

Quiz break

Q1-1: K-NN algorithms can be used for:

- A Only classification
- B Only regression
- C Both

Quiz break

Q1-1: K-NN algorithms can be used for:

- A Only classification
- B Only regression
- C Both

Quiz break

Q1-2: Which of the following distance measure do we use in case of categorical variables in k-NN?

- A Hamming distance
- B Euclidean distance
- C Manhattan distance

Quiz break

Q1-2: Which of the following distance measure do we use in case of categorical variables in k-NN?

- A Hamming distance
- B Euclidean distance
- C Manhattan distance

Quiz break

Q1-3: Consider binary classification in 2D where the intended label of a point $x = (x_1, x_2)$ is positive if $x_1 > x_2$ and negative otherwise. Let the training set be all points of the form $x = [4a, 3b]$ where a, b are integers. Each training item has the correct label that follows the rule above. With a 1NN classifier (Euclidean distance), which ones of the following points are labeled positive? Multiple answers.

- [5.52, 2.41]
- [8.47, 5.84]
- [7,8.17]
- [6.7,8.88]

Quiz break

Q1-3: Consider binary classification in 2D where the intended label of a point $x = (x_1, x_2)$ is positive if $x_1 > x_2$ and negative otherwise. Let the training set be all points of the form $x = [4a, 3b]$ where a, b are integers. Each training item has the correct label that follows the rule above. With a 1NN classifier (Euclidean distance), which ones of the following points are labeled positive? Multiple answers.

- [5.52, 2.41]
- [8.47, 5.84]
- [7,8.17]
- [6.7,8.88]

Nearest neighbors are
[4,3] => positive
[8,6] => positive
[8,9] => negative
[8,9] => negative
Individually.

Quiz break

Q2-2: True or False

Maximum likelihood estimation is the same regardless of whether we maximize the likelihood or log-likelihood function.

- A True
- B False

Quiz break

Q2-2: True or False

Maximum likelihood estimation is the same regardless of whether we maximize the likelihood or log-likelihood function.

- A True
- B False

Quiz break

Q2-3: Suppose the weights of randomly selected American female college students are normally distributed with unknown mean μ and standard deviation σ . A random sample of 10 American female college students yielded the following weights in pounds: 115 122 130 127 149 160 152 138 149 180. Find a maximum likelihood estimate of μ .

- A 132.2
- B 142.2
- C 152.2
- D 162.2

Quiz break

Q2-3: Suppose the weights of randomly selected American female college students are normally distributed with unknown mean μ and standard deviation σ . A random sample of 10 American female college students yielded the following weights in pounds: 115 122 130 127 149 160 152 138 149 180. Find a maximum likelihood estimate of μ .

- A 132.2
- B 142.2
- C 152.2
- D 162.2