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Announcements 

• Homeworks:  

– HW9 in progress. All grades up to & including HW7 out.  

 

 

• Class roadmap: 

 

 

Tuesday, April 13 Search II 

Thursday, April 15 Search III  

Tuesday, April 20 Introduction to RL 

Thursday, April 22 RL and Search Summary 

Tuesday, April 27 AI in the Real World 
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Outline 

• Advanced Search & Hill-climbing 

– More difficult problems, basics, local optima, variations 

• Simulated Annealing 

– Basic algorithm, temperature, tradeoffs 

• Genetic Algorithms 

– Basics of evolution, fitness, natural selection 

 

 



Search vs. Optimization 

Before: wanted a path from start state to goal state 

• Uninformed search, informed search 

 

New setting: optimization 

• States s have values f(s) 

• Want: s with optimal value f(s) (i.e, optimize over states) 

• Challenging setting: too many states for previous search 
approaches, but maybe not a continuous function for SGD. 
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Examples: n Queens 

A classic puzzle: 

• Place 8 queens on a 8 x 8 chessboard so that no two have 
same row, column, or diagonal. 

• Can generalize to n x n chessboard. 

 

• What are states s? Values f(s)? 
– State: configuration of the board 

– f(s): # of conflicting queens  
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Examples: TSP 

Famous graph theory problem. 

• Get a graph G = (V,E). Goal: a path that visits each node 
exactly once and returns to the initial node (a tour).  
– State: a particular tour (i.e., ordered list of nodes) 

– f(s): total weight of the tour 

(e.g., total miles traveled) 
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Examples: Satisfiability 

Boolean satisfiability (e.g., 3-SAT) 

• Recall our logic lecture. Conjunctive normal form 
 

 

– Goal: find if satisfactory assignment exists. 

– State: assignment to variables 

– f(s): # satisfied clauses 

 

 

 

 

 

 

 

 

(A  B  C) ∧ (A  C  D) ∧ (B  D  E) ∧ ( C   D  E) ∧ ( A  C  E) 

Wiki 



Hill Climbing 

One approach to such optimization problems. 

• Basic idea: move to a neighbor with a better f(s) 

 

• Q: how do we define neighbor? 
– Not as obvious as our successors in search 

– Problem-specific 

– As we’ll see, needs a careful choice 

 

 

 

 

 

 

 



Defining Neighbors: n Queens 

In n Queens, a simple possibility: 

• Look at the most-conflicting column (ties? right-most one) 

• Move queen in that column vertically to a different location 

 

 

 

 

 

 

 

 

 

… 

s 

f(s)=1 

Neighborhood of s 

f=1 

f=2 



Defining Neighbors: TSP 

For TSP, can do something similar:  

• Define neighbors by small changes 

• Example: 2-change: A-E and B-F  

 

 

 

 

 

 

 

 

 

A-B-C-D-E-F-G-H-A 

A-E-D-C-B-F-G-H-A 

flip 



Defining Neighbors: SAT 

For Boolean satisfiability,  

• Define neighbors by flipping one assignment of one variable 

Starting state: TFTTT 

 

 

 

 

 

 

 

 

 

(A=F, B=F, C=T, D=T, E=T) 
(A=T, B=T, C=T, D=T, E=T) 
(A=T, B=F, C=F, D=T, E=T) 
(A=T, B=F, C=T, D=F, E=T) 
(A=T, B=F, C=T, D=T, E=F) 

A  B  C 

A  C  D 

B  D  E 

C   D  E 

A  C  E 



Hill Climbing Neighbors 

Q: What’s a neighbor? 

• Vague definition. For a given problem structure, neighbors 
are states that can be produced by a small change 

• Tradeoff!  
– Too small? Will get struck.  

– Too big? Not very efficient 

 

• Q: how to pick a neighbor? Greedy 

• Q: terminate? When no neighbor has bigger value 

 

 

 

 

 

 

 

 

 



Hill Climbing Algorithm 

Pseudocode: 

 

 

 

 

 

What could happen? Local optima! 

 

 

 

 

 

 

 

 

1. Pick initial state s 
2. Pick t in neighbors(s) with the largest f(t) 
3. if f(t) ≤ f(s) THEN stop, return s 
4. s ← t. goto 2. 



Hill Climbing: Local Optima 

Q: Why is it called hill climbing? 

 

 

 

 

 

L: What’s actually going on.                R: What we get to see. 
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Hill Climbing: Local Optima 

Note the local optima. How do we handle them? 

 

 

 

 

 

 

 

 

Done? 

state 

f 

state 

f 
Where do I go? 



Escaping Local Optima 

Simple idea 1: random restarts 

• Stuck: pick a random new starting point, re-run. 

• Do k times, return best of the k. 

 

Simple idea 2: reduce greed 

• “Stochastic” hill climbing: randomly select between neighbors 

• Probability proportional to the value of neighbors 
 

 

 

 

 

 

 

 

 

 



Hill Climbing: Variations 

Q: neighborhood too large? 

• Generate random neighbors, one at a time. Take the better 
one. 

 

Q: relax requirement to always go up? 

• Often useful for harder problems 

• 3SAT algorithm: Walk-SAT 
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Break & Quiz 

Q 1.1: Hill climbing and SGD are related by 

(i) Both head towards optima 

(ii) Both require computing a gradient 

(iii) Both will find the global optimum for a convex problem 

 

• A. (i) 

• B. (i), (ii) 

• C. (i), (iii) 

• D. All of the above 
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Break & Quiz 

Q 1.1: Hill climbing and SGD are related by 

(i) Both head towards optima 

(ii) Both require computing a gradient 

(iii) Both will find the global optimum for a convex problem 

 

• A. (i) (No: (iii) also true since convexity->local optima are global) 

• B. (i), (ii) (No: (ii) is false. Hill-climbing looks at neighbors only.) 

• C. (i), (iii) 

• D. All of the above (No: (ii) false, as above.) 

 
 



Simulated Annealing 

A more sophisticated optimization approach. 

• Idea: move quickly at first, then slow down 

• Pseudocode: 

 

 

 

 

 

 

 

 

Pick initial state s 
For k = 0 through kmax: 

T ← temperature( (k+1)/kmax ) 
Pick a random neighbour, t ← neighbor(s) 
If f(s) ≤ f(t), then s ← t  
Else, with prob. P(f(s), f (t), T) then s ← t 

Output: the final state s 

The interesting bit 



Simulated Annealing: Picking Probability 

How do we pick probability P? Note 3 parameters. 

• Decrease with time 

• Decrease with gap |f(s) - f(t)|  

 

 

 

 

 

 

 

 

Pick initial state s 
For k = 0 through kmax: 

T ← temperature( (k+1)/kmax ) 
Pick a random neighbour, t ← neighbor(s) 
If f(s) ≤ f(t), then s ← t  
Else, with prob. P(f(s), f (t), T) then s ← t 

Output: the final state s 



Simulated Annealing: Picking Probability 

How do we pick probability P? Note 3 parameters. 

• Decrease with time 

• Decrease with gap |f(s) - f(t)|:  

 

• Temperature cools over time. 
– So: high temperature, accept any t 

– But, low temperature, behaves like hill-climbing 

– Still, |f(s) - f(t)| plays a role: if big, replacement probability low. 
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Simulated Annealing: Visualization 

What does it look like in practice? 
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Simulated Annealing: Picking Parameters 

• Have to balance the various parts., e.g., cooling schedule. 
– Too fast: becomes hill climbing, stuck in local optima 

– Too slow: takes too long. 

• Combines with variations (e.g., with random restarts) 
– Probably should try hill-climbing first though.  

 

• Inspired by cooling of metals 
– We’ll see one more alg. inspired by nature  

 

 

 

 

 

 

 

 



Break & Quiz 

Q 2.1: Which of the following is likely to give the best cooling 
schedule for simulated annealing? 

 

A. Tempt+1= Tempt* 1.25 

B. Tempt+1= Tempt 

C. Tempt+1= Tempt* 0.8 

D. Tempt+1= Tempt* 0.0001 



Break & Quiz 

Q 2.1: Which of the following is likely to give the best cooling 
schedule for simulated annealing? 

 

A. Tempt+1= Tempt* 1.25 

B. Tempt+1= Tempt 
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Break & Quiz 

Q 2.1: Which of the following is likely to give the best cooling 
schedule for simulated annealing? 

 

A. Tempt+1= Tempt* 1.25 (No, temperate is increasing) 

B. Tempt+1= Tempt (No, temperature is constant) 

C. Tempt+1= Tempt* 0.8 

D. Tempt+1= Tempt* 0.0001 (Cools too fast---basically hill climbing) 



Break & Quiz 

Q 2.2: Which of the following would be better to solve with simulated annealing 
than A* search? 

i. Finding the smallest set of vertices in a graph that involve all edges 

ii. Finding the fastest way to schedule jobs with varying runtimes on machines with 
varying processing power 

iii. Finding the fastest way through a maze 

 

• A. (i) 

• B. (ii) 

• C. (i) and (ii) 

• D. (ii) and (iii) 
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Break & Quiz 

Q 2.2: Which of the following would be better to solve with simulated annealing 
than A* search? 

i. Finding the smallest set of vertices in a complete graph (i.e., all nodes connected) 

ii. Finding the fastest way to schedule jobs with varying runtimes on machines with 
varying processing power 

iii. Finding the fastest way through a maze 

 

• A. (i) (No, (ii) better: huge number of states, don’t care about path) 

• B. (ii) (No, (i) complete graph might have too many edges for A*) 

• C. (i) and (ii) 

• D. (ii) and (iii) (No, (iii) is good for A*: few successors, want path) 

 
 



Another optimization approach based on nature 

• Survival of the fittest! 

 

 

 

 

 

 

Genetic Algorithms 



Evolution Review 

Encode genetic information in DNA (four bases) 

• A/C/T/G: nucleobases acting as symbols 

 

• Two types of changes 

– Crossover: exchange between parents’ codes 

– Mutation: rarer random process 
• Happens at individual level 

 

 

 

 

 

 



Natural Selection 

Competition for resources 

• Organisms better fit ➔ better probability of reproducing 

• Repeated process: fit become larger proportion of population  

 

Goal: use these principles for optimization 

– New terminology: state s ‘individual’ 

– Value f(s) is now the ‘fitness’ 

 

 

 

 

 

 



Genetic Algorithms Setup I 

Keep around a fixed number of states/individuals  

• A bit like beam search 

• Call this the population 

For our n Queens game example, an individual: 

 

 

 

 

 

 

(3 2 7 5 2 4 1 1) 



Genetic Algorithms Setup II 

Goal of genetic algorithms: optimize using principles inspired by 
mechanism for evolution 

• E.g., analogous to natural selection, cross-over, and mutation 

 

 

 

 

 Next generation 

# of non-
attacking pairs 

prob. 
reproduction  

 fitness 



Genetic Algorithms Pseudocode 

Just one variant: 

 

 

 

 

 

1. Let s1, …, sN be the current population 
2. Let pi = f(si) / j f(sj) be the reproduction probability 
3. for k = 1; k<N; k+=2 

• parent1 = randomly pick according to p 
• parent2 = randomly pick another 
• randomly select a crossover point, swap strings of 

parents 1, 2 to generate children t[k], t[k+1] 
4. for k = 1; k<=N; k++ 

• Randomly mutate each position in t[k] with a small 
probability (mutation rate) 

5. The new generation replaces the old: { s }{ t }.  Repeat 



Reproduction probability: pi = f(si) / j f(sj) 

• Example: j f(sj) = 5+20+11+8+6=50 

• p1=5/50=10% 

 

 

 

 

 

 

 

 

Reproduction: Proportional Selection 



Example: Scheduling Courses 

Let’s run through an example: 

• 5 courses: A,B,C,D,E 

• 3 time slots: Mon/Wed, Tue/Thu, Fri/Sat 

• Students wish to enroll in three courses 

• Goal: maximize student enrollment 

 

 

 

 

 

 

 

 

Courses Students 

A B C 2 

A B D 7 

A D E 3 

B C D 4 

B D E 10 

C D E 5 



Example: Scheduling Courses 

Let’s run through an example: 

• State: course assignment to time slot 

 

 

• Here:  

– Courses A, B, E scheduled Mon/Wed 

– Course D scheduled Tue/Thu 

– Course C scheduled Fri/Sat 

 

 

 

 

 

 

 

 

Courses Students 

A B C 2 

A B D 7 

A D E 3 

B C D 4 

B D E 10 

C D E 5 

M M F T M 

A B C D E 
= MMFTM 



Example: Scheduling Courses 

Value of a state? Say MMFTM 

 

 

 

 

 

 

• Here 4+5=9 students can enroll in desired courses 

 

 

 

 

 

 

 

 

Courses Students Can enroll? 

A B C 2 No 

A B D 7 No 

A D E 3 No 

B C D 4 Yes 

B D E 10 No 

C D E 5 Yes 



Example: Scheduling Courses 

First step: 

• Randomly initialize and evaluate states 

 

 

 

 

• Calculate reproduction probabilities 

 

 

 

 

 

 

 

 

Courses Students 

A B C 2 

A B D 7 

A D E 3 

B C D 4 

B D E 10 

C D E 5 

MMFTM = 9 

TTFMM = 4 

FMTTF = 19 

MTTTF = 3 

MMFTM = 26% 

TTFMM = 11% 

FMTTF = 54% 

MTTTF = 9% 



Example: Scheduling Courses 

Next steps: 

• Select parents using reproduction probabilities 

• Calculate reproduction probabilities 

• Randomly mutate new children 

 

 

 

 

 

 

 

 

 



Example: Scheduling Courses 

Continue: 

• Now, get our function values for updated population 

• Calculate reproduction probabilities 

 

 

 

 

 

 

 

 

 

FMFTT = 11 

MMTTF = 13 

MMTFF = 4 

FTTTF = 0 

Courses Students 

A B C 2 

A B D 7 

A D E 3 

B C D 4 

B D E 10 

C D E 5 

FMFTT = 39% 

MMTTF = 46% 

MMTFF = 14% 

FTTTF = 0% 



Variations & Concerns 

Many possibilities: 

• Parents survive to next generation 

• Ranking instead of exact value of f(s) for reproduction 
probabilities  

 

Some challenges 

• State encoding 

• Lack of diversity: converge too soon 

• Must pick a lot of parameters 

 

 

 

 

 

 

 

 



Summary 

• Challenging optimization problems 

– First, try hill climbing. Simplest solution 

•  Simulated annealing 

– More sophisticated approach; helps with local optima 

• Genetic algorithms 

– Biology-inspired optimization routine 
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