SRR eSS WA

L SRy

R o4

R

CS 540 Introduction to Artificial Intelligence
Search lll: Advanced Search

Fred Sala
University of Wisconsin-Madison

April 15, 2021

Announcements

 Homeworks:

— HWS9 in progress. All grades up to & including HW7 out.

Tuesday, April 13 Search I

+ Class roadmap: RIS
Tuesday, April 20 Introduction to RL
Thursday, April 22 RL and Search Summary __

Tuesday, April 27 Al in the Real World

90Ud31||91U] [BPYIMY

Outline

* Advanced Search & Hill-climbing

— More difficult problems, basics, local optima, variations

* Simulated Annealing

— Basic algorithm, temperature, tradeoffs

* Genetic Algorithms

— Basics of evolution, fithess, natural selection

Search vs. Optimization

Before: wanted a path from start state to goal state

New setting: optimization /1‘0 P\

Uninformed search, informed search

PPN
/1‘ - 1;§8) ‘ t

Wiki

States s have values f{(s) " ruringen
Want: s with optimal value f(s) (i.e, optimize over states)

Challenging setting: too many states for previous search
approaches, but maybe not a continuous function for SGD.

Examples: n Queens

A classic puzzle:

* Place 8 queens on a 8 x 8 chessboard so that no two have
same row, column, or diagonal.

* (Can generalize to n x n chessboard.

 What are states s? Values f(s)?

— State: configuration of the board
— f(s): # of conflicting queens

Examples: TSP

Famous graph theory problem.

 Getagraph G =(V,E). Goal: a path that visits each node
exactly once and returns to the initial node (a tour).
— State: a particular tour (i.e., ordered list of nodes)
— f(s): total weight of the tour ;
(e.g., total miles traveled)

R{-x,a,b) » Rib,v,c) » Ric,d,-z)

Satisfiability

Examples
Recall our logic lecture. Conjunctive normal form

— Goal: find if satisfactory assignment exists.
. f(s). # satlsfled Clauses Rix,a,d) & Riy,b,d) a R(a,b,e} & R{c,d,T) #» Riz,c,0)

(Av—-BvCOA-AvVvCvD)ABVDV—-E)A(-Cv-=DVv—-E)A(—-Av-CVE)
— State: assignment to variables

Boolean satisfiability (e.g., 3-SAT)

AAAAAAAA

AAAAAAAA

e e e e e e
[f=f=fafacfagacyas

T e o i o,
SO OOoOO

[f=f=fafacfagacyas
R

[f=f=fafacfagacyas
R

e
LLLLLLL

O @ T T D T
[f=f=fafacfagacyas
B T

T i
e hivehuhebie]

R
=== f=fafacyagasyas]
L

e P o P o,
ewhiviehuiebie]

O O o e o O O

Wiki

Hill Climbing

One approach to such optimization problems.

s

e Basic idea: move to a neighbor with a better f{(s)

* Q: how do we define neighbor?
— Not as obvious as our successors in search
— Problem-specific
— As we’ll see, needs a careful choice

Defining Neighbors: n Queens

In n Queens, a simple possibility:
* Look at the most-conflicting column (ties? right-most one)

 Move queen in that column vertical a different location

Neighborhood of s

Defining Neighbors: TSP

For TSP, can do something similar:

* Define neighbors by small changes

 Example: 2-change: A-E and B-F
A-B-C-D-E+1F-G-H-A

flip

A-E-D-C-B1F-G-H-A

Defining Neighbors: SAT

For Boolean satisfiability,

* Define neighbors by flipping one assignment of one variable

Starting state: TFTTT

(A=F, B=F, C=T, D=T, E=T)
(A=T, B=T, C=T, D=T, E=T)
(A=T, B=F, C=F, D=T, E=T)
(A=T, B=F, C=T, D=F, E=T)
(A=T, B=F, C=T, D=T, E=F)

Av-BvC
—-AvCvD
BvDv-—-E
—-Cv-Dv-E
—-Av-CVE

Hill Climbing Neighbors

Q: What’s a neighbor?

* Vague definition. For a given problem structure, neighbors
are states that can be produced by a small change

 Tradeoff!

— Too small? Will get struck.
— Too big? Not very efficient

* Q: how to pick a neighbor? Greedy
 Q:terminate? When no neighbor has bigger value

Hill Climbing Algorithm
Pseudocode:

Pick initial state s
Pick t in neighbors(s) with the largest f(t)
if f(t) < f(s) THEN stop, return s

s < t. goto 2.

-

h WP

What could happen? Local optimal

Hill Climbing: Local Optima

Q: Why is it called hill climbing?

Global optimum, where
f we want to be f

fog
7

state State

L: What’s actually going on. R: What we get to see.

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Where do | go?

Done? —

/'\

state state

Escaping Local Optima

Simple idea 1: random restarts

* Stuck: pick a random new starting point, re-run.
Do ktimes, return best of the k. e

s

e “Stochastic” hill climbing: randomly select between neighbors

Simple idea 2: reduce greed

* Probability proportional to the value of neighbors

Hill Climbing: Variations

Q: neighborhood too large?

* Generate random neighbors, one at a time. Take the better
one.

Q: relax requirement to always go up?

* Often useful for harder problems '_:_:.:"
e 3SAT algorithm: Walk-SAT i
= "FF

D. Selsam

Break & Quiz

Q 1.1: Hill climbing and SGD are related by

(i) Both head towards optima

(ii) Both require computing a gradient

(iii) Both will find the global optimum for a convex problem

A. (i)

B. (i), (ii)

C. (i), (iii)

D. All of the above

Break & Quiz

Q 1.1: Hill climbing and SGD are related by

(i) Both head towards optima

(ii) Both require computing a gradient

(iii) Both will find the global optimum for a convex problem

A. (i)

B. (i), (ii)

C. (i), (iii)

D. All of the above

Break & Quiz

Q 1.1: Hill climbing and SGD are related by

(i) Both head towards optima

(ii) Both require computing a gradient

(iii) Both will find the global optimum for a convex problem

A. (i) (No: (iii) also true since convexity->local optima are global)
B. (i), (ii) (No: (ii) is false. Hill-climbing looks at neighbors only.)
C. (i), (iii)

D. All of the above (No: (ii) false, as above.)

Simulated Annealing

A more sophisticated optimization approach.
* Ildea: move quickly at first, then slow down
* Pseudocode:

Pick initial state s
For k = 0 through k.,
T < temperature((k+1)/k...,)
The interesting bit Pick a random neighbour, t ¢ neighbor(s)
\Iff(s) <f(t), thens & t
Else, with prob. P(f(s), f (t), T) thens & t
Output: the final state s

Simulated Annealing: Picking Probability

How do we pick probability P? Note 3 parameters.
* Decrease with time
* Decrease with gap |f(s) - f(t)|

Pick initial state s
For k = 0 through k.,
T < temperature((k+1)/k...,)
Pick a random neighbour, t ¢ neighbor(s)
If f(s) < f(t), thens & t
Else, with prob. P(f(s), f (t), T) thens & t

Output: the final state s

Simulated Annealing: Picking Probability

How do we pick probability P? Note 3 parameters.

* Decrease with time
* Decrease with gap |f(s) - f(t)|: €XP _LT(s)—1(1)]
' Temp

 Temperature cools over time.
— So: high temperature, accept any t
— But, low temperature, behaves like hill-climbing
— Still, |f(s) - f(t)| plays a role: if big, replacement probability low.

Simulated Annealing: Visualization

What does it look like in practice?

Simulated Annealing: Picking Parameters

* Have to balance the various parts., e.g., cooling schedule.
— Too fast: becomes hill climbing, stuck in local optima
— Too slow: takes too long.

 Combines with variations (e.g., with random restarts)
— Probably should try hill-climbing first though.

* Inspired by cooling of metals

— We'll see one more alg. inspired by nature

Break & Quiz

Q 2.1: Which of the following is likely to give the best cooling
schedule for simulated annealing?

Temp,,,= Temp,* 1.25
Temp,,,= Temp,
Temp,,,= Temp,* 0.8
Temp,,,= Temp,* 0.0001

o 0w >

Break & Quiz

Q 2.1: Which of the following is likely to give the best cooling
schedule for simulated annealing?

Temp,,,= Temp,* 1.25
Temp,,,= Temp,
Temp,,,= Temp,* 0.8
Temp,,,= Temp,* 0.0001

o6 wp

Break & Quiz

Q 2.1: Which of the following is likely to give the best cooling
schedule for simulated annealing?

Temp,,,= Temp,* 1.25 (No, temperate is increasing)
Temp,,,= Temp, (No, temperature is constant)
Temp,,,= Temp,* 0.8

o6 wp

Temp,,,= Temp,* 0.0001 (Cools too fast---basically hill climbing)

Break & Quiz

Q 2.2: Which of the following would be better to solve with simulated annealing
than A* search?

i. Finding the smallest set of vertices in a graph that involve all edges

ii. Finding the fastest way to schedule jobs with varying runtimes on machines with
varying processing power

iii. Finding the fastest way through a maze

 A. (i)
e B. (ii)
* C. (i) and (ii)

e D. (ii) and (iii)

Break & Quiz

Q 2.2: Which of the following would be better to solve with simulated annealing
than A* search?

i. Finding the smallest set of vertices in a graph that involve all edges

ii. Finding the fastest way to schedule jobs with varying runtimes on machines with
varying processing power

iii. Finding the fastest way through a maze

 A. (i)
e B. (ii)
e C. (i) and (ii)
e D. (ii) and (iii)

Break & Quiz

Q 2.2: Which of the following would be better to solve with simulated annealing
than A* search?

i. Finding the smallest set of vertices in a complete graph (i.e., all nodes connected)

ii. Finding the fastest way to schedule jobs with varying runtimes on machines with
varying processing power

iii. Finding the fastest way through a maze

* A. (i) (No, (ii) better: huge number of states, don’t care about path)
e B. (ii) (No, (i) complete graph might have too many edges for A*)

e C. (i) and (ii)

e D. (ii) and (iii) (No, (iii) is good for A*: few successors, want path)

Genetic Algorithms

Another optimization approach based on nature

e Survival of the fittest!

Evolution Review

Encode genetic information in DNA (four bases)
 A/C/T/G: nucleobases acting as symbols

* Two types of changes
— Crossover: exchange between parents’ codes
— Mutation: rarer random process

 Happens at individual level

Natural Selection

Competition for resources

* Organisms better fit => better probability of reproducing
* Repeated process: fit become larger proportion of population

Goal: use these principles for optimization
— New terminology: state s ‘individual’
— Value f(s) is now the ‘fitness’

Genetic Algorithms Setup |

Keep around a fixed number of states/individuals
* A bit like beam search

e (Call this the population

For our n Queens game example, an individual:

(32752411)

_~NWPRrOOO N®

Genetic Algorithms Setup Il

Goal of genetic algorithms: optimize using principles inspired by
mechanism for evolution

 E.g., analogous to natural selection, cross-over, and mutation

[24748552 | 24 =% _[32752410\ ' ,[32748552 =] 32744ak2 |

(32752411 | 28 20% ~[24748552 |+ N[24762411 —~{ 24752411 |

| 24415124 | 20 26% = 32752411 ’}>J_< 32752124 |—={ 3252124 |

[32543213 | 11 1% [24415124 24415411 |——= 2441541[]|

(a) (b) (c) (d) (e)
Initial Population tness Func@on Selection Cross—Over Mutation
of non-
prob. .

attacking pairs . i
&P reproduction : —> Next generation
oc fithess

Genetic Algorithms Pseudocode

Just one variant:

1.
2.
3.

Lets,, ..., s, be the current population

Let p; = f(s;) / Z,; f(s;) be the reproduction probability

for k = 1; k<N; k+=2

. parentl = randomly pick according to p

. parent2 = randomly pick another

. randomly select a crossover point, swap strings of
parents 1, 2 to generate children t[k], t[k+1]

for k =1; k<=N; k++

. Randomly mutate each position in t[k] with a small
probability (mutation rate)

The new generation replaces the old: { s }<{t}. Repeat

Reproduction: Proportional Selection

Reproduction probability: p; = f(s;) / Z; f(s))
* Example: %, f(s;) = 5+20+11+8+6=50
« p,=5/50=10%

Individual | Fithess | Prob.

A 5 10%
B 20 40%
C 11 22%
D 8 16%
E 6 12%

Example: Scheduling Courses

Let’s run through an example:
* 5courses: AB,C,D,E

e 3time slots: Mon/Wed, Tue/Thu, Fri/Sat Courses | Students
* Students wish to enroll in three courses ABC 2
. ABD 7
* Goal: maximize student enrollment
ADE 3
BCD 4
BDE 10

CDE 5

Let’s run through an example:

Example: Scheduling Courses

» State: course assignment to time slot

M M F T M
A B C D E
Here:

=MMEFTM

— Courses A, B, E scheduled Mon/Wed

— Course D scheduled Tue/Thu
— Course C scheduled Fri/Sat

Courses

Students

ABC

2

ABD

7

ADE

3

BCD

4

BDE

10

CDE

5

Example: Scheduling Courses

Value of a state? Say MMF'TM

Courses | Students | Can enroll?
ABC 2 No
ABD 7 No
ADE 3 No
BCD 4 Yes
BDE 10 No
CDE 5 Yes

* Here 4+5=9 students can enroll in desired courses

Example: Scheduling Courses

First step:
Randomly initialize and evaluate states
MMFTM =9 MMETM = 26%
TTEFMM =4 TTFMM = 11%
FMTTF =19 FMTTF =54%
MTTTE =3 MTTTEFE = 9%

Calculate reproduction probabilities

Courses Students
ABC 2
ABD 7
ADE 3
BCD 4
BDE 10
CDE 5

Example: Scheduling Courses

Next steps:

* Select parents using reproduction probabilities
* (Calculate reproduction probabilities
 Randomly mutate new children

MMFTM = 26% FMTTF FMTTF FMFTM FMFTM FMEFTT
TTFMM = 11% MMFTM MMFTM MMTTF MMTTF MMTTF
FMTTF = 54% MTTTF MTTTF MMTTF MMTTF MMTFF

MTTTF = 9% FMTTF FMTTF FTTTF ETTTHE 10 B

Example: Scheduling Courses

Continue:

* Now, get our function values for updated population

* (Calculate reproduction probabilities

FMFTT =11
MMTTE =13
MMTFF =4
FTTTEF =0

FMETT = 39%
MMTTF = 46%
MMTFEF = 14%
FTTTE =0%

Courses

Students

ABC

2

ABD

7

ADE

3

BCD

4

BDE

10

CDE

5

Variations & Concerns

Many possibilities:
* Parents survive to next generation

e Ranking instead of exact value of f(s) for reproduction
probabilities

Some challenges
e State encoding

* Lack of diversity: converge too soon
* Must pick a lot of parameters

Summary

* Challenging optimization problems

— First, try hill climbing. Simplest solution

 Simulated annealing

— More sophisticated approach; helps with local optima

* Genetic algorithms
— Biology-inspired optimization routine

Acknowledgements: Adapted from materials by Jerry Zhu + Tony Gitter
(University of Wisconsin), Andrew Moore

