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and system software in present-day terminology. 
Several design concepts such as address-generation 
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1. Introduction and Overview 

In the period 1946-76 five computer  systems have 
been designed and implemented  at Manchester  Univer-  
sity. A general account of the prototypes and their 
industrial derivatives has been given elsewhere [6], 
along with a comprehensive list of some 60 references 
to their hardware and software. The main purpose 
here is to highlight two of the more  significant of these 
five designs. The latest computer  in the Manchester  
series, MU5,  is described fully in a companion article 
[4]. 

As far as active University research is concerned,  
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Manchester 's  involvement with digital computers  dates 
from December  1946 when F. C. Williams and Tom 
Kilburn joined the University from their wart ime posts 
at the Telecommunicat ions Research Establishment.  
The computer  projects,  first in the Depar tment  of 
Electrical Engineering and then since 1964 in the 
Depar tment  of Compute r  Science, have followed the 
pattern summarized in Table I. This table relates 
primarily to hardware development ;  associated system 
software activity has naturally spanned similar periods,  
beginning in a small way in 1949 but gathering momen-  
tum with the release of the first compiler  (1952). 

The five prototype computers  in the table are the 
Mark I, the Meg, an experimental  transistor computer ,  
the Muse (later Atlas),  and the MU5.  The names of 
the five industrially produced derivatives are respec- 
tively the Ferranti  Mark I, Ferranti  Mercury,  Metro-  
politan-Vickers MV950,  Ferranti  Atlas, and the ICL 
2980. The ICL 2980 is not in fact a direct derivative 
but its architecture owes much to, and has a great deal 
in common with, MU5.  As may be inferred from the 
table,  the cooperat ion between industry and university 
has been a fruitful and continuous process since the 
autumn of 1948. The only one of the five Manchester  
projects to receive direct government  funding was the 
MU5,  which in addition had significant help from ICL 
in the form of production facilities and engineering 
support .  

The Mark I and Atlas have been chosen for closer 
study not only because they contain significant innova- 
tions, but because they convey an evolutionary pro- 
gression with respect to the following design themes:  i) 
Instruction format ,  ii) operand address-generat ion,  iii) 
store management ,  and iv) sympathy with high-level 
language usage. The evolution is continued in MU5 
[4]. Whilst all three machines were conceived as gen- 
eral-purpose computers ,  the internal architecture has 
tended to favor high-speed scientific applications. 

Of  the two Manchester  computers  omit ted from 
detailed analysis in this paper ,  the Meg (precursor of 
the Ferranti  Mercury) has been passed over  because it 
was essentially an updating of the Mark I concept.  By 
changing the technology and providing parallel access 
to the main store, the Meg became faster,  more 
compact  and easier to maintain.  Apar t  f rom the incor- 
porat ion of hardware floating point ari thmetic,  the 
instruction format  and repertoire  were similar to that 
of the Mark I. The marke t  area of the Ferranti  Mercury 
was much the same as that of the IBM 704, though 
the 704 was faster and considerably more expensive. 
The other  Manchester  computer  to be omit ted,  the 
experimental  point-contact transistor machine,  was de- 
signed as a small and economic system using a drum as 
the main store. To help avoid the consequent  latency 
problems a pseudo two-address (or 1 + 1) instruction 
format  was used, in which the address of the next 
instruction was contained within each instruction, The 
transistor computer  was in this respect untypical of  the 

Communications January 1978 
of Volume 21 
the ACM Number 1 



Table I. Summary of Manchester University computer projects and 
their industrially produced derivatives. 

University Project Industrial Derivative 

Manchester Mark I 
hardware development period: 

1946-49 
prototype operational: June 

1948 
enhancements: April and Oct. 

1949 
Meg 

hardware development period: 
1951-54 

prototype operational: May 
1954 

Transistor computer 
hardware development period: 

1952-55 
prototype operational: Nov. 

1953 
enhancement: April 1955 

Atlas (formerly Muse) 
hardware development period: 

1956-62 
first installation operational 

Dec. 1962 
MU5 

hardware development period: 
1966-74 

computer operational Oct. 
1974 

Ferranti Mark I 
first installation: Feb. 1951 
last one delivered: 1957 

Ferranti Mercury 
first installation: Aug. 1957 
last one delivered: 1961 

Met-Vickers MV 950 
first installation 1956 
last one delivered (?) 1958 

Ferranti Atlas 
first installation: Dec. 1962 
last one delivered: 1965 

(ICL 2980) 
2900 range officially 

announced: Oct. 1974 

other Manchester designs. The use of a drum for 
primary storage made the transistor computer  slower 
than the Mark I. Perhaps the most important impact 
of this machine on the Manchester group was the early 
experience it provided in transistor circuit techniques. 
The Meg and the transistor computer  are described 
more fully in [6]. 

In the following account of the Mark I and Atlas 
each system is presented in three parts. First the 
objectives of the project are given, during which the 
motivation and evolutionary starting points are out- 
lined. Secondly the principal features are given, in 
describing which, some of the original terminology has 
been replaced by its nearest modern equivalent for the 
sake of readability. It should be stated, however,  that 
any serious further study of the designs should start 
with the original papers quoted in [6]; a useful selection 
of these is [1, 2, 5, 8, 9, 10]. Finally, each computer  
system is assessed according to its immediate and long- 
term impact. 

2. The Mark I 

2.1 Objectives of the Project 
The initial aim was to build a realistic test environ- 

ment for a novel digital store. The store was the 
electrostatic Williams Tube [9], and the prototype 
Mark I simply consisted of a 32 x 32 bit Williams Tube 
store plus elementary computational facilities. Never- 

theless, when it successfully ran a 52-minute factoring 
program on 21 June 1948 it became the first general- 
purpose stored-program computer  to work. Thereaf ter  
the machine underwent intensive engineering develop- 
ment so that by April 1949 a realistic computer  had 
resulted. The objectives by 1949 were to provide 
sufficient memory and computational facilities to solve 
the number-theory problems that were provided by 
early Manchester users [6]. 

The computer  design activity in 1949 was mainly 
concerned with the engineering aspects of Williams 
Tubes and drum memories,  from which work some 
elementary "one-level store" ideas began to emerge 
(see below). The team throughout the Mark I period 
averaged about four people,  working in relative inde- 
pendence from other groups in England and America. 
Being basically an engineering project,  innovation and 
improvement were more or less continuous processes 
up to about October  1949. 

2.2 Principal Features 
a) Technology. The Mark I logic was imple- 

mented with EF50 (CV1091) and EF55 pentodes and 
EA50 vacuum tube d i o d e s - t h e s e  types being readily 
available owing to their extensive use in military equip- 
ment.  The production Mark I comprised 4050 ther- 
mionic tubes and consumed about 25KW of power. 
The digit period was 8.5 microseconds (extended to 
10 microseconds in the Ferranti production version). 
The Williams store was at first based on a standard 
CVl131 cathode ray tube, but specially-manufactured 
CRTs were used later. 

Williams Tubes were used not only for the main 
memory but also for the accumulator and other central 
registers because this was cheaper than providing flip- 
flop registers. When compared with the mercury delay 
line which was the other common form of digital store 
in the late 1940's, the Williams Tube had the following 
advantages: i) It was random access (not serial access), 
and ii) it was cheaper to build and required no special 
temperature control. Williams Tubes did, however,  
require electrostatic shielding. 

The Mark I backing store was a nickel-alloy plated 
drum, of 30 milliseconds revolution time. The drum 
was servo-synchronized to the main CPU clock, thus 
allowing extension to multiple drums without special 
buffering. Phase modulation recording was used. 

b) Architecture.  The Manchester Mark I was a 
serial-ALU, fixed-point, binary computer  employing a 
single-address instruction format. The original word 
length was 32 bits, but this was increased to 40 bits in 
1949 for the sake of greater computational accuracy. 
A double-length (80-bi t )accumulator  facility was also 
provided. Two 20-bit instructions were packed to a 
word and addressing was to 20-bit boundaries. 

The April 1949 version of the Mark I had a 
repertoire of 26 functions (op codes) in its instruction 
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set, including hardware multiply. It also had two 20- 
bit modifier (index) registers called B-lines, 128 words 
of random access main store and a 1024-word drum 
backing store. The Ferranti production Mark I was 
essentially the same architecture but with the following 
enhancements: i) An instruction set of 50 op codes, ii) 
eight modifier registers (B-lines), iii) 256 words of 
main store (Williams Tubes),  iv) 4K (extendable to 
16k) of drum store, and v) faster multiply time (2.16 
milliseconds). 

The characteristics of the production Mark I are 
now described in greater detail, since they form the 
definitive expression of ideas contained in the series of 
University prototypes developed during the period 
1946-49. 

The 20-bit instruction format was as follows: 

L . A D D R E S S  ! B I [ FUNCTION I 
10 3 1 6 

The three B digits specified one of eight B-lines and 
the specification of BO was normally used to indicate 
no modification. There was a separate B-arithmetic 
unit and associated eight-line B-store for carrying out 
modifier-register manipulation. Normal operands were 
40-bit words, the bits being treated either as a two's 
complement number or as an unsigned quantity de- 
pending on the instruction. The full instruction set is 
given in Appendix 1, and it may be seen that consider- 
able help was given with multilength arithmetic. There 
is also a population count or "sideways add" order  
(denoted in Appendix 1 by the mnemonic SADD),  a 
facility requested by the Manchester mathematicians 
for their number theory problems. A similar instruction 
is provided on some modern computers,  e.g. the CDC 
7600, for nuclear physics applications programming, 
etc. The Ferranti Mark I also had a hardware random- 
number generator,  available via mnemonic RNDM in 
Appendix 1. This somewhat unusual facility was in- 
cluded mainly at the request of the mathematician 
A.M. Turing, who was at Manchester from September 
1948 until his death in June 1954. 

Transfers to and from the drum and other  periph- 
eral equipment were carried out via 20-bit control 
words. These had two formats, distinguished by one of 
the mode bits. For drum transfers the format was: 

I DR UM T R A C K  A D D R E S S  I M O D E  ! I TU BE]  
11 4 1 4 

Three of the mode bits then specified reading/writing, 
read-checking/write-checking, single page/double page 
transfers. The main store was arranged as eight 32- 
word pages on eight Williams Tubes, backed by the 
drum(s). The track-address was stored along with each 
page of information on t he  drum, and when a page 
became resident in main store an extra 20-bit line was 
assigned on each Williams Tube to hold the track- 
address of that page. This page-address line was nor- 
mally invisible to the programmer,  but could be ac- 

cessed via the special L D A D  instruction (Appendix 
1). This was the germ of an idea which later led to 
page-address registers and virtual-to-real address trans- 
lation on the Atlas computer.  

For input/output transfers the control word format 
w a s :  

I I M O D E ]  l 
10 5 5 

For the early Ferranti Mark I's input was via a 250 
character/sec 5-track paper tape reader using the 5-bit 
teleprinter code, and output was to a tape punch and 
printer. Four mode bits in the control word specified: 
Output a character, check output buffer,  input a char- 
acter, send a control character (equal to carriage 
return, linefeed, figure shift, letter shift) to the output 
device. Two input/output commands were provided 
(see Appendix 1): one took its control word from a 
main store address and the other used a 20-digit 
pattern set on the console swi tches-useful  during 
bootstrapping. 

e) System Software. In 1949 there was no Mark 
I system software, except for basic utilities such as 
input routines. Coding was normally carried out using 
the symbols of the 5-track teleprinter code. Once the 
Ferranti Mark I had been installed software develop- 
ment increased, with the emphasis being on embryonic 
high-level languages. After one earlier effort at com- 
piler writing (1952), the Mark I Autocode [1] was 
available from March 1954 as an easy-to-learn scien- 
tific programming language for users having small or 
medium-sized problems. 

An additional Autocode implementation objective 
was to simulate a one-level store so that the user had 
no need to organize his own drum transfers. It was 
possible to simulate this one-level store on the Mark I 
in a reasonably balanced way because the access time 
for reading an operand from the drum happened to be 
about the same time as a floating-point addition via an 
interpretive library routine. When running Autocode 
programs 128 tracks on the drum were reserved for 
instructions and 128 tracks for variables. Individual 
"routines were transferred to the fast CRT store as they 
were required. To gain access to a variable an interpre- 
tive routine in fast store first determined on which 
track it lay, then transferred that track or "page"  to 
the fast store, and finally selected the particular line 
within the page. Since successive operands were quite 
often located on the same page, steps were taken to 
avoid unnecessary drum transfers. 

Arithmetic in the Autocode  system was normally 
performed on floating-point variables v l ,  v2 . . . . .  
etc. with provision for integers n l ,  n2 . . . .  , to be 
used as indices and counters. Simple conventions also 
existed for control transfers, intrinsic functions, input/ 
output,  and simple job control using symbols from the 
five-bit teleprinter code. An impression of the neatness 
of the system may be gained from the following Mark 
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I Autocode  sequence which prints the root mean 
square (rms) of the variables v l ,  v2, . . . v l00 .  (Note 
that the symbol • causes printing of a variable to ten 
decimal places on a new line, and F1 signifies the 
intrinsic function 'square root ' ) :  

n l =  1 
vl01 = 0 
2v102 = v n l  x v n l  

vl01 = vl01 + v102 
n l  = n l  + 1 
j2, 100 - n l 
vl01 = vl01/100.0 
• v l 0 1  = F l ( v l 0 1 )  

2.3 Evaluation 
The Mark I, in common with most early computers ,  

was first applied to scientific and engineering problems.  
Measurements  performed on a sample of Mark I jobs 
estimated that 16% of computing time went on drum 
transfers, 28% on multiplication and 56% on other 
arithmetic operations.  Multiplication took 2.16 milli- 
seconds and other accumulator orders took 1.2 milli- 
seconds. 

A contemporary  benchmarking exercise rated the 
Mark I at about the same raw power as the National 
Physical Laborator ies '  A C E  computer ,  even though 
the A C E  had a digit period ten times shorter.  The 
favorable performance of the Mark I was attributed to 
its random access main memory  (ACE had a delay 
line store) and its relatively fast multiplier. Ferranti 
delivered nine Mark I and Mark I star machines 
between 1951 and 1957, three of them being exported 
(to Canada,  Holland,  Italy). 

The long-term significance of the Manchester  Mark 
I project is threefold. Firstly, it proved the viability of 
a digital storage technique (the Williams Tube) ,  at a 
time when the successful implementat ion of the stored- 
program concept awaited the development  of a suitable 
storage device. Williams Tubes were adopted by sev- 
eral computers  in England, Russia, and A m e r i c a -  
including the IBM 701. Secondly, the project  inspired 
the British government  to give financial support  to 
Ferranti Ltd. ,  thus laying one of the cornerstones of 
the British computer  industry. Thirdly, and of perhaps 
wider significance, the Mark I project was the first to 
focus attention onto the problems of linking fast ran- 
dom-access main memory  to slower sequential-access 
rotating memory .  

It was in the light of these problems that B-lines 
were first conceived of as relocation registers. It soon 
became clear that B-lines could also be used for general 
address-modification purposes,  and so with the inclu- 
sion of a B-test facility the modern index register was 
born. The problem of automating backing store trans- 
fers ("over lays")  still remained a challenge, but two 
Mark I facilities were later to suggest a solution to the 
Manchester  team. First there was the fact that every 
page resident in the Mark I fast store carried with it 

the corresponding drum address in a special "page-  
address line" (see above).  Second, there was the way 
in which the Autocode system handled the drum ad- 
dress of a user 's  variables. Out of these two facilities 
grew the concept of allowing the user always to pro- 
gram in a virtual (or " d r u m " )  address space and then 
providing system hardware and software to achieve 
automatic translation into the real (or "fas t")  address 
space, using information held in a set of associatively 
interrogated page-address registers. Thus the auto- 
mated "one-level  s tore"  was conceived, and the reali- 
zation of the other programming advantages to be 
gained from separating virtual and real address spaces 
followed shortl3/. These ideas were implemented in the 
Atlas computer .  

3. Atlas 

3.1 Objectives of the Project 
By 1956 it was clear that Britain was falling behind 

the United States in the production of high-perform- 
ance computers .  The MUSE ("micro-second")  project ,  
started by Kilburn at Manchester  in the autumn of 
1956, was a conscious effort to remedy the situation. 
From January 1959 Ferranti  Ltd. officially became 
involved and a joint University/Ferranti  team under 
Kilburn continued the development  of the computer ,  
which was now known as Atlas. 

Initial discussions with potential users of high-per- 
formance machines, both scientific and commercial ,  
had produced a requirement  for instruction times ap- 
proaching one microsecond, the ability to attach a 
large number  of i/o devices of various types and a 
main store size approaching 100k words. High comput-  
ing speeds and rapid turnaround of user jobs became 
the keynotes of the Atlas design. The principal difficul- 
ties in achieving these goals arose from the wide 
differences in operating speeds between the various 
types of peripheral equipment  and the CPU,  and 
between transistor logic circuits and available core 
stores. Efficient and economic utilization of equipment  
was also very much a design-objective, since Atlas was 
intended to be sold on the open market .  The somewhat  
conflicting requirements for high-speed and relative 
economy led to the incorporation of many techniques 
which were not extant when the project started in 
1956. Amongst  these were mult iprogramming,  job 
scheduling, spooling, extracodes,  interrupts, pipelin- 
ing, interleaved storage, autonomous  transfer units, 
virtual storage, and paging. Although not all of these 
ideas originated in Manchester ,  they combined to make 
Atlas probably the most powerful machine available in 
the early 1960's. 

3.2 Principal Features 
a) Technology. The Atlas logic circuits were 

based on an OC170 germanium junction transistor 
used as an inverter,  preceded by germanium OA47 
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diodes for the logic gating. This gave a typical gate- 
delay of 12 nanoseconds. Care was taken to avoid 
saturation (low collector-base volts), since the OC170's  
response became slow in the saturation region. The 
parallel adder employed a special symmetrical transis- 
tor (the SB240) as a switch in the carry-path, which 
resulted in a basic add-time of 200 nanoseconds for 48 
b i t s - a  significant achievement in 1959. There were 
about 80,000 transistors in the entire computer ,  mostly 
mounted on 8-inch by 5-inch printed-circuit boards. 

The main store was 2 microsecond cycle-time core 
four-way interleaved, backed by drums having a 12 
millisecond revolution time and capable of transferring 
one 512-word block every 2 milliseconds. Two other  
"pr ivate"  storage units were provided: A high-speed 
read-only "fixed store" of 0.35 microsecond access 
time made from small slugs of copper or ferrite inserted 
in a woven wire mesh; and a system working store of 2 
microsecond cycle-time core, which served as working 
space for the operating system routines (many of which 
resided in the fixed store). The size of all these stores 
varied between production versions of the Atlas. The 
Manchester prototype had the smallest capacity, ex- 
pressed in 48-bit words as follows: 

i) main store: 16k core, backed by four drums each 
of 24k 

ii) fixed store: 8k 
iii) system working store: lk  (later increased to 4k) 

The largest production Atlas, installed at the Science 
Research Council's computing laboratory at Chilton 
(Harwell),  had a main core store of 48k. 

Bulk storage was provided by eight (expandable to 
32) tape decks on eight channels, each having a transfer 
rate of 90k characters per second. Preaddressing and 
fixed 512-word blocks were used, thus allowing a tape 
to be written to nonsequentially when required. A 16- 
million word file disk was added later. 

The Manchester Atlas had 17 conventional i/o 
devices, two high-speed data links, an on-line x-ray 
crystallographic diffractometer and an experimental 
speech input/output unit. The interrupt structure al- 
lowed for the connection of up to 512 peripheral units, 
with hardware assistance for determining the source of 
an interrupt.  

b) Architecture.  Atlas was a 48-bit word paral- 
lel computer  with a one-address instruction format as 
follows: 

I, FUNCTION t Ba lB ml  ADDRESS I 
10 7 7 24 

The repertoire of functions or op codes, summarized 
in Appendix 2, was divided into two groups: normal 
instructions and extracode instructions. Generally 
speaking an extracode was a commonly used but rela- 
tively compl!cated function which it was not economic 
to implement directly as hardwired logic. Instead, an 
extracode consisted of a sequence of normal instruc- 

tions (a "macro routine")  held in the fixed store. 
Entry to these macro routines was very rapid and 
involved no preservation of central registers since there 
was a dedicated extracode program counter  (or control 
register) and reserved B-lines, and any extracodes 
needing working space used a private area of the 
system working store. Amongst  extracode instructions 
available to the user were ones for carrying out the 
common intrinsic functions such as square root,  log, 
cosine, etc. 

Of the normal instructions, Appendix 2 shows that 
they divide into three subgroups: main accumulator 
(A) orders, index register (B) orders, and test-and- 
count orders. There were independent A and B arith- 
metic units. The instruction set and the Atlas pipeline 
architecture assumed there would normally be no inter- 
change of operands between the A and B ALUs.  

This design philosophy, also to be seen to some 
degree in MU5,  works most effectively for computa- 
tions such as forming the scalar product of two vectors. 
By careful pipeline design and by using tricks such as 
assuming that the next instruction usually occurred in 
the same page as the last instruction, Atlas could 
overlap the execution of three A-instructions and then 
any associated B-instructions were normally executed 
concurrently with minimal additional time penalty. 

The Atlas instruction could be double address-mod- 
ified, according to the specification of the Ba and Bm 
bits. There were 127 24-bit B-lines (index registers) 
for this purpose, mostly held in a 0.7 microsecond 
cycle-time core store. The top three B-lines, B125-  
B127, were implemented as flip-flop registers and 
were reserved for use as independent  program counters 
respectively for interrupt,  extracode, and main pro- 
gram control.  This explains why no explicit jump 
(branch) instructions appear in Appendix 2" 

Of the 24 address bits in an instruction, 20 were 
used to cover the virtual address space of one million 
words, three specified a 6-bit character position within 
a full word, and one bit distinguished between a normal 
address and a "V-store" address. The V-store was the 
collective name given to all central registers and pe- 
ripheral device registers which needed to be accessible 
to a (system) program. Into this category came such 
things as interrupt registers, page-address registers, 
and the data and status registers of all i/o units. Since 
normal instructions could, with suitable protection 
checks, use V-store addresses for operands there was 
no need for explicit op codes for the control of i/o 
equipment etc. The incorporation of peripheral devices 
into the total address space has since been used on 
other computers such as the PDP11.  

The Atlas paging system used 512-word fixed-size 
pages, with a page-address register for every 512-word 
section of main core store. Each register contained a 
lock-out digit, so that pages of more than one program 
could be resident in core concurrently. The address- 
translation time, i.e. associative interrogation of the 
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page-address registers, was 0.7 microseconds, which 
represented about 40 percent of the total operand 
fetch time (including cable delays, store access time, 
etc.). Considerable effort was spent in ensuring effi- 
cient page-turning, and the replacement algorithm- 
contained in the fixed s tore-used a learning program 
which attempted to identify pages in main store which 
had fallen out of use [5]. No copy was normally kept 
on drum, and each drum had a rotational position 
indicator to speed the transfer of a replaced page to 
the first available space on drum. (Many modern 
paging computers, including MU5, now keep copies 
on drum and arrange not to write back pages which 
are unaltered.) The Atlas virtual address space was 
sufficiently large for the compilers to arrange simple 
segmentation conventions during the compilation proc- 
ess. 

c) System Software. The Atlas Supervisor (op- 
erating system) fully exploited the following concepts: 
i) Multiprogramming (of up to 16 jobs concurrently), 
ii) on-line spooling of input and output, and iii) job 
scheduling (according to user-indicated job character- 
istics such as use of magnetic tapes, volume of output, 
or priority request). The aim was to keep all of the 
computer equipment busy while minimizing the turn- 
around of individual jobs. Since in addition the Super- 
visor produced comprehensive logging statistics for the 
user, the operator, and the (daily) accounting program, 
the computer room operators had little to do except 
feed in work -an  exceptional state of affairs in the 
1960's. The programmer was provided with straight- 
forward job control conventions which were simple for 
simple tasks, while allowing scope for more complex 
requirements such as multiple input or output streams, 
or the use of special "private" compilers. 

The standard Atlas compilers were mostly imple- 
mented Using the Compiler Compiler [2], a formal 
language for the transparent description of syntax and 
semantics. While compilers for all the common high- 
level languages such as Algol, Cobol, and Fortran 
were eventually written for Atlas, the Manchester 
users programmed extensiyely in Atlas Autocode to 
begin with. Atlas Autocode was a block-structured 
language specified at about the same time as Algol 60, 
but implemented sooner. Except for a more limited 
concept of compound statements and for clauses, Atlas 
Autocode was very similar to Algol 60. As an example 
the root mean square calculation given in Section 2.2 
might be programmed in Atlas Autocode as follows: 

RMS = 0 
cycle i = 1, 1, 100 
RMS = RMS + X ( i )  • X(i); repeat 
print (sqrt (RMS/100), 6, 4) 

3.3 Evaluation 
Some typical Atlas instruction times were as fol- 

lows: 
fixed-point B addition 1.59 microsec. 

floating-point add, no modification 1.61 microsec. 
floating-point add, double modification 2.61 mi- 

crosec. 
floating-point multiply, double modifiCation 4.97 

microsec. 
floating-point division 10.66 to 29.80 microsec. 

The overall average instruction time when executing 
Fortran scientific programs was measured to be about 
3.35 microseconds per order. For comparison, the 
corresponding overall average instruction rates for 
typical present-day computers executing similar pro- 
grams range from about 110 nanoseconds per order 
(CDC 7600) to about 6.6 microseconds per order 
(IBM 370/135). 

In terms of contemporary machines Ferranti sales- 
men equated one Atlas to four IBM 7094s as regards 
work throughput. It is disappointing that only three 
full Atlas's and two scaled-down versions ("Atlas II") 
were sold between 1962-65. To some extent the 
marketing of Atlas was overtaken by events: Ferranti 
was currently developing other systems besides Atlas; 
Ferranti sold its large computer interest to ICT (later 
ICL) in 1963; ICT afterwards introduced its 1900 
range of computers. By the mid-1960s the direct 
market competitor to Atlas was the faster CDC 6600, 
whose designers have said they learned some useful 
lessons from Atlas. In 1967 a benchmarking compari- 
son for 22 compute-b0und Fortran scientific jobs was 
performe d on an Atlas with 32k core, a single-proces- 
sor Univac 1108 with 64k core, and a CDC 6600 with 
64k core [3]. The compilers used were respectively the 
London nonoptimizing Atlas Fortran V, the Univac 
F4012 Fortran IV, and the CDC Chippewa Run. 
Under these conditions the average CP computing 
speeds for Atlas, Univac 1108, and CDC 6600 were 
measured to be in the ratio 1: 2 .1 :5 .9  respectively. 
By the start of the 1970s ICL had introduced the 
1906A computer, which has a work throughput of the 
order of three times that of Atlas, depending upon the 
configuration. 

The long-term significance of the Atlas project lies 
in the design-concepts which it introduced. The more 
important of these are in four general areas: Pipeline 
techniques for high instruction throughput, paging and 
virtual storage, operating system features, and extra- 
codes. The first area is now well-defined in respect of 
single instruction streams. The second has had far- 
reaching consequences. It has bee.n the subject of 
much subsequent analysis and development (e.g. for 
MU5), in the light of which it is interesting to observe 
that the inspired guess of 512-word pages for Atlas 
proved to be about right. Program s on Atlas generally 
produced about one page-exception (page-address reg- 
ister nonequivaience) per 5 × 104 accesses. With 
regard to operating system features, the Atlas Super- 
visor would seem to the present-day user to have a 
very limited concept of file manipul/ition and no time- 
sharing (interactive) facilities. However, in all other 
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respects, especially in job throughput and ease of use, 
the Atlas Supervisor set a high standard which is still 
relevant today. Atlas was also one of first computers 
in which specific hardware facilities were provided at 
the design stage to aid the operating s y s t e m - e . g ,  in 
the area of peripheral control,  interrupt handling, and 
store management.  With regard to extracodes, the 
concept of providing easy access to commonly required 
software has been taken up by several other designers. 
On Atlas the existence of a specially constructed fixed 
store for extracodes and certain Supervisor routines 
was partly determined by nonavailability of suitable 
fast core. It was generally observed that over half of 
all Atlas user-programs spent more than half their run 
time in executing common software such as the extra- 
codes and i/o routines, so there was ample justification 
for having speeded up the access to much of this 
standard software. 

As for the influence of Atlas on the design of its 
successor at Manchester,  MU5,  an important lesson 
was learned concerning the B-lines. The Mark I had had 
eight such lines and on Atlas about 90 of the 127 B- 
lines were available to the general user. This was 
indeed a lavish provision for the assembler program- 
mer, but it was observed that the compiled code of the 
Atlas high-level language programmer could not easily 
make use of more than a few of these. A compiler 
writer has a potential need for registers such as B-lines 
for two main object-code purposes: 

i) as bases and pointers for address-generation; 
ii) as fast storage for frequently used operands when 

attempting run-time op t imiza t ion-  (this applies 
not only to integers for loop-control etc., but also 
to frequently-used floating-point variables). 

For the former application the registers should be 
capable of reflecting the usage of local and nonlocal 
name spaces in block-structured l anguages - though  
there is no such special requirement for languages 
such as Fortran. For the latter application it would be 
advantageous if identification of frequently used oper- 
ands was automatic at run time, thus saving on com- 
piler complexity. The MU5 design attempts to satisfy 
these high-level language requirements with specific 
naming registers and associatively accessed buffers, 
and from Manchester 's viewpoint Atlas marked the 
end of the road for the general-purpose B-line. The 
vindication of the MU5 approach lies in the more 
efficient compiled code which it produces [7]. 

4. Conclusion 

This paper and its companion [4] reveal a develop- 
ing view of computer  design over a period of 30 years. 
At the beginning of this period the task of inventing 
the basic functional units and then keeping them run- 
ning for long enough to obtain useful computation,  
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dictated a spartan engineering approach to machine 
architecture. As technology advanced and successive 
Manchester computers were implemented and evalu- 
ated, so the designers were able to observe and incor- 
porate in hardware more of the requirements of the 
system software and the users. These requirements 
themselves evolved over the years. Although the em- 
phasis of the Mark I, Atlas, and MU5 has been on 
large high-performance systems, it is evident that the 
designs have not only kept abreast of the requirements 
of the general user, but in some cases (e.g. paging and 
virtual storage) the architectural innovations have been 
in advance of the facilities expected by normal pro- 
grammers. In time, with the decreasing cost of logic 
and main storage, many of the Manchester "high- 
performance" devices have come to be adopted in 
succeeding middle-range computers.  

Appendix 1 

The Instruction Set of the Ferranti Mark I 
In order to relate to modern terminology the fol- 

lowing notation is used when describing the action of 
each order: 

ACC: the contents of the double-length main accumu- 
lator (80 bits) 

AM: the most-significant 40 bits of ACC 
AL: the least-significant 40 bits of ACC 
S: the contents of a store line (40 bits), except 

that B orders use the least significant 20 bits 
and control-transfer orders the least signifi- 
cant 10 bits. 

B: the contents of a B-line (index register) 
D: the contents of the multiplicand register (40 

bits) 
H: the digits set up on 20 console handswitches. 

a) Main Arithmetic and Logical Orders 

Mnemonic 

L D A  
LDAS 
LDN 
STA 
STM 
STMC 
SWAP 
STAM 

STAC 
CLR 
A D D  
A D D U  
SUB 
A D D M  
L D D U  
LDDS 
M A D U  

Communications 
of 
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Description 

load AL (AM cleared) 
load AL,  sign-extend into AM 
load AL negatively 
store A L  
store AM 
store AM and clear AM 
interchange AM and AL 
store AL,  move AM to A L  and clear 

AM 
store A L  and clear ACC 
clear ACC 
ACC := ACC + S (signed S) 
ACC := ACC + S (unsigned S) 
ACC := ACC - S (signed S) 
AM := AM + S 
load D (unsigned multiplicand) 
load D (signed multiplicand) 
ACC := ACC + D x S (unsigned S) 
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MADS 
MSBU 
MSBS 
AND 
ORA 
NEQ 
SHLS 
ORS 
ORSC 

ACC 
ACC 
ACC 
ACC 
ACC 
ACC 

:= ACC + D × S (signed S) 
:= ACC - D × S (unsigned S) 
:= ACC - D × S (signed S) 
:= ACC & S (S sign-extended) 
:= ACC or S (S sign-extended) 
:= ACC ~ S (S sign-extended) 

ACC := 2 × S (arithmetic shift) 
S := AL := AL or S 
S := AL or S, then clear ACC 

b) B-line (Index-Register) Manipulation 

Mnemonic 

LDB 
STB 
SUBB 
LDBX 
STBX 
SBBX 

Description 
load a specified B-line 
store a specified B-line 
B : = B - S  
load a B-line (without modification) 
store a B-line (without modification) 
B := B - S  (without modification) 

Mnemonic 
JMPA 
JMPR 
JGEA 
JGER 
JGBA 

JGBR 

c) Control Transfer Orders 

Description 

absolute indirect unconditional jump 
relative indirect unconditional jump 
if ACC _> 0, absolute indirect jump 
if A C C  >_ O, relative indirect jump 
if (last-named B-line) -> 0, absolute in- 

direct jump 
if (last-named B-line) _> 0, relative indi- 

rect jump 

d) Peripheral and Miscellaneous Orders 

Mnemonic 
IOTH 
IOTS 
NORM 

SADD 

RNDM 
LDAD 
DST1 
DST2 
TIME 
HOOT 
STH 
NULL 

Description 

i/o transfer using H as a control word 
i/o transfer using S as a control word 
add to AM the position of the most sig- 

nificant one in S 
add to AM the number of l 's  in S - 

(population count) 
load a random number into AL 
load a page-address word into AL 
debugging stop (1) 
debugging stop (2) 
S := clock 
pulse the console hooter 
S := console handswitches H 
no operation 

Appendix 2 

Abbreviated Summary of the Atlas Instruction Set 
In describing the action of the orders the following 

notation is used: 

AM: the contents of the main 48-bit accumulator. 
(For floating-point working a 40-bit mantissa, 
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8-bit exponent and an octal base is used. For 
fixed-point working only 40 bits are used.) 

AL: for double-length working AL forms a 39-bit 
mantissa extension. 

S: the contents of a store line (normally 48 bits) 
BA~, the contents of 24-bit B-lines (as addressed by 
BM~" the Ba and Bm fields). 
BT: the contents of a B-test register. 
N: a 24-bit literal ("immediate operand"),  speci- 

fied by taking the value of the instructions' 
address field as a two's complement number. 

a) Main Accumulator Arithmetic Orders 
(Note that several arithmetic orders were repeated 
with minor differences concerning accumulator stand- 
ardization, rounding, clearing of AL,  etc. Such orders 
are asterisked). 

Mnemonic Description 

LDA load AM (,  four versions) 
LDN load AM negatively ( ,  three versions) 
LDL load AL ( ,  two versions) 
LDDL load AM and AL double-length 
LDDLN load double-length negatively 
STA store AM (,  two versions) 
STL store AL ( ,  two versions) 
STDL store AM and AL double length 
ADD fixed-point add 
ADFL single-length floating point add (~ two 

versions) 
ADFD double-length floating point add 
SUB fixed-point subtract 
SBFL single-length floating point subtract ( ,  

two versions) 
SBFD double-length floating point subtract 
RSUB fixed-point reverse subtract 
RSBFL single-length floating point reverse sub- 

tract ( ,  two versions) 
RSBFD double-length floating point reverse sub- 

tract 
MPY fixed-point multiply 
MPFL single-length floating point multiply ( ,  

two versions) 
MPFD double-length floating point multiply 
NMPY fixed-point multiply and negate 
NMPFL single-length floating point multiply and 

negate ( ,  two versions) 
NMPFD double-length floating point multiply and 

negate 
DIV fixed-point divide 
DVFL single-length floating point divide 
DVDL double-length floating point divide 

There were an additional 17 orders for performing 
miscellaneous minor operations on the accumulator 
such as negating, taking the modulus, etc. 

b) B-line ("Index Register") Manipulations 
(Note that orders asterisked used the 'read-pause- 
write' (split cycle) technique.) 
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Mnemonic 

LDB 
L D B N  
LND 
LNN 
STB 
STBN 
A D B  
A D N  
SBB 
RSBB 
SADB 
SSBB 
RSSBB 

SBN 
RSBN 
A N D  
ANDS 
A N D N  
A N M N  
A D M N  
N E Q  
NEQS 
N E Q N  
ORB 
O R B N  

Description 

load a specified BA (BA'  -- S) 
load negatively a specified BA 
load literal (BA := N) 
load negatively a literal (BA := - N) 
store a specified BA (S := BA)  
store negatively a specified BA 
add (BA := BA + S) 
add literal (BA := BA + N) 
subtract (BA := BA - S) 
reverse subtract (BA := S - BA)  
add into store (S :-- S + BA)  • 
subtract f rom store (S :-- S - BA)  • 
reverse subtract f rom store (S := B A  - 

S) • 
subtract literal (BA := BA - N) 
reverse subtract literal (BA := N - BA)  
BA := BA & S 
S : = B A & S ~  
BA := BA & N 
BA := BM & N 
BA := BA + ( B M & N )  
BA := B A  ~ S 
S := B A ~  S ,  
BA := BA ~ N 
BA := BA or S 
BA := BA or N 

There  were a further four miscellaneous simple B 
orders.  More complex B operat ions,  including multipli- 
cation, were peformed by e x t r a c o d e s - s e e  Section d 
below. 

c) T e s t  a n d  C o u n t  O r d e r s .  

i) Six orders of the form: BA : = N IF 
B M i s : o d d ,  e v e n , =  0 =~ 0 -->0, <0.  

ii) Four orders of the form: BA :-- N IF 
BT is: = 0, :~ 0, -->0, <0.  

iii) Four orders of the form: BA :=  N IF 
(AM, AL)  is: -- 0, ~= 0, ->0, <0.  

iv) Four orders which set BT according to the result 
of: (S - BA) ,  (BA - S), (N - BA) ,  (BA - 
N). 

v) Four orders of the form: IF BM =~ 0, BA :=  N 
AND:  (BM :=  BM + ½), (BM :=  BM + 1), 
( B M : - -  BM - ½), (BM :=  BM - 1). 

vi) Four orders of the form: IF BT :# 0, BA = N 
AND:  (BM :=  BM + ½), (BM :=  BM + 1), 
(BM :=  BM - ½), ( B M : =  BM - 1). 

Note that BA was thought of as the "ar i thmet ic"  B- 
line and BM as the "address-modif icat ion" B-line. 
Adding ½ to BM allowed halfword boundaries to be 
accessed. 

d) Extracodes.  These caused automatic  entry 
to and return from fixed-store routines. Extracodes 
intended for general use divided into the following 
groups: 
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i) 14 extracodes for operating on B-lines, providing 
multiplication, division, shifting, etc. 

ii) 46 extracodes giving additional (AL,  AM) facili- 
ties such as: 

arithmetic using literals 
evaluation of standard tr igonometric functions 
evaluation of other standard functions such as 

log, exp, sqrt, reciprocal,  etc. 
iii) Three  extracodes for subroutine entry (return link 

stored in BA).  
iv) 20 user-orientated extracodes for the control of 

magnetic tape,  i/o s t ream selection, etc. 

The rest of the fixed store was filled with system 
software such as the drum learning program,  i/o device 
routines,  and standard test programs.  
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