
and thus virtually all instruction
scheduling optimizations would be elimi-
nated. This problem can be avoided by
prohibiting trap handlers from accessing
any variables of the program directly.
Instead, the handler can be given the
operands or result as an argument.
But there are still problems. In the

fragment

x=y*!z
z=a+b

the two instructions might well be exe-
cuted in parallel If the multiply traps,
its argument z could already have been
overwritten by the addition, especially
since addition is usually faster than mul-
tiply. Computer systems that support
trap handlers in the IEEE standard must
pro~ide some way to save the value of z,
either in hardware or by having the
compiler avoid such a situation in the
first ~lace.
Ka~an has proposed using presubstitu-

tion instead of trap handlers to avoid
these problems. In this method, the user

specifies an exception and a value to be
used as the result when the exception
occurs. As an example, suppose that in
code for computing sin x /x, the user de-
cides that x = O is so rare that it would
improve performance to avoid a test for
x = O and instead handle this case when
a 0/0 trap occurs. Using IEEE trap han-
dlers, the user would write a handler
that returns a value of 1 and installs it
before computing sin x/x. Using presub -
stitution, the user would specify that
when an invalid operation occurs, the
value of 1 should be used. Kahan calls
this presubstitution because the value to
be used must be specified before the ex-
ception occurs. When using trap han-
dlers, the value to be returned can be
computed when the trap occurs.
The advantage of presubstitution is

that it has a straightforward hardware
implementation. As soon as the type of
exception has been determined, it can be
used to index a table that contains the
desired result of the operation. Although
presubstitution has some attractive at-
tributes, the widespread acceptance of the
IEEE standard makes it unlikely to be
widely implemented by hardware manu-
facturers.

4. DETAILS

Various claims have been made in this
paper concerning properties of floating-
point arithmetic. We now proceed to
show that floating point is not black
magic, but rather a straightforward
subject whose claims can be verified
mathematically.
This section is divided into three parts.

The first part represents an introduction
to error analysls and provides the detads
for Section 1. The second part explores
binary-to-decimal conversion, filling in
some gaps from Section 2. The third
part discusses the Kahan summation
formula, which was used as an example
in Section 3,

4.1 Rounding Error

In the discussion of rounding error, it
was stated that a single guard digit is
enough to guarantee that addition and
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subtraction will always be accurate (The-
orem 2). We now proceed to verify this
fact. Theorem 2 has two parts, one for
subtraction and one for addition. The part
for subtraction is as follows:

Theorem 9

If x and y are positive fZoating-point num-
bers in a format with parameters D and p
and if subtraction is done with p + 1 dig-
its (i. e., one guard digit), then the rela-
tive rounding error in the result is less
than [(~/2) + l]~-p = [1+ (2/~)]e = 26.

Proof Interchange x and y is neces-
sary so that x > y. It is also harmless to
scale x and y so that x is represented by
Xo. xl ““” x~_ ~ x 13°. If y is represented
as yo. yl . . . YP. 1, then the difference is
exact. If y is represented as O.yl . . c yP,
then the guard digit ensures that the
computed difference will be the exact dif-
ference rounded to a floating-point num-
ber, so the rounding error is at most ~. In
general, let y = 0.0 “ . . Oy~+l .00 yh+P
and let Y be y truncated to p + 1 digits.
Then,

< (0 – 1)(6-P-1 ““” +p-~-~).
(15)

From the definition of guard digit, the
computed value of x – y is x–y
rounded to be a floating-point number;
that is, (x – J) + 8, where the rounding
error 8 satisfies

(16)

The exact difference is x – y, so the er-
roris(x –y)–(x–ji+ ~)= J–y +6.
There are three cases. If x – y >1, the
relative error is bounded by

y–j+ti

1

[==~-p (~- 1)(~-’+ ““” +6-’)+:1
()<P’1+5

2
(17)

Second, if x – ~ <1, then 6 = O. Since
the smallest that x – y can be is

k k
1.0 – o.r—— o@”””@

> (P – 1)(8-1 + ...+p-~)

(where Q = ~ – 1), in this case the rela-
tive error is bounded by

< (6- l)p-p(r’ + . . . +p-k)
(/3- 1)(6-’ + . . . +6-’)

= /’-P (18)

The final case is when x – y <1 but
x – ~ > 1. The only way this could hap-
pen is if x – j = 1, in which case 8 = O.
But if 6 = O, then (18) applies, so again
the relative error is bounded by b ‘p <
p-p(l + 6/2). ❑

When P = 2, the bound is exactly
2 e, and this bound is achieved for x =
1 + 22-P and y = 21-P – 21-2P in the
limit as p + co. When adding numbers of
the same sign, a guard digit is not neces-
sary to achieve good accuracy, as the
following result shows.

Theorem 10

If x >0 and y >0, the relative error in
computing x -t y is at most 2 e, even if no
guard digits are used.

Proof The algorithm for addition
with k guard digits is similar to the
algorithm for subtraction. If x = y, and
shift y right until the radix points of x
and y are aligned. Discard any digits
shifted past the p + k position. Compute
the sum of these two p + k digit num-
bers exactly. Then round to p digits.
We will verify the theorem when no

guard digits are used; the general case is
similar. There is no loss of generality in
assuming that x z y ~ O and that x is
scaled to be of the form d. d 00. d X /3°.
First, assume there is no carry out. Then
the digits shifted off the end of y have a
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value less than (3‘p +1 and the sum is at
least 1, so the relative error is less than
~-P+l/l = 2e. If there is a carry out, the
error from shifting must be added to the
rounding error of (1/2) ~ ‘p’2. The sum is
at least II, so the relative error is less
than (~-p+l + (1/2) ~-p+2)/~ = (1 +
p/2)~-~ s 2,. H

It is obvious that combining these two
theorems gives Theorem 2. Theorem 2
gives the relative error for performing
one operation. Comparing the rounding
error of x 2 – y2 and (x+y)(x–y) re-
quires knowing the relative error of mul-
tiple operations. The relative error of
xeyis81= [(x0 y)-(x-y)l/
(x – y), which satisfies I al I s 26. Or to
write it another way,

This relative error is equal to 81 + 62 +
t+ + 618Z + 616~ + 6263, which is bounded
by 5e + 8E2. In other words, the maxi-
mum relative error is about five round-
ing errors (since ~ is a small number, C2
is almost negligible).
A similar analvsis of ( x B x) e

(y@ y) cannot result in a small value for
the relative error because when two
nearby values of x and y are plugged
into X2 —y2, the relative error will usu-
ally be quite large. Another way to see
this is to try and duplicate the analysis
that worked on (x e y) 8 (x O y),
yielding

(Xth) e (YC8Y)

= [x’(l +8J - Y2(1 + ‘52)](1 + b)

Xey=(x–y)(l+dl), 18, J< 26. = ((X2 - y’)(1 + 61) + (6, - 62)Y2)

(19) (1 + &J.

Similarly,

x@y=(x+y)(l+a2), 182] <2E.
(20)

Assuming that multiplication is per-
formed by computing the exact product
then rounding, the relative error is at
most 1/2 ulp, so

u@u=uu(l+~3), 18315C (21)

for any floating point numbers u and u.
Putting these three equations together
(letting u = x 0 y and v = x Q y) gives

(xey)~(xey)

= (X-y)(l +(!,)
X(x+ y)(l + 32)(1 + 63). (22)

So the relative error incurred when com-
puting (x – y)( x + y) is

(Xey)o(x ey)-(xa-y’)
(Xa-ya)

= (1 +6,)( 1+62)(1+8,) -1. (23)

When x and y are nearby, the error
term (61 – 82)y2 can be as large as the
result X2 – y2. These computations for-
mally justify our claim that ( x – y)
(x + y) is more accurate than x’ – y’.
We next turn to an analysis of the

formula for the area of a triangle. To
estimate the maximum error that can
occur when computing with (7), the fol-
lowing fact will be needed.

Theorem 11

If subtraction is performed with a guard
digit and y/2 < x< 2y, then x – y is
computed exactly,

Proof Note that if x and y have the
same exponent, then certainly x G y is
exact. Otherwise, from the condition of
the theorem, the exponents can differ by
at most 1. Scale and interchange x and y
if necessary so O < y < x and x is repre-
sented as XO.xl “ . “
. . .

Xp.l and y as O.Yl
yP. Then the algorithm for comput -

ing x e y will compute x – y exactly
and round to a floating-point number but
if the difference is of the form O.dl . . .
dp, the difference will already be p digits
long, and no rounding is necessary. Since
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X= 2y, x– ysy, and since y is of the
form O.dl .” “ ciP, sois x-y. ❑

When (1 >2, the hypothesis of Theo-
rem 11 cannot be replaced by y/~ s x s
~y; the stronger condition y/2 < x s 2 y
is still necessary. The analysis of the
error in ( x – y)( x + y) in the previous
section used the fact that the relative
error in the basic operations of addition
and subtraction is small [namely, eqs.
(19) and (20)]. This is the most common
kind of error analysis. Analyzing for-
mula (7), however, requires something
more; namely, Theorem 11, as the follow-
ing proof will show.

Theorem 12

If subtraction uses a guard digit and if a,
b, and c are the sides of a triangle, the
relative error in computing (a i- (b +
c))(c – (a – b))(c + (a – b))(a + (b – c))
is at most 16 t, provided e < .005.

Proof Let us examine the factors one
by one. From Theorem 10, b ‘d3 c =
(b + c)(1 -i- al), where al is the relative
error and I til I s 2 ~. Then the value of
the first factor is (a 63 (b ED c)) = (a +
(b 63 c))(1 + 8,) = (a+ (b + c)(I + 81))
x(1 + ti2), and thus

(a+ b+ C)(l-242
<[a+ (b+c)(l-2~)](1-2e)

<a@(b @c)

=[a+(b+ c)(l+2c)](l+2c)

s (a+ b+ c)(1 +.2E)2.

This means that there is an VI so that

(a @ (b @ c)) = (a+ b+c)(l+ql)’,

The next term involves the potentially
catastrophic subtraction of c and a 63 b,
because a GI h may have rounding er.
ror. Because a, b, and c are the sides of a
triangle, a < b + c, and combining this
with the ordering c < b < a gives a < b
+c<2b~2a. So a– b satisfies the

conditions of Theorem 11. This means
a – b = a El b is exact, and hence c a
(a – b) is a harmless subtraction that
can be estimated from Theorem 9 to be

(C 0 (a e b)) = (c- (a- b))(l+nJ,

/q21 s2,. (25)

The third term is the sum of two exact
positive quantities, so

(C @I(a e b))= (c+ (a- b))(l+ v,),
lq31 <2c. (26)

Finally, the last term is

(a@ (b 0 c)) = (a+ (b-c) )(l+q4)2,

IvAI S2E, (27)

using both Theorem 9 and Theorem 10.
If multiplication is assumed to be exactly
rounded so that x @ y = xy(l + f) with
I f I s e, then combining (24), (25), (26),
and (27) gives

(a d) (b 63 c))(c 0 (a 0 b))

(C @ (a 0 b))(a @ (b 0 c))

s (a+ (b +c))(c - (a- b))

(c+ (a- b))

(a+(b-c))E ?

where

E = (1 + ql)2(l+ q2)(l+ q3)(l+ T4)2

(1+ ~1)(1+ ~,)(1+ ~,).

An upper bound for E is (1 + 2C)6(1 +
e)3, which expands to 1 + 15c + 0(e2).
Some writers simply ignore the 0(~2)
term, but it is easy to account for it.
Writing (1 + 26)6(1 + C)3 = 1 + 15e +
cl?(e), l?(~) is a polynomial in ~ with
positive coefficie~ts, so it is an increasing
function of G. Since R(.005) = .505, R(.)
< 1 for all ~ < .005, and hence E s (1 +
2C)6(1 + ~)3 <1 + 166. To get a lower
bound on E, note that 1 – 15e – cR(6) <
E; so when c <.005, 1 – 166< (1 –
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26)6(1 – 6)3. Combining these two
bounds yields 1 – 16c < E < 1 + 16c.
Thus the relative error is at most 16~.

E

Theorem 12 shows there is no catas-
trophic cancellation in formula (7).
Therefore, although it is not necessary to
show formula (7) is numerically stable, it
is satisfying to have a bound for the en-
tire formula, which is what Theorem 3 of
Section 1.4 gives.

Theorem 13

If p(x) = ln(l + x)/x, then for O S x <
3/4, 1/2 s W(x) < 1 and the derivative
satisfies I K’(x) I < 1/2.

Proof Note that p(x) = 1 – x/2 +
x2/3 –... is an alternating series with
decreasing terms, so for x <1, p(x) >1
—x/2 = 1/2. It is even easier to see that
because the series for p is alternating,
V(x) <1. The Taylor series of M’(x) is
also alternating, and if x = 3/4 has de-

Proof Theorem 3. Let creasing terms, so – 1/2 < p’(x) < – 1/2
+ 2x/3, or – 1/2 s p’(x) s O, thus

q=(a+(b +c))(c -(a-b))
/ p’(%)1 s 1/2. m

(c+ (a- b))(a+ (b-c))
Proof Theorem 4. Since the Taylor se-

ries for In,

and

Q=(a@(b @c))@ (ce(a Ob))

Then Theorem 12 shows that Q = q(l +
8), with 6 = 166. It is easy to check that

sl +.52161 (28)

provided 6< .04/( .52)2 = .15. Since I 8 I
< 16e s 16(.005) = .08, 8 does satisfy the
condition. Thus, @ = [q(l + 6)] ’/2
=ti(l+~~), with Ihl =.521~1 =
8 .5e. If square roots are computed to
within 1/2 ulp, the error when comput -
ing ~ is (1 + 61)(1 + 62), with I 62 I <
c. If 6 = 2, there is no further error com-
mitted when dividing by 4. Otherwise,
one more factor 1 + 63 with I 63 I s ~ is
necessary for the dlvlsion, and using the
method in the proof of Theorem 12, the
final error bound of (1 + 61)(1 + 8Z)(1 +
ti~) is dominated by 1 + 6A, with I til I s
he. ❑

X2 X3
ln(l+x)=x–l+~ –...,

is an alternating series, O < x – ln(l +
x) < X2/2. Therefore, the relative error
incurred when approximating ln(l + x)
by x is bounded by x/2. If 1 @ x = 1,
then I x I < c, so the relative error is
bounded by E/2.
When 1 @ x # 1, define 2 via 1 @ x

=1+2. Then since O<x<l, (l@ x)
@ 1 = i. If division and logarithms are
computed to within 1/2 ulp, the com-
puted value of the expression ln(l +
x)/((1 + x) – 1) is

ln(lo‘) (1 + 6,)(1+ 62)
(lox)el

—— 1n(12+2)(1 + (31)(1 + 62)

= p(i)(l +(31)(1 + 62), (29)

where ] 61 [ s c and I 62 I < c. To esti-
mate P( 2), use the mean value theorem,
which says that

/J(i) – jL(x) = (i – X)v’(. g) (30)

for some $ between x and 2. From the
To make the heuristic explanation im- definition of i, it follows that I ~ – x I s

mediately following the statement of e. Combining this with Theorem 13 gives
Theorem 4 precise, the next theorem de- 11-L(2)- I-L(x)I s ~/2 or lw(2)/v(x) -11
scribes just how closely p(x) approxi - s e/(2 I p(x) 1) < ~, which means ~(t) =
mates a constant. ,u(x)(1 + 63), with 183 I s e. Finally,
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multiplying by x introduces a final 6A, so
the computed value of xln(l + x)/((1 +
x) – 1) is

X(l +83)(1 +(s4), \tjls E.

It is easy to check that if ~ <0.1, then
(1 + 8,)(1 + 82)(1 + 83)(1 + 84) = 1 + 8,
with 16\s5e. ❑

An interesting example of error analy-
sis using formulas (19), (20), and (21)
occurs in the quadratic formula [ – b
~ ~]/2 a. Section 1.4 explained
how rewriting the eauation will elimi -
nate the pote~tial can~ellation caused by
the ~ operation. But there is another
~otential cancellation that can occur.
when commtin~ d = bz – 4 ac. This one.
cannot be elim~nated by a simple rear-
rangement of the formula. Roughly
speaking, when b 2 = 4 ac, rounding error
can contaminate up to half the digits in
the roots computed with the quadratic
formula. Here is an informal proof
(another approach to estimating the er-
ror in the quadratic formula appears in
Kahan [1972]).

If b2 = 4 ac, rounding error can con-
taminate up to half the digits in the roots
computed with the quadratic formula [ – b
% ~1/2a.

Proof Write (b @ b) @ (4a @ c) =
(b2(l + al) – 4 ac(l + 62))(1 + 63), where
16, I s 26.22 Using d = b2 - 4ac, this
can be rewritten as ( d(l + al) – 4 ac(dl
– 82))(1 + 6J. To get an estimate for the
size of this error, ignore second-order
terms in 6i, in which the case of the
absolute error is d(~l + 63) – 4 aca~,
where ld11=181– 62\< 2c. Since d<
4 ac, the first term d(61 + da) can be ig-
nored. To estimate the second term, use

221n this informal proof, assume (3 = 2 so multipli-
cation by 4 is exact and does not require a 6,.

the fact that ax2 + bx + c = a(x – rl)(x
— rz), so arlr2 = c. Since b2 = 4ac, then
rl = r2, so the second error term is 4 ac~~
= 4 a2 r~til. Thus, the computed value of
~is~ d + 4 a2 r~~~ . The inequality

shows that ~d -t- 4a2r~8d = ~ + E,
where I E I s ~-, so the abso-
lute error in ~/2a is about rl A.
Since 6A = P-’, & = fi-p12, and thus
the absolute error of rl & destroys the
bottom half of the bits of the roots rl =
r2. In other words, since the calculation
of the roots involves computing with
~/2 a and this expression does not have
meaningful bits in the position corre-
sponding to the lower order half of r,, the
lower order bits of r, cannot be meaning-
ful. ❑

Finally, we turn to the proof of Theo-
rem 6. It is based on the following fact in
Theorem 14, which is proven in the
Appendix.

Theorem 14

Let O<k<p, andsetm=~k+l, and
assume floating-point operations are ex-
actly rounded. Then (m @ x] 0 (m @ x
e x] is exactly equal to x rounded to
p – k significant digits. More precisely, x
M rounded by taking the significant of x,
imagining a radix point just left of the k
least significant digits and rounding to
an integer.

Proof Theorem 6. By Theorem 14, x~ is
x rounded to p – k = ~p/2~ places. If
there is no carry out, x~ can be repre-
sented with ~p/2 ~ significant digits.
Suppose there is a carry out. If x =
X. xl xp_~ x P’, rounding adds 1 to
‘p –k.–1>.the only way there can be a carrY
out 1s lf xp_k_l = ~ – 1. In that case,
however, the low-order digit of x~ is 1 +
x = O, and so again x~ is repre-
s&/a~le in ~p/2] digits.
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To deal with xl, scale x to be an inte-
ger satisfying (3P-1 s x s Bp – 1. Let x
= ?ik + it, where ?ifi is the p – k high-
order digits of x and Zl is the k low-order
digits. There are three cases to consider.
If 21< (P/2)/3~-1, then rounding x to
p – k places is the same as chopping and
X~ = ~h, and xl = Il. Since Zt has at
most k digits, if p is even, then Zl has at
most k = ( p/21 = ( p/21 digits. Other-
wise, 13= 2 and it < 2k-~ is repre-
sentable with k – 1 < fp/21 significant
bits. The second case is when It >
(P/2) 0~- 1; then computing Xk involves
rounding up, so Xh = 2~ + @k and xl =
x–xh=x —2h– pk = 21- pk. Once
again, El has at most k digits, so it is
representable with [ p/21 digits. Finally,
if 2L = (P/2) 6k–1, then xh = ith or 2~ +
f?k depending on whether there is a round
up. Therefore, xl is either (6/2) L?k-1 or
(~/2)~k-’ – ~k = –~k/2, both of which
are represented with 1 digit. H

Theorem 6 gives a way to express the
product of two single-precision numbers
exactly as a sum. There is a companion
formula for expressing a sum exactly. If
lxl>lyl, then x+y=(x~y) +(x
0 (x @ y)) @ y [Dekker 1971; Knuth
1981, Theorem C in Section 4.2.2]. When
using exactly rounded operations, how-
ever, this formula is only true for P = 2,
not for /3 = 10 as the example x = .99998,
y = .99997 shows.

4.2 Binary-to-Decimal Conversion

Since single precision has p = 24 and
2‘4 <108, we might expect that convert-
ing a binary number to eight decimal
digits would be sufficient to recover the
original binary number. This is not the
case, however.

converting the decimal number to the
closest binary number will recover the
original floating-point number.

Proof Binary single-precision num-
bers lying in the half-open interval
[103, 210) = [1000, 1024) have 10 bits to
the left of the binary point and 14 bits to
the right of the binary point. Thus, there
are (210 – 103)214 = 393,216 different bi-
nary numbers in that interval. If decimal
numbers are represented with eight dig-
its, there are (210 – 103)104 = 240,000
decimal numbers in the same interval.
There is no way 240,000 decimal num-
bers could represent 393,216 different bi-
nary numbers. So eight decimal digits
are not enough to represent each single-
precision binary number uniquely.
To show that nine digits are sufficient,

it is enough to show that the spacing
between binary numbers is always
greater than the spacing between deci-
mal numbers. This will ensure that for
each decimal number N, the interval [ N
— 1/2 ulp, N + 1/2 ulp] contains at most
one binary number. Thus, each binary
number rounds to a unique decimal num-
ber, which in turn rounds to a unique
binary number.
To show that the spacing between bi-

nary numbers is always greater than the
spacing between decimal numbers, con-
sider an interval [10’, 10”+ l]. On this
interval, the spacing between consecu-
tive decimal numbers is 10(”+ 1)-9. On
[10”, 2 ‘1, where m is the smallest inte-
ger so that 10 n < 2‘, the spacing of
binary numbers is 2 m-‘4 and the spac-
ing gets larger further on in the inter-
val. Thus, it is enough to check that
~()(72+1)-9 < 2wL-ZA But, in fact, since
10” < 2n, then 10(”+ lJ-g = 10-lO-S <
2n10-s < 2m2-zl ❑

Theorem 15 The same argument applied to double
precision shows that 17 decimal digits

When a binary IEEE single-precision are required to recover a double-precision
number is converted to the closest eight number.
digit decimal number, it is not always Binary-decimal conversion also pro-
possible to recover the binary number vides another example of the use of flags.
uniquely from the decimal one. If nine Recall from Section 2.1.2 that to recover
decimal digits are used, however, then a binary number from its decimal expan-
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sion, the decimal-to-binary conversion
must be computed exactly. That conver-
sion is performed by multiplying the
quantities N and 10 Ip I (which are both
exact if P < 13) in single-extended preci-
sion and then rounding this to single
precision (or dividing if P < O; both cases
are similar). The computation of N .
10 IPI cannot be exact; it is the combined
operation round (N “ 10 Ip I) that must be
exact, where the rounding is from single
extended to single precision. To see why
it might fail to be exact, take the simple
case of ~ = 10, p = 2 for single and p = 3
for single extended. If the product is to
be 12.51, this would be rounded to 12.5
as part of the single-extended multiply
operation. Rounding to single precision
would give 12. But that answer is not
correct, because rounding the product to
single precision should give 13. The error
is a result of double rounding.
By using the IEEE flags, the double

rounding can be avoided as follows. Save
the current value of the inexact flag, then
reset it. Set the rounding mode to round
to zero. Then perform the multiplication
N .10 Ip 1. Store the new value of the
inexact flag in ixflag, and restore the
rounding mode and inexact flag. If ixflag
is O, then N o10 I‘1 is exact, so round
(N. 10 Ip I) will be correct down to the
last bit. If ixflag is 1, then some digits
were truncated, since round to zero al-
ways truncates. The significant of the
product will look like 1. bl “ o“ bzz bz~
“ “ “ b~l. A double-rounding error may oc-
cur if bz~ “ . “ b~l = 10 “ “ “ O. A simple
way to account for both cases is to per-
form a logical ORof ixflag with b31. Then
round (N “ 10 Ip I) will be computed
correctly in all cases.

4.3 Errors in Summation

Section 3.2.3 mentioned the problem of
accurately computing very long sums.
The simplest approach to improving ac-
curacy is to double the precision. To get a
rough estimate of how much doubling
the precision improves the accuracy of a
sum, let SI = xl, sz = sl @x2,. ... s,=
s,_l e x,. Then s, = (1 + 8,)(s,_l + x,),

Floating-Point Arithmetic

where ~6, ~ < c, and ignoring
order terms in 6i gives

. 43

second-

The first eaualitv of (31) shows that
the computed ~alue”of EXJ is the same as
if an exact summation was performed on
perturbed values of x,. The first term xl
is perturbed by ne, the last term X. by
only e. The second equality in (31) shows
that error term is bounded by n~ x I XJ 1.
Doubling the precision has the effect of
squaring c. If the sum is being done in
an IEEE double-precision format, 1/~ =
1016, so that ne <1 for any reasonable
value of n. Thus, doubling the precision
takes the maximum perturbation of ne
and changes it to n~z < e. Thus the 2 E
error bound for the Kahan summation
formula (Theorem 8) is not as good as
using double precision, even though it is
much better than single precision.
For an intuitive explanation of why

the Kahan summation formula works,
consider the following diagram of proce -
dure:

Isl

IT I

-r===
uYh

- 13___zl
u–Yl =C
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Each time a summand is added, there
is a correction factor C that will be ap-
plied on the next loop. So first subtract
the correction C computed in the previ-
ous loop from Xj, giving the corrected
summand Y. Then add this summand to
the running sum S. The low-order bits of
Y (namely, Yl) are lost in the sum. Next,
compute the high-order bits of Y by com-
puting T – S. When Y is subtracted from
this, the low-order bits of Y will be re-
covered. These are the bits that were lost
in the first sum in the diagram. They
become the correction factor for the next
loop. A formal proof of Theorem 8, taken
from Knuth [1981] page 572, appears in
the Appendix.

5. SUMMARY

It is not uncommon for computer system
designers to neglect the parts of a system
related to floating point. This is probably
due to the fact that floating point is given
little, if any, attention in the computer
science curriculum. This in turn has
caused the apparently widespread belief
that floating point is not a quantifiable
subject, so there is little point in fussing
over the details of hardware and soft-
ware that deal with it.
This paper has demonstrated that it is

possible to reason rigorously about float-
ing point. For example, floating-point al-
gorithms involving cancellation can be
proven to have small relative errors if
the underlying hardware has a guard
digit and there is an efficient algorithm
for binary-decimal conversion that can be
proven to be invertible, provided ex-
tended precision is supported. The task
of constructing reliable floating-point
software is made easier when the under-
lying computer system is supportive of
floating point. In addition to the two
examples just mentioned (guard digits
and extended precision), Section 3 of
this paper has examples ranging from
instruction set design to compiler opt-
imization illustrating how to better
support floating point.
The increasing acceptance of the IEEE

floating-point standard means that codes

that use features of the standard are be-
coming ever more portable. Section 2
gave numerous examples illustrating
how the features of the IEEE standard
can be used in writing practical floating-
point codes.

APPENDIX

This Appendix contains two technical
proofs omitted from the text.

Theorem 14

Let O<k<p, setm=fik+l, and as-
sume fZoating-point operations are exactly
rounded. Then (m @ x) e (m @ x @ x)
is exactly equal to x rounded to p – k
significant digits. More precisely, x is
rounded by taking the significant of x,
imagining a radix point just left of the k
least-significant digits, and rounding to
an integer.

Proofi The proof breaks up into two
cases, depending on whether or not the
computation of mx = fik x + x has a carry
out or not.
Assume there is no carry out. It is

harmless to scale x so that it is an inte-
ger. Then the computation of mx = x +
(3kx looks like this:

aa”. “aabb. ..bb
aa . . .

+
aabb .0. bb

>Zz ”.. zzbb ~“ “ bb

where x has been partitioned into two
parts. The low-order k digits are marked
b and the high-order p – k digits are
marked a. To compute m @ x from mx
involves rounding off the low-order k
digits (the ones marked with b) so

m~x= mx– xmod(~k) + r~k. (32)

The value of r is 1 if .bb ..0 b is greater
than 1/2 and O otherwise. More pre -
cisel y,

r = 1 ifa.bb ““” broundstoa+l,
r = O otherwise. (33)
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Next compute ~~x + ~ looks like this:

m@x–x=mx –xmod((3h)+ r~k–x aa”. “aabb”””bb

+ aa”” .aabb”””bb
= B’(x+r) - xmod(~’). Zzz “ “ “zZbb”””bb

The picture below shows the computation Thus, m @l x = mx – x mod(13k) + w~k,
of m @ x – x rounded, that is, (m @ x) where w = – Z if Z < /3/2, but the exact
0 x. The top line is flk(x + r), where B value of w in unimportant. Next m 8 x
is the digit that results from adding r to – x = IIkx – xmod(/3k) + wok. In a pic-
the lowest order digit b: ture

aa ..” aabb. .” bbOO”. .OO
aa. ” “aabb”””bBOO. ..OO -bb””. bb
-bb”””bb +W
Zz”” “ Zzzoo . ..00

If.bb.. b < 1/2, then r = O. Subtract-
ing causes a borrow from the digit
marked B, but the difference is rounded
up, so the net effect is that the rounded
difference equals the top line, which is
/?~x. If .bb “ o“ b > 1/2, then r = 1, and 1
is subtracted from B because of the bor-
row. So again the result is L?kx. Finally,
consider the case .bb “ “ “b=l/2. Ifr=
O, then B is even, Z is odd, and the
difference is rounded up giving /3kx.
Similarly, when r = 1, B is odd, Z is
even, the difference is rounded down, so
again the difference is 13kx. To summa-
rize,

(m@x) ex=~kx. (34)

Combining eqs. (32) and (34) gives
(m8x)–(m@x0x)=x–
x mod( 13~)+ rf?k. The result of perform-
ing this computation is

rOO”. .OO
aa. ” “aabb. .”bb

+ –bb.. ”bb
aa “.”aaOO”. .OO.

The rule for computing r, eq. (33), is the
same as the rule for rounding a “ “ “
ah””” b to p – k places. Thus, comput-
ing mx – ( mx – x) in floating-point
arithmetic precision is exactly equal to
rounding x to p – k places, in the case
when x + Okx does not carry out.
When x + 13kx does carry out, mx =

Rounding gives (m 8 x) 0 x = (3kx +
w@ – r(3k, where r=l if.bb”. ”b>
1/2 or if .bb “ “ “b = 1/2 and bO = 1. F’i-
nally,

(m C3x)-(rn@x Ox)
—— mx – x mod(fik) + w(3k

——x – xmod[f?k) + rflk.

Once again, r = 1 exactly when rounding
a ““” ah”.. b to p – k places involves
rounding up. Thus, Theorem 14 is proven
in all cases. ❑

Theorem 8 (Kahan Summation Formula)

Suppose EJ! ~XJ is computed using the
following algorithm

s ==X[ll
C=o
fm-j=2to N{
Y=xrjl-c
T=S+Y
C=(T– S)– Y
S=T

}
Then the computed sum S is equal to
S = xx~(l + 6j) + 0( Nc2)Z I x~ 1, where
16JJ<2C.

Proof First recall how the error esti-
mate for the simple formula Xx; went.
Introduce SI = xl, s, = (1 + 8L)(s, _~ – 1
+ XL). Then the computed sum is s.,
which is a sum of terms, each of which
is an x, multiplied by an expression
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involving d~’s. The exact coefficient of xl c~= [{s~–sk_l}(l+7J –Yh](l+~k)
is(l + 6Z)(1 + d~)... (1 + 3P),.Therefore
by renumbering, the coefficient of Xz
must be (1 + 63)(1 + 8A) . . . (1 + a.), and
so on. The proof of Theorem 8 runs along
exactly the same lines, only the coeffi -
cients of xl is more complicated. In de-
tail so = co = O and

Yk=xk e %1= (.%– ck.l)(l+qk)

sk=s&~ @ Yk= (s&l +~k)(l ‘ok)

ck = (Sk e sk.1) e Y,

= [(sk - ‘k-l)(l +~k) -Y,](I +&)

where all the Greek letters are bounded
by ~. Although the coefficient of xl in s~
is the ultimate expression of interest, it
turns out to be easier to compute the
coefficient of xl in sh – Ck and Ck. When
k=l,

e,= (%(1 + 7,) - Y,)(1 + L)
= Yl((l + %)(1 + -YJ – 1)(1 + 61)
——%(% + 71 + %71)

(1 + (3,)(1+ ~,)
SI — c1 = Xl[(l + 01) – (q + ‘)’1 + %71)

(1+ ‘-L)](1+%)
[= xl 1 – ‘y~ – (7181– a~-y~

–8171 – a171aJ(1 + ~J.

Calling the coefficients of xl in these
expressions Ch and Sk, respectively, then

c1 = 26 + 0(E2)

S1=1+?7– 71+462+0(,3).

= [{((%, - %,) - %%,)(1 + u,)

-sk_l}(l + ~k) + ck_l(l + qk)]

(1+ ak)

= [{(s&l - ck-,)ffk- ~kck-~(1 + ok)

-ck_l}(l + ~,) + ck_l(l + qk)]

(1+ bk)

= [(sk-, - c&,)ok(l + yk)

‘ck-1(~~ + ~k(”k + ?’k + u~d)l

(1+ dk)
Sk – Ck

= ((Sk-, - Ck-,) - ~kck-,)

(1+ C7k)

‘[(Sk-, - c&,)uk(l ‘yk)

“k-,(~k + ~k(”k‘y, + ‘k~k))]

(1+ dk)

= (sk-, - ck-l)((l + ak)

‘~k(l + ~k)(l + 6k))

+ ck-~(–~k(l + ‘k)

+(~k + ~k(~k + ~k + uk~k))

(1+ 6k))

= (Sk-l - ck_J

(1 - u~(~k + 8k + ~k8k))

“k-l[-qk+~k

+~k(~k + uk~k)

+(~k + ‘%(”k + ~k + ‘k~k))dk]

To get the general formula for Sk and Since S~ and Ch are only being computed
Ck, expand the definitions of Sk and Ck, up to order ~2, these formulas can be
ignoring all terms involving x, with simplified to
i > 1.That gives

Sk = (Sk_l +&)(l + ok) Ck = (ok+ o(~2))&-1

= [Sk-, + (Xk- c,-,)(1 ‘~k)] +(–~k + o(e2))Ck_~

(1+ fJk) Sk = ((1 + 2e2 + o(,3))sk_,

= [(Sk-l - Ck-l) - ~kc&l](l + ‘h) +(26 + 0(~2))C&~.
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Using these formulas gives

C2 = (JZ+ 0(62)

52 = 1 +ql –’yl + 10E2+ O(C3),

and, in general, it is easy to check by
induction that

Ck = ok + 0(62)

S~=l+ql –~l+(4k +2) E2+O(e3).

Finally, what is wanted is the coeffi-
cient of xl in Sk. To get this value, let
x n+l = O, let all the Greek letters with
subscripts of n + 1 equal O and compute

Then s.+ ~ = s. – c., and the coef-
&~&t of .xI in s. is less than the coeffi-
cient in s~+ ~, which is S, = 1 + VI – -yI
+(4n+2)c2 = 1 +2c + 0(rze2). ❑
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