
Compute r
Systems

G. Bell, D. Siewiorek,
and S. H. Fuller, Editors

The Manchester
Mark I and Atlas: A
Historical Perspective
S. H. Lavington
University of Manchester

In 30 years of computer design at Manchester
University two systems stand out: the Mark I
(developed over the period 1946-49) and the Atlas
(1956-62). This paper places each computer in its
historical context and then describes the architecture
and system software in present-day terminology.
Several design concepts such as address-generation
and store management have evolved in the
progression from Mark I to Atlas. The wider impact of
Manchester innovations in these and other areas is
discussed, and the contemporary performance of the
Mark I and Atlas is evaluated.

Key Words and Phrases: architecture, index
registers, paging, virtual storage, extracodes,
compilers, operating systems, Ferranti, Manchester
Mark I, Atlas, ICL

CR Categories: 1.2, 4.22, 4.32, 6.21, 6.30

1. Introduction and Overview

In the period 1946-76 five computer systems have
been designed and implemented at Manchester Univer-
sity. A general account of the prototypes and their
industrial derivatives has been given elsewhere [6],
along with a comprehensive list of some 60 references
to their hardware and software. The main purpose
here is to highlight two of the more significant of these
five designs. The latest computer in the Manchester
series, MU5, is described fully in a companion article
[4].

As far as active University research is concerned,

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

Author's Address: Department of Computer Science, University
of Manchester, Manchester, M13 9PL, United Kingdom.

Manchester 's involvement with digital computers dates
from December 1946 when F. C. Williams and Tom
Kilburn joined the University from their wart ime posts
at the Telecommunicat ions Research Establishment.
The computer projects, first in the Depar tment of
Electrical Engineering and then since 1964 in the
Depar tment of Compute r Science, have followed the
pattern summarized in Table I. This table relates
primarily to hardware development ; associated system
software activity has naturally spanned similar periods,
beginning in a small way in 1949 but gathering momen-
tum with the release of the first compiler (1952).

The five prototype computers in the table are the
Mark I, the Meg, an experimental transistor computer ,
the Muse (later Atlas), and the MU5. The names of
the five industrially produced derivatives are respec-
tively the Ferranti Mark I, Ferranti Mercury, Metro-
politan-Vickers MV950, Ferranti Atlas, and the ICL
2980. The ICL 2980 is not in fact a direct derivative
but its architecture owes much to, and has a great deal
in common with, MU5. As may be inferred from the
table, the cooperat ion between industry and university
has been a fruitful and continuous process since the
autumn of 1948. The only one of the five Manchester
projects to receive direct government funding was the
MU5, which in addition had significant help from ICL
in the form of production facilities and engineering
support .

The Mark I and Atlas have been chosen for closer
study not only because they contain significant innova-
tions, but because they convey an evolutionary pro-
gression with respect to the following design themes: i)
Instruction format , ii) operand address-generat ion, iii)
store management , and iv) sympathy with high-level
language usage. The evolution is continued in MU5
[4]. Whilst all three machines were conceived as gen-
eral-purpose computers , the internal architecture has
tended to favor high-speed scientific applications.

Of the two Manchester computers omit ted from
detailed analysis in this paper , the Meg (precursor of
the Ferranti Mercury) has been passed over because it
was essentially an updating of the Mark I concept. By
changing the technology and providing parallel access
to the main store, the Meg became faster, more
compact and easier to maintain. Apar t f rom the incor-
porat ion of hardware floating point ari thmetic, the
instruction format and repertoire were similar to that
of the Mark I. The marke t area of the Ferranti Mercury
was much the same as that of the IBM 704, though
the 704 was faster and considerably more expensive.
The other Manchester computer to be omit ted, the
experimental point-contact transistor machine, was de-
signed as a small and economic system using a drum as
the main store. To help avoid the consequent latency
problems a pseudo two-address (or 1 + 1) instruction
format was used, in which the address of the next
instruction was contained within each instruction, The
transistor computer was in this respect untypical of the

Communications January 1978
of Volume 21
the ACM Number 1

Table I. Summary of Manchester University computer projects and
their industrially produced derivatives.

University Project Industrial Derivative

Manchester Mark I
hardware development period:

1946-49
prototype operational: June

1948
enhancements: April and Oct.

1949
Meg

hardware development period:
1951-54

prototype operational: May
1954

Transistor computer
hardware development period:

1952-55
prototype operational: Nov.

1953
enhancement: April 1955

Atlas (formerly Muse)
hardware development period:

1956-62
first installation operational

Dec. 1962
MU5

hardware development period:
1966-74

computer operational Oct.
1974

Ferranti Mark I
first installation: Feb. 1951
last one delivered: 1957

Ferranti Mercury
first installation: Aug. 1957
last one delivered: 1961

Met-Vickers MV 950
first installation 1956
last one delivered (?) 1958

Ferranti Atlas
first installation: Dec. 1962
last one delivered: 1965

(ICL 2980)
2900 range officially

announced: Oct. 1974

other Manchester designs. The use of a drum for
primary storage made the transistor computer slower
than the Mark I. Perhaps the most important impact
of this machine on the Manchester group was the early
experience it provided in transistor circuit techniques.
The Meg and the transistor computer are described
more fully in [6].

In the following account of the Mark I and Atlas
each system is presented in three parts. First the
objectives of the project are given, during which the
motivation and evolutionary starting points are out-
lined. Secondly the principal features are given, in
describing which, some of the original terminology has
been replaced by its nearest modern equivalent for the
sake of readability. It should be stated, however, that
any serious further study of the designs should start
with the original papers quoted in [6]; a useful selection
of these is [1, 2, 5, 8, 9, 10]. Finally, each computer
system is assessed according to its immediate and long-
term impact.

2. The Mark I

2.1 Objectives of the Project
The initial aim was to build a realistic test environ-

ment for a novel digital store. The store was the
electrostatic Williams Tube [9], and the prototype
Mark I simply consisted of a 32 x 32 bit Williams Tube
store plus elementary computational facilities. Never-

theless, when it successfully ran a 52-minute factoring
program on 21 June 1948 it became the first general-
purpose stored-program computer to work. Thereaf ter
the machine underwent intensive engineering develop-
ment so that by April 1949 a realistic computer had
resulted. The objectives by 1949 were to provide
sufficient memory and computational facilities to solve
the number-theory problems that were provided by
early Manchester users [6].

The computer design activity in 1949 was mainly
concerned with the engineering aspects of Williams
Tubes and drum memories, from which work some
elementary "one-level store" ideas began to emerge
(see below). The team throughout the Mark I period
averaged about four people, working in relative inde-
pendence from other groups in England and America.
Being basically an engineering project, innovation and
improvement were more or less continuous processes
up to about October 1949.

2.2 Principal Features
a) Technology. The Mark I logic was imple-

mented with EF50 (CV1091) and EF55 pentodes and
EA50 vacuum tube d i o d e s - t h e s e types being readily
available owing to their extensive use in military equip-
ment. The production Mark I comprised 4050 ther-
mionic tubes and consumed about 25KW of power.
The digit period was 8.5 microseconds (extended to
10 microseconds in the Ferranti production version).
The Williams store was at first based on a standard
CVl131 cathode ray tube, but specially-manufactured
CRTs were used later.

Williams Tubes were used not only for the main
memory but also for the accumulator and other central
registers because this was cheaper than providing flip-
flop registers. When compared with the mercury delay
line which was the other common form of digital store
in the late 1940's, the Williams Tube had the following
advantages: i) It was random access (not serial access),
and ii) it was cheaper to build and required no special
temperature control. Williams Tubes did, however,
require electrostatic shielding.

The Mark I backing store was a nickel-alloy plated
drum, of 30 milliseconds revolution time. The drum
was servo-synchronized to the main CPU clock, thus
allowing extension to multiple drums without special
buffering. Phase modulation recording was used.

b) Architecture. The Manchester Mark I was a
serial-ALU, fixed-point, binary computer employing a
single-address instruction format. The original word
length was 32 bits, but this was increased to 40 bits in
1949 for the sake of greater computational accuracy.
A double-length (80-bi t)accumulator facility was also
provided. Two 20-bit instructions were packed to a
word and addressing was to 20-bit boundaries.

The April 1949 version of the Mark I had a
repertoire of 26 functions (op codes) in its instruction

Communications January 1978
of Volume 21
the ACM Number 1

set, including hardware multiply. It also had two 20-
bit modifier (index) registers called B-lines, 128 words
of random access main store and a 1024-word drum
backing store. The Ferranti production Mark I was
essentially the same architecture but with the following
enhancements: i) An instruction set of 50 op codes, ii)
eight modifier registers (B-lines), iii) 256 words of
main store (Williams Tubes), iv) 4K (extendable to
16k) of drum store, and v) faster multiply time (2.16
milliseconds).

The characteristics of the production Mark I are
now described in greater detail, since they form the
definitive expression of ideas contained in the series of
University prototypes developed during the period
1946-49.

The 20-bit instruction format was as follows:

L . A D D R E S S ! B I [FUNCTION I
10 3 1 6

The three B digits specified one of eight B-lines and
the specification of BO was normally used to indicate
no modification. There was a separate B-arithmetic
unit and associated eight-line B-store for carrying out
modifier-register manipulation. Normal operands were
40-bit words, the bits being treated either as a two's
complement number or as an unsigned quantity de-
pending on the instruction. The full instruction set is
given in Appendix 1, and it may be seen that consider-
able help was given with multilength arithmetic. There
is also a population count or "sideways add" order
(denoted in Appendix 1 by the mnemonic SADD), a
facility requested by the Manchester mathematicians
for their number theory problems. A similar instruction
is provided on some modern computers, e.g. the CDC
7600, for nuclear physics applications programming,
etc. The Ferranti Mark I also had a hardware random-
number generator, available via mnemonic RNDM in
Appendix 1. This somewhat unusual facility was in-
cluded mainly at the request of the mathematician
A.M. Turing, who was at Manchester from September
1948 until his death in June 1954.

Transfers to and from the drum and other periph-
eral equipment were carried out via 20-bit control
words. These had two formats, distinguished by one of
the mode bits. For drum transfers the format was:

I DR UM T R A C K A D D R E S S I M O D E ! I TU BE]
11 4 1 4

Three of the mode bits then specified reading/writing,
read-checking/write-checking, single page/double page
transfers. The main store was arranged as eight 32-
word pages on eight Williams Tubes, backed by the
drum(s). The track-address was stored along with each
page of information on t he drum, and when a page
became resident in main store an extra 20-bit line was
assigned on each Williams Tube to hold the track-
address of that page. This page-address line was nor-
mally invisible to the programmer, but could be ac-

cessed via the special L D A D instruction (Appendix
1). This was the germ of an idea which later led to
page-address registers and virtual-to-real address trans-
lation on the Atlas computer.

For input/output transfers the control word format
w a s :

I I M O D E] l
10 5 5

For the early Ferranti Mark I's input was via a 250
character/sec 5-track paper tape reader using the 5-bit
teleprinter code, and output was to a tape punch and
printer. Four mode bits in the control word specified:
Output a character, check output buffer, input a char-
acter, send a control character (equal to carriage
return, linefeed, figure shift, letter shift) to the output
device. Two input/output commands were provided
(see Appendix 1): one took its control word from a
main store address and the other used a 20-digit
pattern set on the console swi tches-useful during
bootstrapping.

e) System Software. In 1949 there was no Mark
I system software, except for basic utilities such as
input routines. Coding was normally carried out using
the symbols of the 5-track teleprinter code. Once the
Ferranti Mark I had been installed software develop-
ment increased, with the emphasis being on embryonic
high-level languages. After one earlier effort at com-
piler writing (1952), the Mark I Autocode [1] was
available from March 1954 as an easy-to-learn scien-
tific programming language for users having small or
medium-sized problems.

An additional Autocode implementation objective
was to simulate a one-level store so that the user had
no need to organize his own drum transfers. It was
possible to simulate this one-level store on the Mark I
in a reasonably balanced way because the access time
for reading an operand from the drum happened to be
about the same time as a floating-point addition via an
interpretive library routine. When running Autocode
programs 128 tracks on the drum were reserved for
instructions and 128 tracks for variables. Individual
"routines were transferred to the fast CRT store as they
were required. To gain access to a variable an interpre-
tive routine in fast store first determined on which
track it lay, then transferred that track or "page" to
the fast store, and finally selected the particular line
within the page. Since successive operands were quite
often located on the same page, steps were taken to
avoid unnecessary drum transfers.

Arithmetic in the Autocode system was normally
performed on floating-point variables v l , v2
etc. with provision for integers n l , n2 , to be
used as indices and counters. Simple conventions also
existed for control transfers, intrinsic functions, input/
output, and simple job control using symbols from the
five-bit teleprinter code. An impression of the neatness
of the system may be gained from the following Mark

Communicat ions January 1978
of Volume 21
the ACM Number 1

I Autocode sequence which prints the root mean
square (rms) of the variables v l , v2, . . . v l00 . (Note
that the symbol • causes printing of a variable to ten
decimal places on a new line, and F1 signifies the
intrinsic function 'square root ') :

n l = 1
vl01 = 0
2v102 = v n l x v n l

vl01 = vl01 + v102
n l = n l + 1
j2, 100 - n l
vl01 = vl01/100.0
• v l 0 1 = F l (v l 0 1)

2.3 Evaluation
The Mark I, in common with most early computers ,

was first applied to scientific and engineering problems.
Measurements performed on a sample of Mark I jobs
estimated that 16% of computing time went on drum
transfers, 28% on multiplication and 56% on other
arithmetic operations. Multiplication took 2.16 milli-
seconds and other accumulator orders took 1.2 milli-
seconds.

A contemporary benchmarking exercise rated the
Mark I at about the same raw power as the National
Physical Laborator ies ' A C E computer , even though
the A C E had a digit period ten times shorter. The
favorable performance of the Mark I was attributed to
its random access main memory (ACE had a delay
line store) and its relatively fast multiplier. Ferranti
delivered nine Mark I and Mark I star machines
between 1951 and 1957, three of them being exported
(to Canada, Holland, Italy).

The long-term significance of the Manchester Mark
I project is threefold. Firstly, it proved the viability of
a digital storage technique (the Williams Tube) , at a
time when the successful implementat ion of the stored-
program concept awaited the development of a suitable
storage device. Williams Tubes were adopted by sev-
eral computers in England, Russia, and A m e r i c a -
including the IBM 701. Secondly, the project inspired
the British government to give financial support to
Ferranti Ltd. , thus laying one of the cornerstones of
the British computer industry. Thirdly, and of perhaps
wider significance, the Mark I project was the first to
focus attention onto the problems of linking fast ran-
dom-access main memory to slower sequential-access
rotating memory .

It was in the light of these problems that B-lines
were first conceived of as relocation registers. It soon
became clear that B-lines could also be used for general
address-modification purposes, and so with the inclu-
sion of a B-test facility the modern index register was
born. The problem of automating backing store trans-
fers ("over lays") still remained a challenge, but two
Mark I facilities were later to suggest a solution to the
Manchester team. First there was the fact that every
page resident in the Mark I fast store carried with it

the corresponding drum address in a special "page-
address line" (see above). Second, there was the way
in which the Autocode system handled the drum ad-
dress of a user 's variables. Out of these two facilities
grew the concept of allowing the user always to pro-
gram in a virtual (or " d r u m ") address space and then
providing system hardware and software to achieve
automatic translation into the real (or "fas t") address
space, using information held in a set of associatively
interrogated page-address registers. Thus the auto-
mated "one-level s tore" was conceived, and the reali-
zation of the other programming advantages to be
gained from separating virtual and real address spaces
followed shortl3/. These ideas were implemented in the
Atlas computer .

3. Atlas

3.1 Objectives of the Project
By 1956 it was clear that Britain was falling behind

the United States in the production of high-perform-
ance computers . The MUSE ("micro-second") project ,
started by Kilburn at Manchester in the autumn of
1956, was a conscious effort to remedy the situation.
From January 1959 Ferranti Ltd. officially became
involved and a joint University/Ferranti team under
Kilburn continued the development of the computer ,
which was now known as Atlas.

Initial discussions with potential users of high-per-
formance machines, both scientific and commercial ,
had produced a requirement for instruction times ap-
proaching one microsecond, the ability to attach a
large number of i/o devices of various types and a
main store size approaching 100k words. High comput-
ing speeds and rapid turnaround of user jobs became
the keynotes of the Atlas design. The principal difficul-
ties in achieving these goals arose from the wide
differences in operating speeds between the various
types of peripheral equipment and the CPU, and
between transistor logic circuits and available core
stores. Efficient and economic utilization of equipment
was also very much a design-objective, since Atlas was
intended to be sold on the open market . The somewhat
conflicting requirements for high-speed and relative
economy led to the incorporation of many techniques
which were not extant when the project started in
1956. Amongst these were mult iprogramming, job
scheduling, spooling, extracodes, interrupts, pipelin-
ing, interleaved storage, autonomous transfer units,
virtual storage, and paging. Although not all of these
ideas originated in Manchester , they combined to make
Atlas probably the most powerful machine available in
the early 1960's.

3.2 Principal Features
a) Technology. The Atlas logic circuits were

based on an OC170 germanium junction transistor
used as an inverter, preceded by germanium OA47

Communications January 1978
of Volume 21
the ACM Number 1

diodes for the logic gating. This gave a typical gate-
delay of 12 nanoseconds. Care was taken to avoid
saturation (low collector-base volts), since the OC170's
response became slow in the saturation region. The
parallel adder employed a special symmetrical transis-
tor (the SB240) as a switch in the carry-path, which
resulted in a basic add-time of 200 nanoseconds for 48
b i t s - a significant achievement in 1959. There were
about 80,000 transistors in the entire computer , mostly
mounted on 8-inch by 5-inch printed-circuit boards.

The main store was 2 microsecond cycle-time core
four-way interleaved, backed by drums having a 12
millisecond revolution time and capable of transferring
one 512-word block every 2 milliseconds. Two other
"pr ivate" storage units were provided: A high-speed
read-only "fixed store" of 0.35 microsecond access
time made from small slugs of copper or ferrite inserted
in a woven wire mesh; and a system working store of 2
microsecond cycle-time core, which served as working
space for the operating system routines (many of which
resided in the fixed store). The size of all these stores
varied between production versions of the Atlas. The
Manchester prototype had the smallest capacity, ex-
pressed in 48-bit words as follows:

i) main store: 16k core, backed by four drums each
of 24k

ii) fixed store: 8k
iii) system working store: lk (later increased to 4k)

The largest production Atlas, installed at the Science
Research Council's computing laboratory at Chilton
(Harwell), had a main core store of 48k.

Bulk storage was provided by eight (expandable to
32) tape decks on eight channels, each having a transfer
rate of 90k characters per second. Preaddressing and
fixed 512-word blocks were used, thus allowing a tape
to be written to nonsequentially when required. A 16-
million word file disk was added later.

The Manchester Atlas had 17 conventional i/o
devices, two high-speed data links, an on-line x-ray
crystallographic diffractometer and an experimental
speech input/output unit. The interrupt structure al-
lowed for the connection of up to 512 peripheral units,
with hardware assistance for determining the source of
an interrupt.

b) Architecture. Atlas was a 48-bit word paral-
lel computer with a one-address instruction format as
follows:

I, FUNCTION t Ba lB ml ADDRESS I
10 7 7 24

The repertoire of functions or op codes, summarized
in Appendix 2, was divided into two groups: normal
instructions and extracode instructions. Generally
speaking an extracode was a commonly used but rela-
tively compl!cated function which it was not economic
to implement directly as hardwired logic. Instead, an
extracode consisted of a sequence of normal instruc-

tions (a "macro routine") held in the fixed store.
Entry to these macro routines was very rapid and
involved no preservation of central registers since there
was a dedicated extracode program counter (or control
register) and reserved B-lines, and any extracodes
needing working space used a private area of the
system working store. Amongst extracode instructions
available to the user were ones for carrying out the
common intrinsic functions such as square root, log,
cosine, etc.

Of the normal instructions, Appendix 2 shows that
they divide into three subgroups: main accumulator
(A) orders, index register (B) orders, and test-and-
count orders. There were independent A and B arith-
metic units. The instruction set and the Atlas pipeline
architecture assumed there would normally be no inter-
change of operands between the A and B ALUs.

This design philosophy, also to be seen to some
degree in MU5, works most effectively for computa-
tions such as forming the scalar product of two vectors.
By careful pipeline design and by using tricks such as
assuming that the next instruction usually occurred in
the same page as the last instruction, Atlas could
overlap the execution of three A-instructions and then
any associated B-instructions were normally executed
concurrently with minimal additional time penalty.

The Atlas instruction could be double address-mod-
ified, according to the specification of the Ba and Bm
bits. There were 127 24-bit B-lines (index registers)
for this purpose, mostly held in a 0.7 microsecond
cycle-time core store. The top three B-lines, B125-
B127, were implemented as flip-flop registers and
were reserved for use as independent program counters
respectively for interrupt, extracode, and main pro-
gram control. This explains why no explicit jump
(branch) instructions appear in Appendix 2"

Of the 24 address bits in an instruction, 20 were
used to cover the virtual address space of one million
words, three specified a 6-bit character position within
a full word, and one bit distinguished between a normal
address and a "V-store" address. The V-store was the
collective name given to all central registers and pe-
ripheral device registers which needed to be accessible
to a (system) program. Into this category came such
things as interrupt registers, page-address registers,
and the data and status registers of all i/o units. Since
normal instructions could, with suitable protection
checks, use V-store addresses for operands there was
no need for explicit op codes for the control of i/o
equipment etc. The incorporation of peripheral devices
into the total address space has since been used on
other computers such as the PDP11.

The Atlas paging system used 512-word fixed-size
pages, with a page-address register for every 512-word
section of main core store. Each register contained a
lock-out digit, so that pages of more than one program
could be resident in core concurrently. The address-
translation time, i.e. associative interrogation of the

Communications January 1978
of Volume 21
the ACM Number 1

page-address registers, was 0.7 microseconds, which
represented about 40 percent of the total operand
fetch time (including cable delays, store access time,
etc.). Considerable effort was spent in ensuring effi-
cient page-turning, and the replacement algorithm-
contained in the fixed s tore-used a learning program
which attempted to identify pages in main store which
had fallen out of use [5]. No copy was normally kept
on drum, and each drum had a rotational position
indicator to speed the transfer of a replaced page to
the first available space on drum. (Many modern
paging computers, including MU5, now keep copies
on drum and arrange not to write back pages which
are unaltered.) The Atlas virtual address space was
sufficiently large for the compilers to arrange simple
segmentation conventions during the compilation proc-
ess.

c) System Software. The Atlas Supervisor (op-
erating system) fully exploited the following concepts:
i) Multiprogramming (of up to 16 jobs concurrently),
ii) on-line spooling of input and output, and iii) job
scheduling (according to user-indicated job character-
istics such as use of magnetic tapes, volume of output,
or priority request). The aim was to keep all of the
computer equipment busy while minimizing the turn-
around of individual jobs. Since in addition the Super-
visor produced comprehensive logging statistics for the
user, the operator, and the (daily) accounting program,
the computer room operators had little to do except
feed in work -an exceptional state of affairs in the
1960's. The programmer was provided with straight-
forward job control conventions which were simple for
simple tasks, while allowing scope for more complex
requirements such as multiple input or output streams,
or the use of special "private" compilers.

The standard Atlas compilers were mostly imple-
mented Using the Compiler Compiler [2], a formal
language for the transparent description of syntax and
semantics. While compilers for all the common high-
level languages such as Algol, Cobol, and Fortran
were eventually written for Atlas, the Manchester
users programmed extensiyely in Atlas Autocode to
begin with. Atlas Autocode was a block-structured
language specified at about the same time as Algol 60,
but implemented sooner. Except for a more limited
concept of compound statements and for clauses, Atlas
Autocode was very similar to Algol 60. As an example
the root mean square calculation given in Section 2.2
might be programmed in Atlas Autocode as follows:

RMS = 0
cycle i = 1, 1, 100
RMS = RMS + X (i) • X(i); repeat
print (sqrt (RMS/100), 6, 4)

3.3 Evaluation
Some typical Atlas instruction times were as fol-

lows:
fixed-point B addition 1.59 microsec.

floating-point add, no modification 1.61 microsec.
floating-point add, double modification 2.61 mi-

crosec.
floating-point multiply, double modifiCation 4.97

microsec.
floating-point division 10.66 to 29.80 microsec.

The overall average instruction time when executing
Fortran scientific programs was measured to be about
3.35 microseconds per order. For comparison, the
corresponding overall average instruction rates for
typical present-day computers executing similar pro-
grams range from about 110 nanoseconds per order
(CDC 7600) to about 6.6 microseconds per order
(IBM 370/135).

In terms of contemporary machines Ferranti sales-
men equated one Atlas to four IBM 7094s as regards
work throughput. It is disappointing that only three
full Atlas's and two scaled-down versions ("Atlas II")
were sold between 1962-65. To some extent the
marketing of Atlas was overtaken by events: Ferranti
was currently developing other systems besides Atlas;
Ferranti sold its large computer interest to ICT (later
ICL) in 1963; ICT afterwards introduced its 1900
range of computers. By the mid-1960s the direct
market competitor to Atlas was the faster CDC 6600,
whose designers have said they learned some useful
lessons from Atlas. In 1967 a benchmarking compari-
son for 22 compute-b0und Fortran scientific jobs was
performe d on an Atlas with 32k core, a single-proces-
sor Univac 1108 with 64k core, and a CDC 6600 with
64k core [3]. The compilers used were respectively the
London nonoptimizing Atlas Fortran V, the Univac
F4012 Fortran IV, and the CDC Chippewa Run.
Under these conditions the average CP computing
speeds for Atlas, Univac 1108, and CDC 6600 were
measured to be in the ratio 1: 2 .1 :5 .9 respectively.
By the start of the 1970s ICL had introduced the
1906A computer, which has a work throughput of the
order of three times that of Atlas, depending upon the
configuration.

The long-term significance of the Atlas project lies
in the design-concepts which it introduced. The more
important of these are in four general areas: Pipeline
techniques for high instruction throughput, paging and
virtual storage, operating system features, and extra-
codes. The first area is now well-defined in respect of
single instruction streams. The second has had far-
reaching consequences. It has bee.n the subject of
much subsequent analysis and development (e.g. for
MU5), in the light of which it is interesting to observe
that the inspired guess of 512-word pages for Atlas
proved to be about right. Program s on Atlas generally
produced about one page-exception (page-address reg-
ister nonequivaience) per 5 × 104 accesses. With
regard to operating system features, the Atlas Super-
visor would seem to the present-day user to have a
very limited concept of file manipul/ition and no time-
sharing (interactive) facilities. However, in all other

Communications January 1978
of Volume 21
the ACM Number 1

respects, especially in job throughput and ease of use,
the Atlas Supervisor set a high standard which is still
relevant today. Atlas was also one of first computers
in which specific hardware facilities were provided at
the design stage to aid the operating s y s t e m - e . g , in
the area of peripheral control, interrupt handling, and
store management. With regard to extracodes, the
concept of providing easy access to commonly required
software has been taken up by several other designers.
On Atlas the existence of a specially constructed fixed
store for extracodes and certain Supervisor routines
was partly determined by nonavailability of suitable
fast core. It was generally observed that over half of
all Atlas user-programs spent more than half their run
time in executing common software such as the extra-
codes and i/o routines, so there was ample justification
for having speeded up the access to much of this
standard software.

As for the influence of Atlas on the design of its
successor at Manchester, MU5, an important lesson
was learned concerning the B-lines. The Mark I had had
eight such lines and on Atlas about 90 of the 127 B-
lines were available to the general user. This was
indeed a lavish provision for the assembler program-
mer, but it was observed that the compiled code of the
Atlas high-level language programmer could not easily
make use of more than a few of these. A compiler
writer has a potential need for registers such as B-lines
for two main object-code purposes:

i) as bases and pointers for address-generation;
ii) as fast storage for frequently used operands when

attempting run-time op t imiza t ion- (this applies
not only to integers for loop-control etc., but also
to frequently-used floating-point variables).

For the former application the registers should be
capable of reflecting the usage of local and nonlocal
name spaces in block-structured l anguages - though
there is no such special requirement for languages
such as Fortran. For the latter application it would be
advantageous if identification of frequently used oper-
ands was automatic at run time, thus saving on com-
piler complexity. The MU5 design attempts to satisfy
these high-level language requirements with specific
naming registers and associatively accessed buffers,
and from Manchester 's viewpoint Atlas marked the
end of the road for the general-purpose B-line. The
vindication of the MU5 approach lies in the more
efficient compiled code which it produces [7].

4. Conclusion

This paper and its companion [4] reveal a develop-
ing view of computer design over a period of 30 years.
At the beginning of this period the task of inventing
the basic functional units and then keeping them run-
ning for long enough to obtain useful computation,

10

dictated a spartan engineering approach to machine
architecture. As technology advanced and successive
Manchester computers were implemented and evalu-
ated, so the designers were able to observe and incor-
porate in hardware more of the requirements of the
system software and the users. These requirements
themselves evolved over the years. Although the em-
phasis of the Mark I, Atlas, and MU5 has been on
large high-performance systems, it is evident that the
designs have not only kept abreast of the requirements
of the general user, but in some cases (e.g. paging and
virtual storage) the architectural innovations have been
in advance of the facilities expected by normal pro-
grammers. In time, with the decreasing cost of logic
and main storage, many of the Manchester "high-
performance" devices have come to be adopted in
succeeding middle-range computers.

Appendix 1

The Instruction Set of the Ferranti Mark I
In order to relate to modern terminology the fol-

lowing notation is used when describing the action of
each order:

ACC: the contents of the double-length main accumu-
lator (80 bits)

AM: the most-significant 40 bits of ACC
AL: the least-significant 40 bits of ACC
S: the contents of a store line (40 bits), except

that B orders use the least significant 20 bits
and control-transfer orders the least signifi-
cant 10 bits.

B: the contents of a B-line (index register)
D: the contents of the multiplicand register (40

bits)
H: the digits set up on 20 console handswitches.

a) Main Arithmetic and Logical Orders

Mnemonic

L D A
LDAS
LDN
STA
STM
STMC
SWAP
STAM

STAC
CLR
A D D
A D D U
SUB
A D D M
L D D U
LDDS
M A D U

Communications
of
the ACM

Description

load AL (AM cleared)
load AL, sign-extend into AM
load AL negatively
store A L
store AM
store AM and clear AM
interchange AM and AL
store AL, move AM to A L and clear

AM
store A L and clear ACC
clear ACC
ACC := ACC + S (signed S)
ACC := ACC + S (unsigned S)
ACC := ACC - S (signed S)
AM := AM + S
load D (unsigned multiplicand)
load D (signed multiplicand)
ACC := ACC + D x S (unsigned S)

January 1978
Volume 21
Number 1

MADS
MSBU
MSBS
AND
ORA
NEQ
SHLS
ORS
ORSC

ACC
ACC
ACC
ACC
ACC
ACC

:= ACC + D × S (signed S)
:= ACC - D × S (unsigned S)
:= ACC - D × S (signed S)
:= ACC & S (S sign-extended)
:= ACC or S (S sign-extended)
:= ACC ~ S (S sign-extended)

ACC := 2 × S (arithmetic shift)
S := AL := AL or S
S := AL or S, then clear ACC

b) B-line (Index-Register) Manipulation

Mnemonic

LDB
STB
SUBB
LDBX
STBX
SBBX

Description
load a specified B-line
store a specified B-line
B : = B - S
load a B-line (without modification)
store a B-line (without modification)
B := B - S (without modification)

Mnemonic
JMPA
JMPR
JGEA
JGER
JGBA

JGBR

c) Control Transfer Orders

Description

absolute indirect unconditional jump
relative indirect unconditional jump
if ACC _> 0, absolute indirect jump
if A C C >_ O, relative indirect jump
if (last-named B-line) -> 0, absolute in-

direct jump
if (last-named B-line) _> 0, relative indi-

rect jump

d) Peripheral and Miscellaneous Orders

Mnemonic
IOTH
IOTS
NORM

SADD

RNDM
LDAD
DST1
DST2
TIME
HOOT
STH
NULL

Description

i/o transfer using H as a control word
i/o transfer using S as a control word
add to AM the position of the most sig-

nificant one in S
add to AM the number of l 's in S -

(population count)
load a random number into AL
load a page-address word into AL
debugging stop (1)
debugging stop (2)
S := clock
pulse the console hooter
S := console handswitches H
no operation

Appendix 2

Abbreviated Summary of the Atlas Instruction Set
In describing the action of the orders the following

notation is used:

AM: the contents of the main 48-bit accumulator.
(For floating-point working a 40-bit mantissa,

11

8-bit exponent and an octal base is used. For
fixed-point working only 40 bits are used.)

AL: for double-length working AL forms a 39-bit
mantissa extension.

S: the contents of a store line (normally 48 bits)
BA~, the contents of 24-bit B-lines (as addressed by
BM~" the Ba and Bm fields).
BT: the contents of a B-test register.
N: a 24-bit literal ("immediate operand"), speci-

fied by taking the value of the instructions'
address field as a two's complement number.

a) Main Accumulator Arithmetic Orders
(Note that several arithmetic orders were repeated
with minor differences concerning accumulator stand-
ardization, rounding, clearing of AL, etc. Such orders
are asterisked).

Mnemonic Description

LDA load AM (, four versions)
LDN load AM negatively (, three versions)
LDL load AL (, two versions)
LDDL load AM and AL double-length
LDDLN load double-length negatively
STA store AM (, two versions)
STL store AL (, two versions)
STDL store AM and AL double length
ADD fixed-point add
ADFL single-length floating point add (~ two

versions)
ADFD double-length floating point add
SUB fixed-point subtract
SBFL single-length floating point subtract (,

two versions)
SBFD double-length floating point subtract
RSUB fixed-point reverse subtract
RSBFL single-length floating point reverse sub-

tract (, two versions)
RSBFD double-length floating point reverse sub-

tract
MPY fixed-point multiply
MPFL single-length floating point multiply (,

two versions)
MPFD double-length floating point multiply
NMPY fixed-point multiply and negate
NMPFL single-length floating point multiply and

negate (, two versions)
NMPFD double-length floating point multiply and

negate
DIV fixed-point divide
DVFL single-length floating point divide
DVDL double-length floating point divide

There were an additional 17 orders for performing
miscellaneous minor operations on the accumulator
such as negating, taking the modulus, etc.

b) B-line ("Index Register") Manipulations
(Note that orders asterisked used the 'read-pause-
write' (split cycle) technique.)

Communications January 1978
of Volume 21
the ACM Number 1

Mnemonic

LDB
L D B N
LND
LNN
STB
STBN
A D B
A D N
SBB
RSBB
SADB
SSBB
RSSBB

SBN
RSBN
A N D
ANDS
A N D N
A N M N
A D M N
N E Q
NEQS
N E Q N
ORB
O R B N

Description

load a specified BA (BA' -- S)
load negatively a specified BA
load literal (BA := N)
load negatively a literal (BA := - N)
store a specified BA (S := BA)
store negatively a specified BA
add (BA := BA + S)
add literal (BA := BA + N)
subtract (BA := BA - S)
reverse subtract (BA := S - BA)
add into store (S :-- S + BA) •
subtract f rom store (S :-- S - BA) •
reverse subtract f rom store (S := B A -

S) •
subtract literal (BA := BA - N)
reverse subtract literal (BA := N - BA)
BA := BA & S
S : = B A & S ~
BA := BA & N
BA := BM & N
BA := BA + (B M & N)
BA := B A ~ S
S := B A ~ S ,
BA := BA ~ N
BA := BA or S
BA := BA or N

There were a further four miscellaneous simple B
orders. More complex B operat ions, including multipli-
cation, were peformed by e x t r a c o d e s - s e e Section d
below.

c) T e s t a n d C o u n t O r d e r s .

i) Six orders of the form: BA : = N IF
B M i s : o d d , e v e n , = 0 =~ 0 -->0, <0.

ii) Four orders of the form: BA :-- N IF
BT is: = 0, :~ 0, -->0, <0.

iii) Four orders of the form: BA := N IF
(AM, AL) is: -- 0, ~= 0, ->0, <0.

iv) Four orders which set BT according to the result
of: (S - BA) , (BA - S), (N - BA) , (BA -
N).

v) Four orders of the form: IF BM =~ 0, BA := N
AND: (BM := BM + ½), (BM := BM + 1),
(B M : - - BM - ½), (BM := BM - 1).

vi) Four orders of the form: IF BT :# 0, BA = N
AND: (BM := BM + ½), (BM := BM + 1),
(BM := BM - ½), (B M : = BM - 1).

Note that BA was thought of as the "ar i thmet ic" B-
line and BM as the "address-modif icat ion" B-line.
Adding ½ to BM allowed halfword boundaries to be
accessed.

d) Extracodes. These caused automatic entry
to and return from fixed-store routines. Extracodes
intended for general use divided into the following
groups:

12

i) 14 extracodes for operating on B-lines, providing
multiplication, division, shifting, etc.

ii) 46 extracodes giving additional (AL, AM) facili-
ties such as:

arithmetic using literals
evaluation of standard tr igonometric functions
evaluation of other standard functions such as

log, exp, sqrt, reciprocal, etc.
iii) Three extracodes for subroutine entry (return link

stored in BA).
iv) 20 user-orientated extracodes for the control of

magnetic tape, i/o s t ream selection, etc.

The rest of the fixed store was filled with system
software such as the drum learning program, i/o device
routines, and standard test programs.

Acknowledgments. The author would like to thank
Professor Tom Kilburn and many of the staff in the
Depar tment of Compute r Science, University of
Manchester , for the helpful discussions concerning
systems described in this paper .

Received March 1977; revised July 1977

References
1. Brooker, R.A. An attempt to simplify coding for the
Manchester electronic computer. Brit. J. Appl. Physics 6 (1955),
307-311.
2. Brooker, R.A., MacCallum, I.R., Morris, D., and Rohl, J.S.
The compiler compiler. Ann. Rev, in Automatic Programming, 3
(1963), 229ff.
3. Hughes, P.H. University computer benchmark report. Atlas
Computing Service, U. of London, July 1967.
4. lbbett, R.N., and Capon, P.C. The development of the MU5
computer system. Comm. ACM 21, 1 (Jan. 1978), 14-25.
$. Kilburn, T., Edwards, D.B.G., Lanigan, M.J., and Sumner,
F.H. One-level storage system. IRE Trans. EC-11, 2 (1962), 223-
235 (Reprinted in Bell, C.G., and Newell, A. Computer Structurers:
Readings and Examples. McGraw-Hill, New York, 1971).
6. Lavington, S.H. A History o f Manchester Computers. Nat.
Comptng. Ctr. Publications, Manchester, England, 1975 (also
published in the U.S. by Hayden, Rochelle Pk, N.J.)
7. Lavington, S.H., and Knowles, A.E. Assessing the power of an
order code. Proc. IFIP Congress 77, Toronto, Canada, 1977, pp.
8. Morris, D., Sumner, F.H., and Wyld, M.T. An appraisal of the
Atlas Supervisor. Proc ACM Nat. Meeting, 1967, pp. 67-75.
9. Williams, F.C., and Kilburn, T. A storage system for use with
binary digital computing machines. Proc. lEE, Vol. 96, Pt. 2, No,
30, 1949, p. 183ff.
10. Williams, F.C., Kilburn, T,, and Tootill, G.C. Universal high-
speed digital computers: A small-scale experimental machine. Proc.
IEE, Vol. 98, Pt. 2, No. 61, 1951, pp. 13-28.

Communications January 1978
of Volume 21
the ACM Number 1

