
CS 540 Introduction to Artificial Intelligence
Search II: Informed Search

Fred Sala
University of Wisconsin-Madison

April 13, 2021

Announcements

• Homeworks:
– HW 8 Due, HW9 being released.

• Grades: Midterm & HW4, HW 7 out. HW6 soon

• Class roadmap:

Tuesday, April 13 Search II

Thursday, April 15 Genetic Algorithms

Tuesday, April 20 Introduction to RL

Thursday, April 22 RL and Search Summary

Tuesday, April 27 AI in the Real World

Artificial Intelligence

Outline

• Uninformed vs Informed Search
– Review of uninformed strategies, adding heuristics

• A* Search
– Heuristic properties, stopping rules, analysis

• Extensions: Beyond A*
– Iterative deepening, beam search

Breadth-First Search

Recall: expand shallowest node first
• Data structure: queue
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)

– Space O(bd)
Wiki

Depth

Branching Factor

Uniform Cost Search

Like BFS, but keeps track of cost
• Expand least cost node
• Data structure: priority queue
• Properties:

– Complete
– Optimal (if weight lower bounded by ε)
– Time O(bC*/ε)
– Space O(bC*/ε)

Credit: DecorumBY

Optimal goal path cost

Depth-First Search

Recall: expand deepest node first
• Data structure: stack
• Properties:

– Incomplete (stuck in infinite tree…)
– Suboptimal
– Time O(bm)

– Space O(bm)
Wiki

Max Depth

Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)
– Space O(bd)

A good option!

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to node s
• Successors.

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal (recall game heuristic)

start s
goal

g(s)

start s
goal

g(s) h(s)

Informed Search

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal (recall game heuristic)

• Like in games, use information to speed up search.

start s
goal

g(s) h(s)

Using the Heuristic

Back to uniform-cost search
• We had the priority queue
• Expand the node with the smallest g(s)

– g(s) “first-half-cost”

• Now let’s use the heuristic (“second-half-cost”)
– Several possible approaches: let’s see what works

start s
goal

g(s) h(s)

Attempt 1: Best-First Greedy
One approach: just use h(s) alone
• Specifically, expand node with smallest h(s)
• This isn’t a good idea. Why?

• Not optimal! Get A → C → G. Want: A →B → C → G

BA GC

h=3 h=2 h=1 h=0
1 1 1

999

Attempt 2: A Search

Next approach: use both g(s) + h(s) alone
• Specifically, expand node with smallest g(s) + h(s)
• Again, use a priority queue
• Called “A” search

• Still not optimal! (Does work for former example).

BA GC

h=3 h=1000 h=1 h=0
1 1 1

999

Attempt 3: A* Search

Same idea, use g(s) + h(s), with one requirement
• Demand that h(s) £ h*(s)
• If heuristic has this property, “admissible”

– Optimistic! Never over-estimates

• Still need h(s) ≥ 0
– Negative heuristics can lead to strange behavior

• This is A* search

V. Batoćanin

Attempt 3: A* Search

Origins: robots and planning

Shakey the Robot,
1960’s

Credit: Wiki

Animation: finding a path
around obstacle

Credit: Wiki

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)
• Example: 8 Game

• One useful approach: relax constraints
– h(s) = number of tiles in wrong position

• allows tiles to fly to destination in a single step

847

362

51Example
State

87

654

321Goal
State

Heuristic Function Tradeoffs

Dominance: h2 dominates h1 if for all states s,
h1(s) £ h2(s) £ h*(s)

• Idea: we want to be as close to h* as possible
– But not over!

• Tradeoff: being very close might require a very complex
heuristic, expensive computation
– Might be better off with cheaper heuristic & expand more nodes.

A* Termination

When should A* stop?
• One idea: as soon as we reach goal state?

• h admissible, but note that we get A →B → G (cost 1000)!

B

A G

C

9991

1 1
h=2 h=0

h=0

h=1

A* Termination

When should A* stop?
• Rule: terminate when a goal is popped from queue.

• Note: taking h =0 reduces to uniform cost search rule.

B

A G

C

9991

1 1
h=2 h=0

h=0

h=1

A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter
path:

• Put D back into priority queue, smaller g+h

B

A D

C

999
1

1 1
h=1 h=1

h=1
G

h=0

2

h=900

A* Full Algorithm
1. Put the start node S on the priority queue, called OPEN
2. If OPEN is empty, exit with failure
3. Remove from OPEN and place on CLOSED a node n for which f(n) is minimum (note that

f(n)=g(n)+h(n))
4. If n is a goal node, exit (trace back pointers from n to S)
5. Expand n, generating all successors and attach to pointers back to n. For each successor n' of n

1. If n' is not already on OPEN or CLOSED estimate h(n'), g(n')=g(n)+ c(n,n'), f(n')=g(n')+h(n’),
and place it on OPEN.

2. If n' is already on OPEN or CLOSED, then check if g(n') is lower for the new version of n'. If so,
then:

1. Redirect pointers backward from n' along path yielding lower g(n').
2. Put n' on OPEN.

3. If g(n') is not lower for the new version, do nothing.
6. Goto 2.

A* Analysis

Some properties:
• Terminates!
• A* can use lots of memory: O(#

states).
• Will run out on large problems.

• Next, we will consider some
alternatives to deal with this.

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.
• Bound the memory in search.
• At each phase, don’t expand any node with g(s) + h(s) > k,

– Assuming integer costs, do this for k=0, then k=1, then k=2, and so on

• Complete + optimal, might be costly time-wise
– Revisit many nodes

• Lower memory use than A*

Fractalsaco

IDA*: Properties

How many restarts do we expect?
• With integer costs, optimal solution C*, at most C*

What about non-integer costs?
• Initial threshold k. Use the same rule for non-expansion
• Set new k to be the min g(s) + h(s) for non-expanded nodes
• Worst case: restarted for each state

Beam Search

General approach (beyond A* too)
• Priority queue with fixed size k; beyond k nodes,

discard!
• Upside: good memory efficiency
• Downside: not complete or optimal

Variation:
• Priority queue with nodes that are at most ε worse

than best node.

Recap and Examples

Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=infh=inf

Recap and Examples

Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=infh=inf

OPEN
S(0+8)
A(1+7) B(5+4) C(8+3)
B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)
C(8+3) D(4+inf) E(8+inf) G(9+0)
C(8+3) D(4+inf) E(8+inf)

CLOSED
-
S(0+8)
S(0+8) A(1+7)
S(0+8) A(1+7) B(5+4)
S(0+8) A(1+7) B(5+4) G(9+0)

G → B → S

Recap and Examples

Example for IDA*:
Threshold = 8

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=infh=4

L

2

h=inf

K

3

h=inf

J

5

h=inf

I

7

h=inf

H

1

h=2

F4
h=1

4

OPEN

S(0+8)

A(1+7)

H(2+2) D(4+4)

D(4+4) F(6+1)

D(4+4)

PREFIX

-

S

S A

S A H

S A H F

S A D

Recap and Examples

Example for IDA*:
Threshold = 9

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=infh=4

L

2

h=inf

K

3

h=inf

J

5

h=inf

I

7

h=inf

H

1

h=2

F4
h=1

4

OPEN

S(0+8)

A(1+7) B(5+4)

B(5+4) H(2+2) D(4+4)

B(5+4) D(4+4) F(6+1)

B(5+4) D(4+4)

B(5+4)

G(9+0)

PREFIX

-

S

S A

S A H

S A H F

S A D

S B

S B G

Recap and Examples

Example for Beam Search: k=2

OPEN

S(0+8)

A(1+7) B(5+4)

H(2+2) D(4+4)

D(4+4) F(6+1)

D(4+4) G(10+0)

G(10+0)

CURRENT

-

S

A

H

F

D

G

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=infh=4

L

2

h=inf

K

3

h=inf

J

5

h=inf

I

7

h=inf

H

1

h=2

F
4

h=1
4

Summary

• Informed search: introduce heuristics
– Not all approaches work: best-first greedy is bad

• A* algorithm
– Properties of A*, idea of admissible heuristics

• Beyond A*
– IDA*, beam search. Ways to deal with space requirements.

Acknowledgements: Adapted from materials by Jerry Zhu
(University of Wisconsin).

