
CS 540 Introduction to Artificial Intelligence

Search III: Advanced Search

Fred Sala
University of Wisconsin-Madison

April 15, 2021

Announcements

• Homeworks:

– HW9 in progress. All grades up to & including HW7 out.

• Class roadmap:

Tuesday, April 13 Search II

Thursday, April 15 Search III

Tuesday, April 20 Introduction to RL

Thursday, April 22 RL and Search Summary

Tuesday, April 27 AI in the Real World

A
rtificial In

telligen
ce

Outline

• Advanced Search & Hill-climbing

– More difficult problems, basics, local optima, variations

• Simulated Annealing

– Basic algorithm, temperature, tradeoffs

• Genetic Algorithms

– Basics of evolution, fitness, natural selection

Search vs. Optimization

Before: wanted a path from start state to goal state

• Uninformed search, informed search

New setting: optimization

• States s have values f(s)

• Want: s with optimal value f(s) (i.e, optimize over states)

• Challenging setting: too many states for previous search
approaches, but maybe not a continuous function for SGD.

Wiki
TuringFin

Examples: n Queens

A classic puzzle:

• Place 8 queens on a 8 x 8 chessboard so that no two have
same row, column, or diagonal.

• Can generalize to n x n chessboard.

• What are states s? Values f(s)?
– State: configuration of the board

– f(s): # of conflicting queens

Wiki

Examples: TSP

Famous graph theory problem.

• Get a graph G = (V,E). Goal: a path that visits each node
exactly once and returns to the initial node (a tour).
– State: a particular tour (i.e., ordered list of nodes)

– f(s): total weight of the tour

(e.g., total miles traveled)

J. Yu

Examples: Satisfiability

Boolean satisfiability (e.g., 3-SAT)

• Recall our logic lecture. Conjunctive normal form

– Goal: find if satisfactory assignment exists.

– State: assignment to variables

– f(s): # satisfied clauses

(A  B  C) ∧ (A  C  D) ∧ (B  D  E) ∧ ( C   D  E) ∧ ( A  C  E)

Wiki

Hill Climbing

One approach to such optimization problems.

• Basic idea: move to a neighbor with a better f(s)

• Q: how do we define neighbor?
– Not as obvious as our successors in search

– Problem-specific

– As we’ll see, needs a careful choice

Defining Neighbors: n Queens

In n Queens, a simple possibility:

• Look at the most-conflicting column (ties? right-most one)

• Move queen in that column vertically to a different location

…

s

f(s)=1

Neighborhood of s

f=1

f=2

Defining Neighbors: TSP

For TSP, can do something similar:

• Define neighbors by small changes

• Example: 2-change: A-E and B-F

A-B-C-D-E-F-G-H-A

A-E-D-C-B-F-G-H-A

flip

Defining Neighbors: SAT

For Boolean satisfiability,

• Define neighbors by flipping one assignment of one variable

Starting state: TFTTT

(A=F, B=F, C=T, D=T, E=T)
(A=T, B=T, C=T, D=T, E=T)
(A=T, B=F, C=F, D=T, E=T)
(A=T, B=F, C=T, D=F, E=T)
(A=T, B=F, C=T, D=T, E=F)

A  B  C

A  C  D

B  D  E

C   D  E

A  C  E

Hill Climbing Neighbors

Q: What’s a neighbor?

• Vague definition. For a given problem structure, neighbors
are states that can be produced by a small change

• Tradeoff!
– Too small? Will get struck.

– Too big? Not very efficient

• Q: how to pick a neighbor? Greedy

• Q: terminate? When no neighbor has bigger value

Hill Climbing Algorithm

Pseudocode:

What could happen? Local optima!

1. Pick initial state s
2. Pick t in neighbors(s) with the largest f(t)
3. if f(t) ≤ f(s) THEN stop, return s
4. s ← t. goto 2.

Hill Climbing: Local Optima

Q: Why is it called hill climbing?

L: What’s actually going on. R: What we get to see.

state

f
Global optimum, where

we want to be

state

f fog

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Done?

state

f

state

f
Where do I go?

Escaping Local Optima

Simple idea 1: random restarts

• Stuck: pick a random new starting point, re-run.

• Do k times, return best of the k.

Simple idea 2: reduce greed

• “Stochastic” hill climbing: randomly select between neighbors

• Probability proportional to the value of neighbors

Hill Climbing: Variations

Q: neighborhood too large?

• Generate random neighbors, one at a time. Take the better
one.

Q: relax requirement to always go up?

• Often useful for harder problems

• 3SAT algorithm: Walk-SAT

D. Selsam

Break & Quiz

Q 1.1: Hill climbing and SGD are related by

(i) Both head towards optima

(ii) Both require computing a gradient

(iii) Both will find the global optimum for a convex problem

• A. (i)

• B. (i), (ii)

• C. (i), (iii)

• D. All of the above

Break & Quiz

Q 1.1: Hill climbing and SGD are related by

(i) Both head towards optima

(ii) Both require computing a gradient

(iii) Both will find the global optimum for a convex problem

• A. (i)

• B. (i), (ii)

• C. (i), (iii)

• D. All of the above

Break & Quiz

Q 1.1: Hill climbing and SGD are related by

(i) Both head towards optima

(ii) Both require computing a gradient

(iii) Both will find the global optimum for a convex problem

• A. (i) (No: (iii) also true since convexity->local optima are global)

• B. (i), (ii) (No: (ii) is false. Hill-climbing looks at neighbors only.)

• C. (i), (iii)

• D. All of the above (No: (ii) false, as above.)

Simulated Annealing

A more sophisticated optimization approach.

• Idea: move quickly at first, then slow down

• Pseudocode:

Pick initial state s
For k = 0 through kmax:

T ← temperature((k+1)/kmax)
Pick a random neighbour, t ← neighbor(s)
If f(s) ≤ f(t), then s ← t
Else, with prob. P(f(s), f (t), T) then s ← t

Output: the final state s

The interesting bit

Simulated Annealing: Picking Probability

How do we pick probability P? Note 3 parameters.

• Decrease with time

• Decrease with gap |f(s) - f(t)|

Pick initial state s
For k = 0 through kmax:

T ← temperature((k+1)/kmax)
Pick a random neighbour, t ← neighbor(s)
If f(s) ≤ f(t), then s ← t
Else, with prob. P(f(s), f (t), T) then s ← t

Output: the final state s

Simulated Annealing: Picking Probability

How do we pick probability P? Note 3 parameters.

• Decrease with time

• Decrease with gap |f(s) - f(t)|:

• Temperature cools over time.
– So: high temperature, accept any t

– But, low temperature, behaves like hill-climbing

– Still, |f(s) - f(t)| plays a role: if big, replacement probability low.








 


Temp

tfsf |)()(|
exp

Simulated Annealing: Visualization

What does it look like in practice?

Wiki

Simulated Annealing: Picking Parameters

• Have to balance the various parts., e.g., cooling schedule.
– Too fast: becomes hill climbing, stuck in local optima

– Too slow: takes too long.

• Combines with variations (e.g., with random restarts)
– Probably should try hill-climbing first though.

• Inspired by cooling of metals
– We’ll see one more alg. inspired by nature

Break & Quiz

Q 2.1: Which of the following is likely to give the best cooling
schedule for simulated annealing?

A. Tempt+1= Tempt* 1.25

B. Tempt+1= Tempt

C. Tempt+1= Tempt* 0.8

D. Tempt+1= Tempt* 0.0001

Break & Quiz

Q 2.1: Which of the following is likely to give the best cooling
schedule for simulated annealing?

A. Tempt+1= Tempt* 1.25

B. Tempt+1= Tempt

C. Tempt+1= Tempt* 0.8

D. Tempt+1= Tempt* 0.0001

Break & Quiz

Q 2.1: Which of the following is likely to give the best cooling
schedule for simulated annealing?

A. Tempt+1= Tempt* 1.25 (No, temperate is increasing)

B. Tempt+1= Tempt (No, temperature is constant)

C. Tempt+1= Tempt* 0.8

D. Tempt+1= Tempt* 0.0001 (Cools too fast---basically hill climbing)

Break & Quiz

Q 2.2: Which of the following would be better to solve with simulated annealing
than A* search?

i. Finding the smallest set of vertices in a graph that involve all edges

ii. Finding the fastest way to schedule jobs with varying runtimes on machines with
varying processing power

iii. Finding the fastest way through a maze

• A. (i)

• B. (ii)

• C. (i) and (ii)

• D. (ii) and (iii)

Break & Quiz

Q 2.2: Which of the following would be better to solve with simulated annealing
than A* search?

i. Finding the smallest set of vertices in a graph that involve all edges

ii. Finding the fastest way to schedule jobs with varying runtimes on machines with
varying processing power

iii. Finding the fastest way through a maze

• A. (i)

• B. (ii)

• C. (i) and (ii)

• D. (ii) and (iii)

Break & Quiz

Q 2.2: Which of the following would be better to solve with simulated annealing
than A* search?

i. Finding the smallest set of vertices in a complete graph (i.e., all nodes connected)

ii. Finding the fastest way to schedule jobs with varying runtimes on machines with
varying processing power

iii. Finding the fastest way through a maze

• A. (i) (No, (ii) better: huge number of states, don’t care about path)

• B. (ii) (No, (i) complete graph might have too many edges for A*)

• C. (i) and (ii)

• D. (ii) and (iii) (No, (iii) is good for A*: few successors, want path)

Another optimization approach based on nature

• Survival of the fittest!

Genetic Algorithms

Evolution Review

Encode genetic information in DNA (four bases)

• A/C/T/G: nucleobases acting as symbols

• Two types of changes

– Crossover: exchange between parents’ codes

– Mutation: rarer random process
• Happens at individual level

Natural Selection

Competition for resources

• Organisms better fit ➔ better probability of reproducing

• Repeated process: fit become larger proportion of population

Goal: use these principles for optimization

– New terminology: state s ‘individual’

– Value f(s) is now the ‘fitness’

Genetic Algorithms Setup I

Keep around a fixed number of states/individuals

• A bit like beam search

• Call this the population

For our n Queens game example, an individual:

(3 2 7 5 2 4 1 1)

Genetic Algorithms Setup II

Goal of genetic algorithms: optimize using principles inspired by
mechanism for evolution

• E.g., analogous to natural selection, cross-over, and mutation

 Next generation

of non-
attacking pairs

prob.
reproduction

 fitness

Genetic Algorithms Pseudocode

Just one variant:

1. Let s1, …, sN be the current population
2. Let pi = f(si) / j f(sj) be the reproduction probability
3. for k = 1; k<N; k+=2

• parent1 = randomly pick according to p
• parent2 = randomly pick another
• randomly select a crossover point, swap strings of

parents 1, 2 to generate children t[k], t[k+1]
4. for k = 1; k<=N; k++

• Randomly mutate each position in t[k] with a small
probability (mutation rate)

5. The new generation replaces the old: { s }{ t }. Repeat

Reproduction probability: pi = f(si) / j f(sj)

• Example: j f(sj) = 5+20+11+8+6=50

• p1=5/50=10%

Reproduction: Proportional Selection

Example: Scheduling Courses

Let’s run through an example:

• 5 courses: A,B,C,D,E

• 3 time slots: Mon/Wed, Tue/Thu, Fri/Sat

• Students wish to enroll in three courses

• Goal: maximize student enrollment

Courses Students

A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5

Example: Scheduling Courses

Let’s run through an example:

• State: course assignment to time slot

• Here:

– Courses A, B, E scheduled Mon/Wed

– Course D scheduled Tue/Thu

– Course C scheduled Fri/Sat

Courses Students

A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5

M M F T M

A B C D E
= MMFTM

Example: Scheduling Courses

Value of a state? Say MMFTM

• Here 4+5=9 students can enroll in desired courses

Courses Students Can enroll?

A B C 2 No

A B D 7 No

A D E 3 No

B C D 4 Yes

B D E 10 No

C D E 5 Yes

Example: Scheduling Courses

First step:

• Randomly initialize and evaluate states

• Calculate reproduction probabilities

Courses Students

A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5

MMFTM = 9

TTFMM = 4

FMTTF = 19

MTTTF = 3

MMFTM = 26%

TTFMM = 11%

FMTTF = 54%

MTTTF = 9%

Example: Scheduling Courses

Next steps:

• Select parents using reproduction probabilities

• Calculate reproduction probabilities

• Randomly mutate new children

Example: Scheduling Courses

Continue:

• Now, get our function values for updated population

• Calculate reproduction probabilities

FMFTT = 11

MMTTF = 13

MMTFF = 4

FTTTF = 0

Courses Students

A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5

FMFTT = 39%

MMTTF = 46%

MMTFF = 14%

FTTTF = 0%

Variations & Concerns

Many possibilities:

• Parents survive to next generation

• Ranking instead of exact value of f(s) for reproduction
probabilities

Some challenges

• State encoding

• Lack of diversity: converge too soon

• Must pick a lot of parameters

Summary

• Challenging optimization problems

– First, try hill climbing. Simplest solution

• Simulated annealing

– More sophisticated approach; helps with local optima

• Genetic algorithms

– Biology-inspired optimization routine

Acknowledgements: Adapted from materials by Jerry Zhu + Tony Gitter

(University of Wisconsin), Andrew Moore

