8
1

'?

hai'

e o G : N ~— 2 e
- 5 o ' o B o NS — Sy
B B | 3 LA s 'Y*i_\::—‘; F I 1] o g— ’

CS 540 Introduction to Artificial Intelligence
Search II: Informed Search

Fred Sala
University of Wisconsin-Madison

April 13, 2021

Announcements

* Homeworks:
— HW 8 Due, HW9 being released.

 Grades: Midterm & HW4, HW 7 out. HW6 soon

__

Thursday, April 15 Genetic Algorithms
° CIaSS roa d ma p . Tuesday, April 20 Introduction to RL
Thursday, April 22 RL and Search Summary __

Tuesday, April 27 Al in the Real World

90UaS1||21U] [BPLIMY

Outline

e Uninformed vs Informed Search

— Review of uninformed strategies, adding heuristics
* A* Search

— Heuristic properties, stopping rules, analysis
e Extensions: Beyond A*

— lterative deepening, beam search

Breadth-First Search

Recall: expand shallowest node first

e Data structure: queue

* Properties:
— Complete

— Optimal (if edge cost 1)

— Time O(bY)
\&Depth

Branching Factor

— Space O(bY)

Uniform Cost Search

Like BFS, but keeps track of cost

* Expand least cost node
* Data structure: priority queue

* Properties:
— Complete
— Optimal (if weight lower bounded by ¢
— Time O(bC7%)
— Space O(b¢7¢

Credit: DecorumBY

Optimal goal path cost

Depth-First Search

Recall: expand deepest node first

e Data structure: stack
* Properties:

— Incomplete (stuck in infinite tree...)
— Suboptimal

— Time O(b"”k

Max Depth

— Space O(bm)

Iterative Deepening DFS

Repeated limited DFS
e Search like BFS, fringe like DFS.

* Properties:
— Complete
— Optimal (if edge cost 1)
— Time O(b9)
— Space O(bd)

A good option!

Fractalsaco

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

e Path cost g(s) from start to node s

* Successors. @
anuun®® .goal
gls) .

Informed search. Know:
* All uninformed search properties, plus
* Heuristic h(s) from s to goal (recall game heuristic)

(»)@h” oG

Informed Search

Informed search. Know:

* All uninformed search properties, plus
e Heuristic h(s) from s to goal (recall game heuristic)

--------.-;;:)Q('s)"-----...............>

* Like in games, use information to speed up search.

Using the Heuristic

Back to uniform-cost search

* We had the priority queue

* Expand the node with the smallest g(s)
— g(s) “first-half-cost”

* Now let’s use the heuristic (“second-half-cost”)
— Several possible approaches: let’s see what works

Attempt 1: Best-First Greedy

One approach: just use h(s) alone

» Specifically, expand node with smallest h(s)
 Thisisn’t a good idea. Why?

h=3 ~ h=2 h=1 h=0

* NotoptimallGetA>C—-> G. Want: A>B—>C—>G

Attempt 2: A Search

Next approach: use both g(s) + h(s) alone

» Specifically, expand node with smallest g(s) + h(s)
* Again, use a priority queue
* Called “A” search

999

h=3 h 1000 h= 1 h=0

 Still not optimal! (Does work for former example).

Attempt 3: A* Search

Same idea, use g(s) + h(s), with one requirement
 Demand that h(s) < h*(s)
* If heuristic has this property, “admissible”

— Optimistic! Never over-estimates
e Still need h(s) >0

— Negative heuristics can lead to strange behavior
* This is A* search

V. Batocdanin

Attempt 3: A* Search

Origins: robots and planning

1960's

Credit: Wiki

Shakey the Robot,

Animation: finding a path
around obstacle

Credit: Wiki

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

e Example: 8 Game

Example 1 > ;anl 1423
tat
State 2 | 6| 3 112 15 |6
7 4|8 7 |8

* One useful approach: relax constraints
— h(s) = number of tiles in wrong position

 allows tiles to fly to destination in a single step

Heuristic Function Tradeoffs

Dominance: h, dominates h; if for all states s,
hy(s) < hy(s) < h*(s)

* ldea: we want to be as close to h* as possible

— But not over!

* Tradeoff: being very close might require a very complex
heuristic, expensive computation

— Might be better off with cheaper heuristic & expand more nodes.

A* Termination

When should A* stop?

* Oneidea: as soon as we reach goal state?

h=1
 hadmissible, but note that we get A B - G (cost 1000)!

A* Termination

When should A* stop?

* Rule: terminate when a goal is popped from queue.

* Note: taking h =0 reduces to uniform cost search rule.

A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter
path:

h=900
* Put D back into priority queue, smaller g+h

A* Full Algorithm

1. Putthe start node S on the priority queue, called OPEN
2. If OPEN is empty, exit with failure
3. Remove from OPEN and place on CLOSED a node n for which f(n) is minimum (note that
f(n)=g(n)+h(n))
4. If nisagoal node, exit (trace back pointers from n to S)
Expand n, generating all successors and attach to pointers back to n. For each successor n' of n
1. If n'is not already on OPEN or CLOSED estimate h(n'), g(n')=g(n)+ c(n,n'), f(n')=g(n')+h(n’),
and place it on OPEN.
2. Ifn'is already on OPEN or CLOSED, then check if g(n') is lower for the new version of n'. If so,
then:
1. Redirect pointers backward from n' along path yielding lower g(n').
2. Put n' on OPEN.
3. If g(n') is not lower for the new version, do nothing.

6. Goto 2.

o

A* Analysis

Some properties:

Terminates!

KL
@)
w.
L &
O
&
()
&
o
@)
v
)
°
Q
(V)]
>
C
(q0)
&)
*

<
°

—_
0]
Q
s
(©
i)
(0]

* Will run out on large problems.

Next, we will consider some
alternatives to deal with this.

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.
* Bound the memory in search.

* At each phase, don’t expand any node with g(s) + h(s) > k,
— Assuming integer costs, do this for k=0, then k=1, then k=2, and so on

Complete + optimal, might be costly time-wise

— Revisit many nodes

* Lower memory use than A*

Fractalsaco

IDA*: Properties

How many restarts do we expect?

* With integer costs, optimal solution C*, at most C*

What about non-integer costs?

* Initial threshold k. Use the same rule for non-expansion

* Set new k to be the min g(s) + h(s) for non-expanded nodes
* Worst case: restarted for each state

Beam Search

General approach (beyond A* too)

* Priority queue with fixed size k; beyond k nodes,
discard!

* Upside: good memory efficiency
 Downside: not complete or optimal

Variation:

* Priority queue with nodes that are at most € worse
than best node.

Recap and Examples

Example for A*: h=8 @ Initial state

\
< ~

({o)

N

&)

h=inf h=inf h=0

Recap and Examples

Example for A*: h=8 @ Initial state

/ 8
OPEN CLOSED 5

S(0+8) _ h=7 h=4 h=3
A(1+7) B(5+4) C(8+3) S(0+8) @ @

B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0) S(0+8) A(1+7)
C(8+3) D(4+inf) E(8+inf) G(9+0) S(0+8) A(1+7) B(5+4) 3
C(8+3) D(4+inf) E(8+inf) S(0+8) A(1+7) B(5+4) G(9+0)

\ 4

G>B-=>5 @ @ @Goalstate

h=inf h=inf h=0

Recap and Examples

h=8® Initial state

h=1

Example for IDA*: / 8
Threshold = 8 h=7 ° h= h=3
PREFIX OPEN

S A(1+7) 2 3

°h H(2+2) D(4+4) @ @ Goal state
o Dt4) Fort) :nth=inf h=infh=inf h=4 h=i h=0
SAHF D(4+4) h=2 h=infh=inf h=In —m/ =
@

Recap and Examples

h=8® Initial state

Example for IDA*: / 8
Threshold =9 h=7 h= h=3
PREFIX OPEN
S A(1+7) B(5+4)
SA B(5+4) H(2+2) D(4+4) @ @ Conl state
SAH B(5+4) D(4+4) F(6+1) . . .
SAHF B(5+4) D(4+4) h=2 h=infh=inf h=infh=inf h=4 h=i h=0
SAD B(5+4) @ A
SB G(9+0) h=1

SBG

Recap and Examples

h=8 @ Initial state

Example for Beam Search: k=2 / 8
h=4 h=3

h=7
CURRENT OPEN A A
S(0+8)
A(1+7) B(5+4)
H(2+2) D(4+4)
D(4+4) F(6+1)

v
G(10+0)
h=inf h=inf h=inf h=inf h=inf h=0
4 @ 4

7 9 4 5

6 OO mMm T >» U

h=1

Summary

* Informed search: introduce heuristics

— Not all approaches work: best-first greedy is bad
* A* algorithm

— Properties of A*, idea of admissible heuristics
 Beyond A*

— IDA*, beam search. Ways to deal with space requirements.

Acknowledgements: Adapted from materials by Jerry Zhu
(University of Wisconsin).

