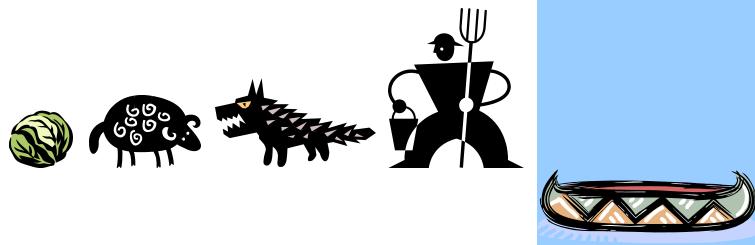


CS540 Intro to AI Uninformed Search

Sharon Li
University of Wisconsin-Madison

Slides created by Xiaojin Zhu (UW-Madison),
lightly edited by Anthony Gitter

**Many AI problems can be
formulated as search.**



PROBLEM:

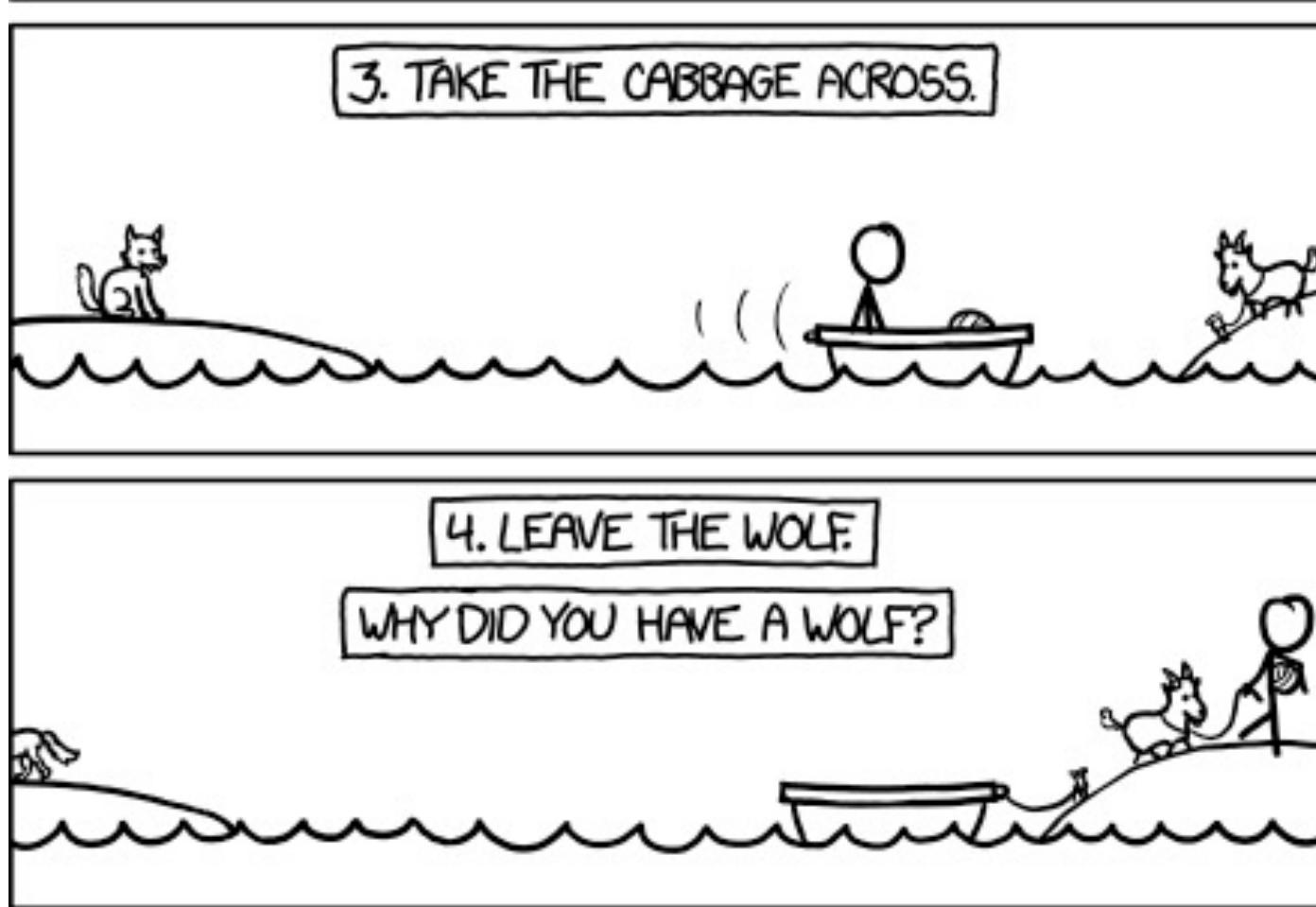
THE BOAT ONLY HOLDS TWO, BUT YOU
CAN'T LEAVE THE GOAT WITH THE
CABBAGE OR THE WOLF WITH THE GOAT.



SOLUTION:

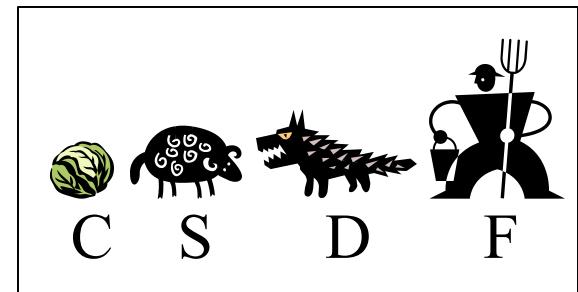
1. TAKE THE GOAT ACROSS.

2. RETURN ALONE.



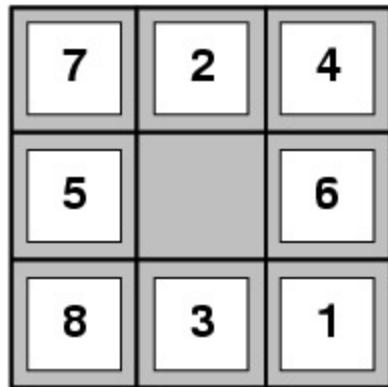
The search problem

- State space S : all valid configurations
- Initial state $I = \{(CSDF,)\} \subseteq S$
- Goal state $G = \{(_,CSDF)\} \subseteq S$
- Successor function $\text{succs}(s) \subseteq S$: states reachable in one step from state s
 - $\text{succs}((CSDF,)) = \{(CD, SF)\}$
 - $\text{succs}((CDF,S)) = \{(CD,FS), (D,CFS), (C, DFS)\}$
- Cost(s, s') = 1 for all steps. (weighted later)
- The search problem: find a solution path from a state in I to a state in G .
 - Optionally minimize the cost of the solution.

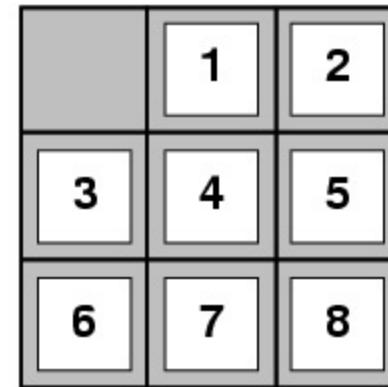


Search examples

- 8-puzzle



Start State

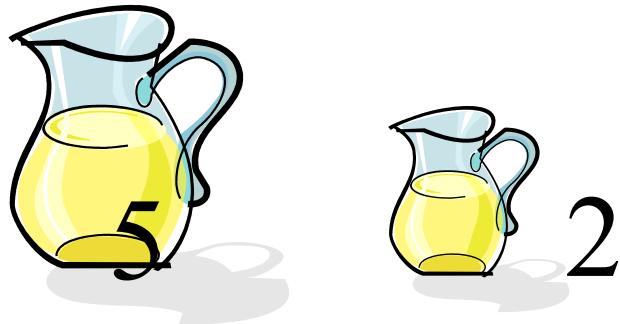


Goal State

- States = 3x3 array configurations
- action = up to 4 kinds of movement
- Cost = 1 for each move

Search examples

- Water jugs: how to get 1?



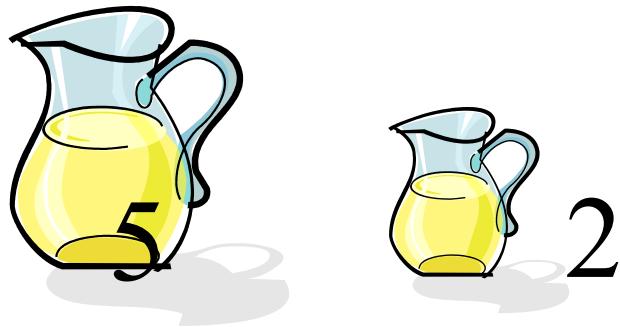
State = (x,y) , where x = number of gallons of water in the 5-gallon jug and y is gallons in the 2-gallon jug

Initial State = $(5,0)$

Goal State = $(*,1)$, where $*$ means any amount

Search examples

- Water jugs: how to get 1?



State = (x,y) , where x = number of gallons of water in the 5-gallon jug and y is gallons in the 2-gallon jug

Initial State = $(5,0)$

Goal State = $(*,1)$, where $*$ means any amount

Operators

$(x,y) \rightarrow (0,y)$; empty 5-gal jug

$(x,y) \rightarrow (x,0)$; empty 2-gal jug

$(x,2)$ and $x \leq 3 \rightarrow (x+2,0)$; pour 2-gal into 5-gal

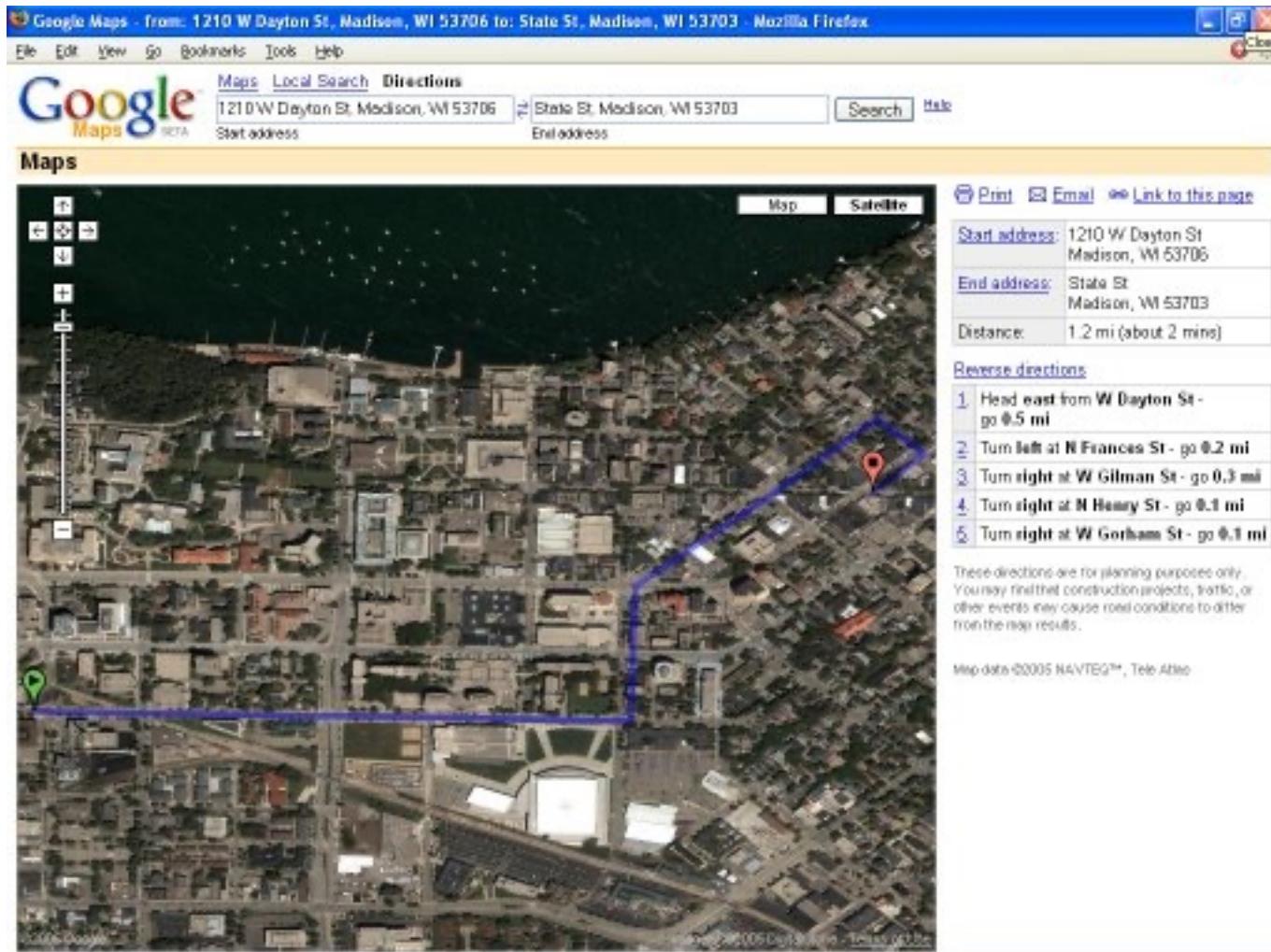
$(x,0)$ and $x \geq 2 \rightarrow (x-2,2)$; pour 5-gal into 2-gal

$(1,0) \rightarrow (0,1)$; empty 5-gal into 2-gal

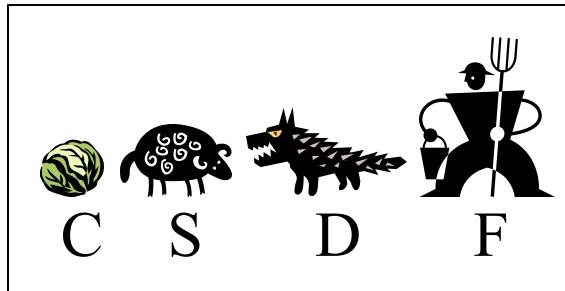
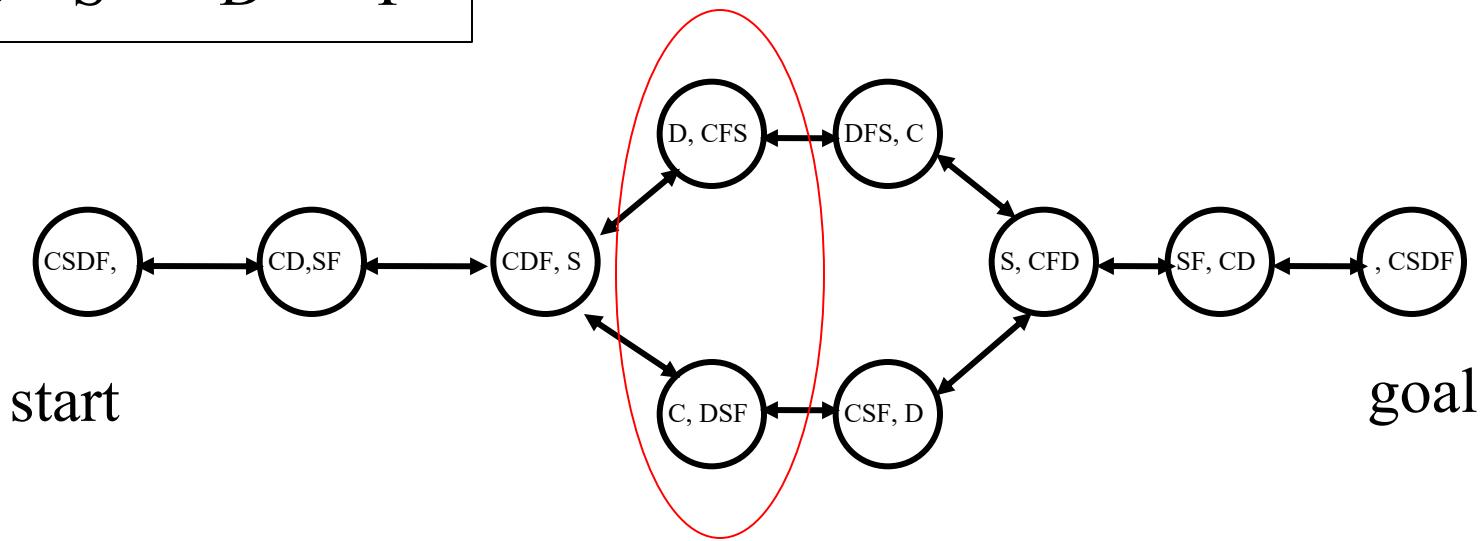
Search examples

Search examples

- Route finding (State? Successors? Cost weighted)



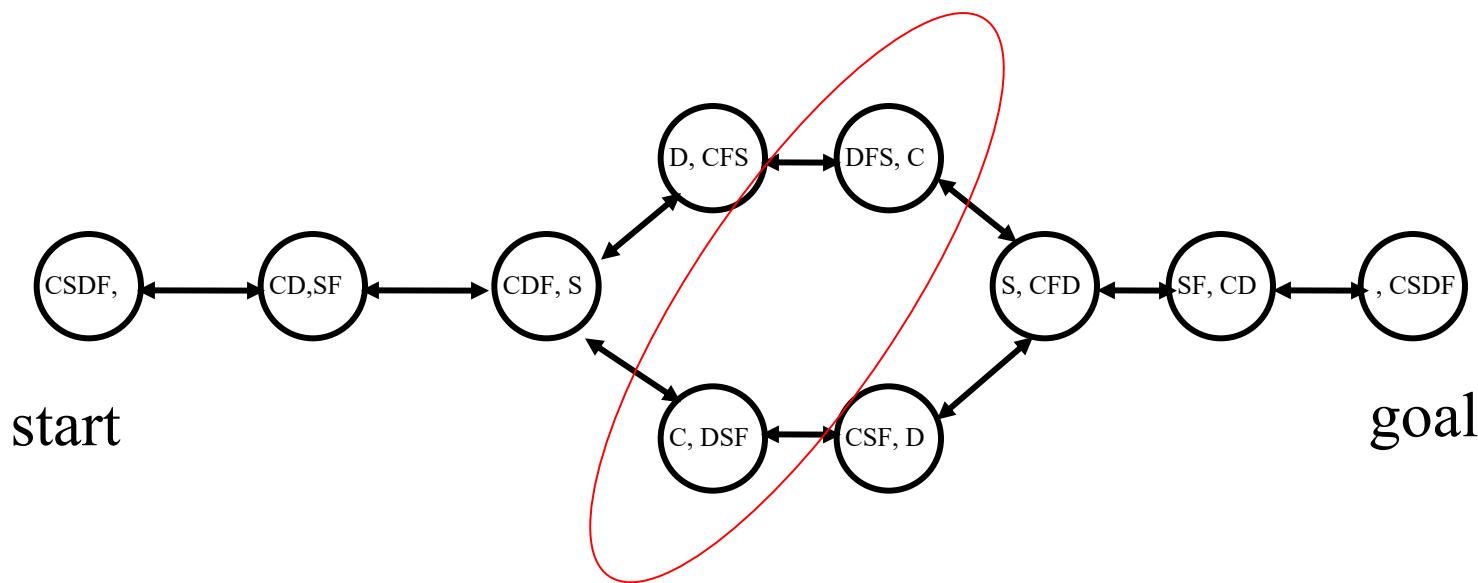
A directed graph in state space



- In general there will be many generated, but un-expanded states at any given time
- One has to choose which one to expand next

Different search strategies

- The generated, but not yet expanded states form the **fringe (OPEN)**.
- The essential difference is **which one to expand first**.
- Deep or shallow?



Uninformed search on trees

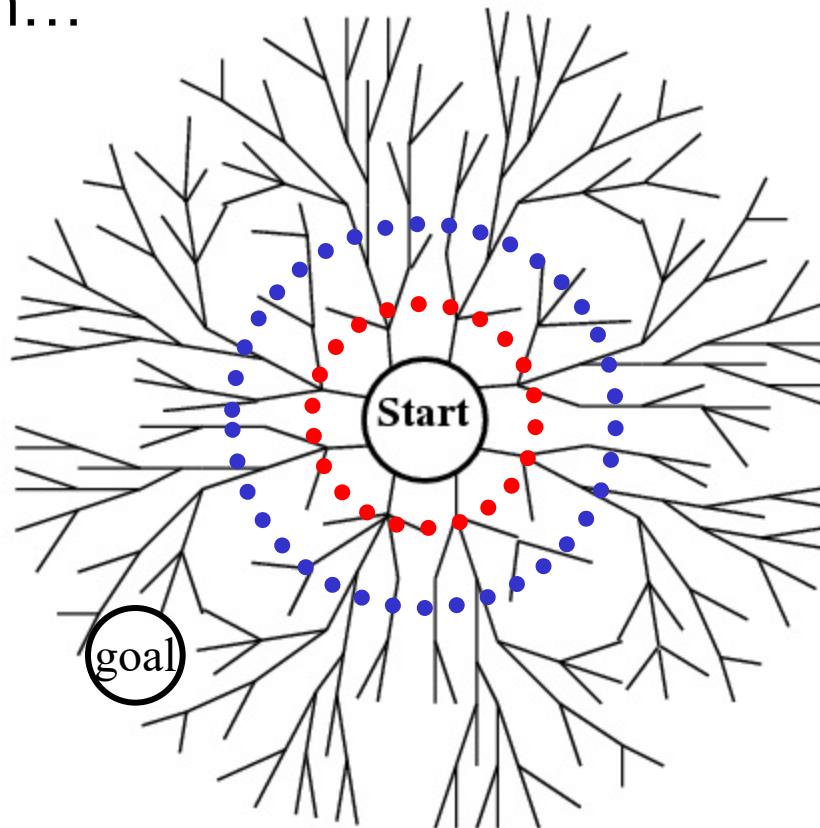
- **Uninformed** means we only know:
 - The goal test
 - The *succs()* function
- But **not** which non-goal states are better: that would be informed search (next topic).
- For now, we also assume *succs()* graph is **a tree**.
 - Won't encounter repeated states.
 - We will relax it later.
- Search strategies: BFS, UCS, DFS, IDS
- Differ by what un-expanded nodes to expand

Breadth-first search (BFS)

Expand the shallowest node first

- Examine states **one** step away from the initial states
- Examine states **two** steps away from the initial states
- and so on...

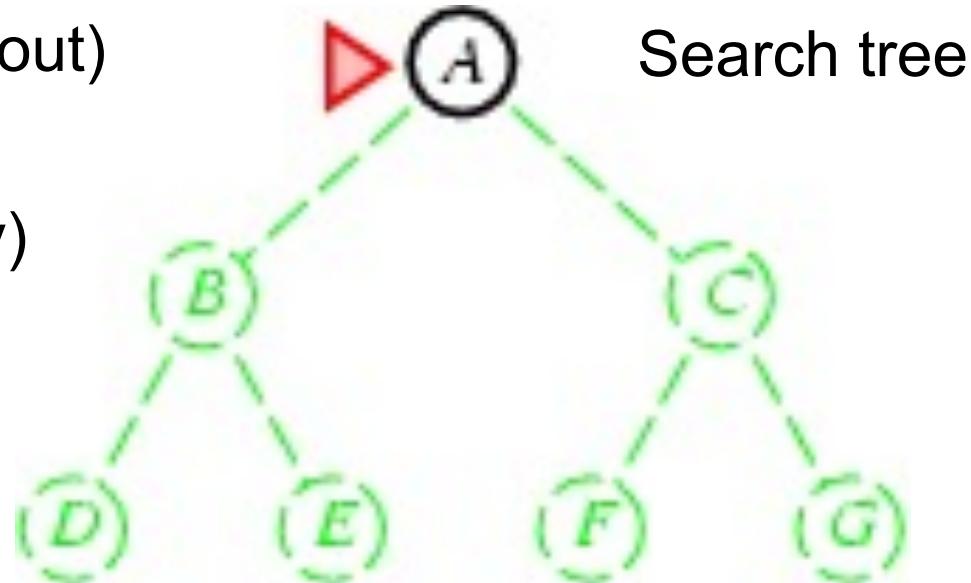
ripple



Breadth-first search (BFS)

Use a **queue** (First-in First-out)

1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile



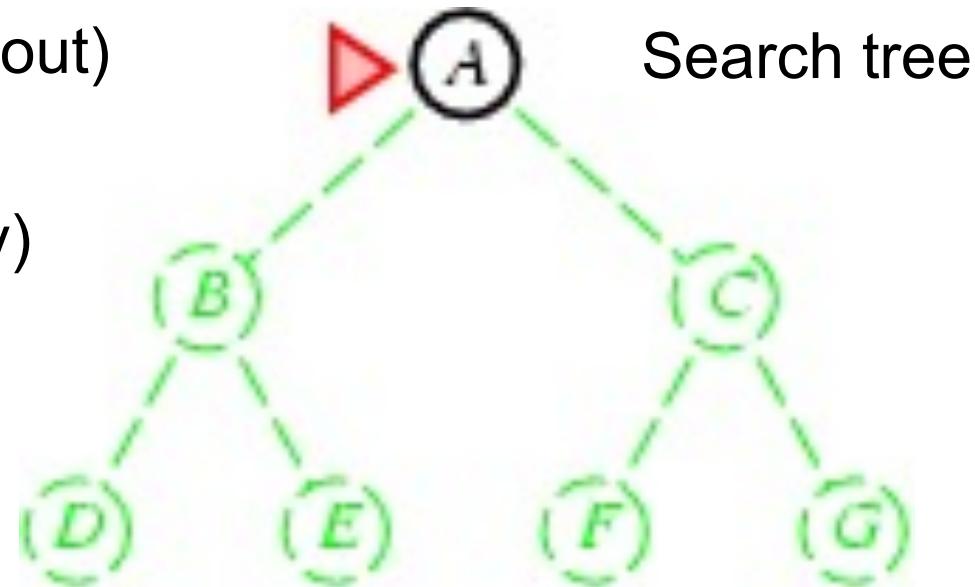
Initial state: **A**

Goal state: **G**

Breadth-first search (BFS)

Use a **queue** (First-in First-out)

1. en_queue(Initial states)
2. While (queue not empty)
3. $s = \text{de_queue}()$
4. if ($s == \text{goal}$) success!
5. $T = \text{succs}(s)$
6. en_queue(T)
7. endWhile



queue (**fringe, OPEN**)
→ [A] →

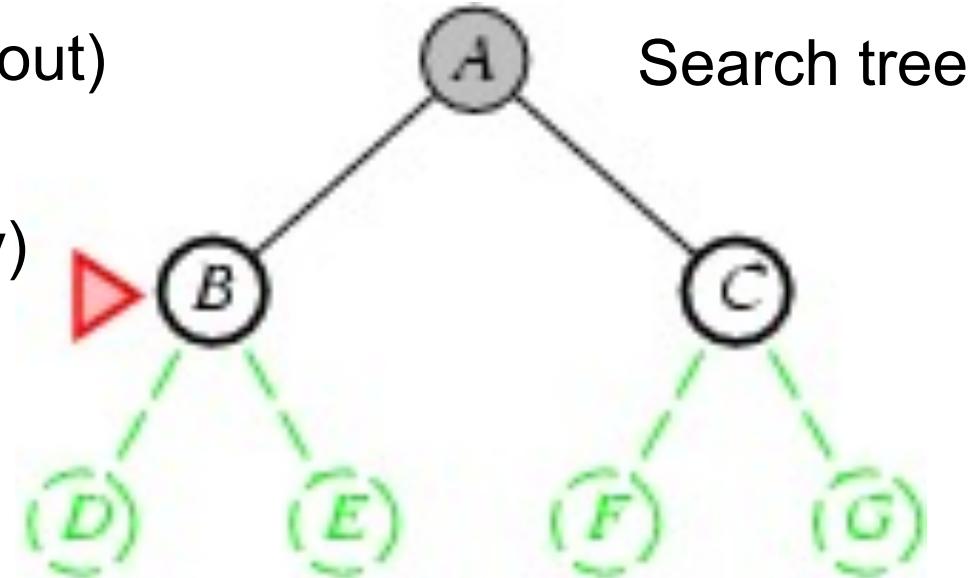
Initial state: **A**

Goal state: **G**

Breadth-first search (BFS)

Use a **queue** (First-in First-out)

1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile



queue (**fringe, OPEN**)
→ [CB] → A

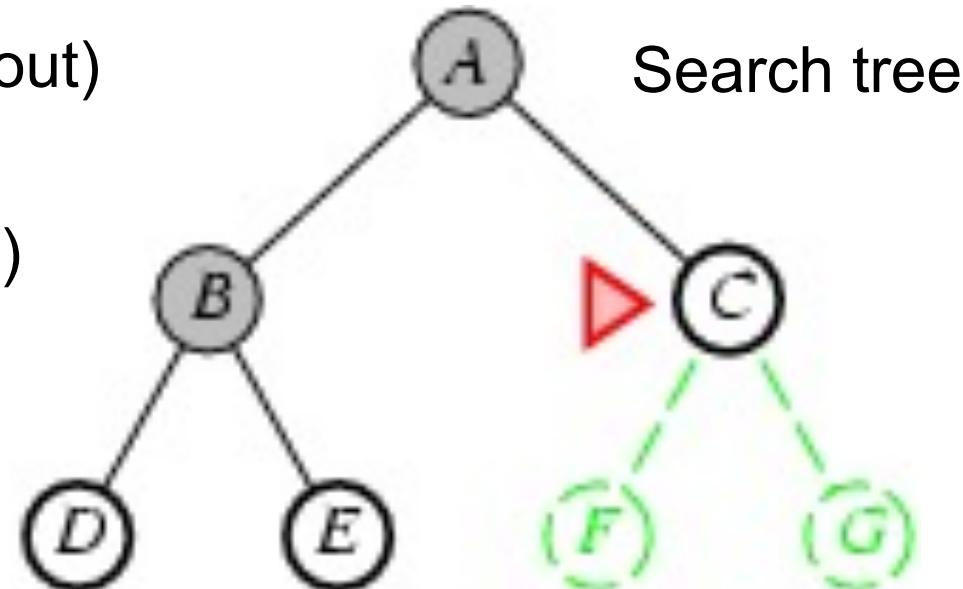
Initial state: **A**

Goal state: **G**

Breadth-first search (BFS)

Use a **queue** (First-in First-out)

1. en_queue(Initial states)
2. While (queue not empty)
3. $s = \text{de_queue}()$
4. if ($s == \text{goal}$) success!
5. $T = \text{succs}(s)$
6. en_queue(T)
7. endWhile



queue (**fringe, OPEN**)
→ [EDC] → B

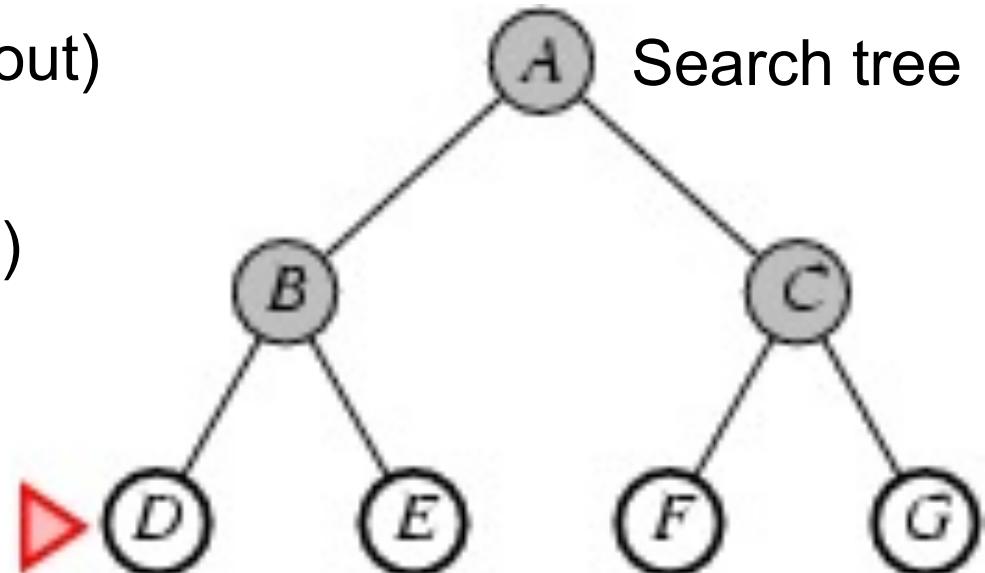
Initial state: **A**

Goal state: **G**

Breadth-first search (BFS)

Use a **queue** (First-in First-out)

1. en_queue(Initial states)
2. While (queue not empty)
3. $s = \text{de_queue}()$
4. if ($s == \text{goal}$) success!
5. $T = \text{succs}(s)$
6. en_queue(T)
7. endWhile



queue (**fringe, OPEN**)
 $\rightarrow [GFED] \rightarrow C$

Initial state: **A**

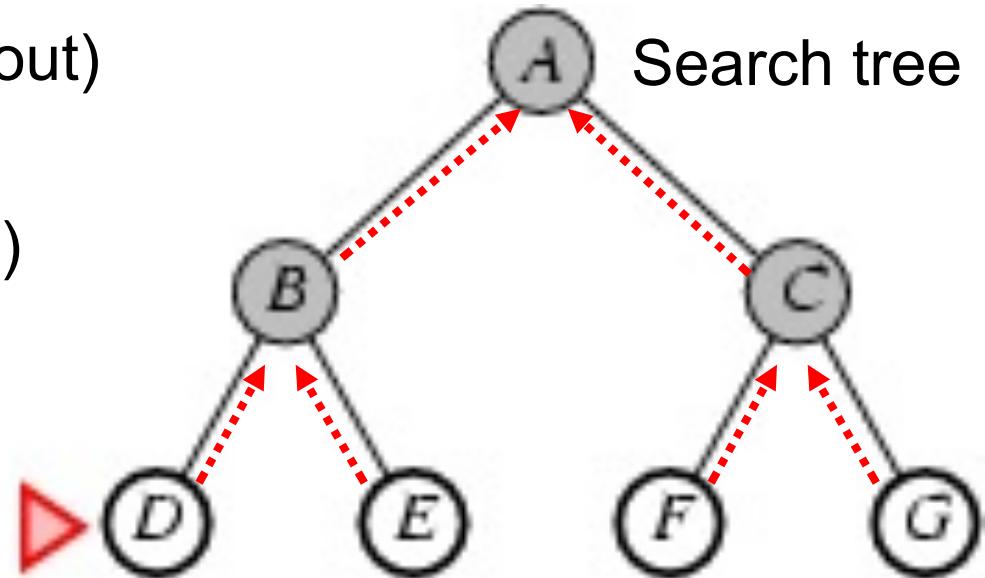
Goal state: **G**

If G is a goal, we've seen it, but we don't stop!

Breadth-first search (BFS)

Use a **queue** (First-in First-out)

1. en_queue(Initial states)
2. While (queue not empty)
3. $s = \text{de_queue}()$
4. if ($s == \text{goal}$) success!
5. $T = \text{succs}(s)$
6. en_queue(T)
7. endWhile



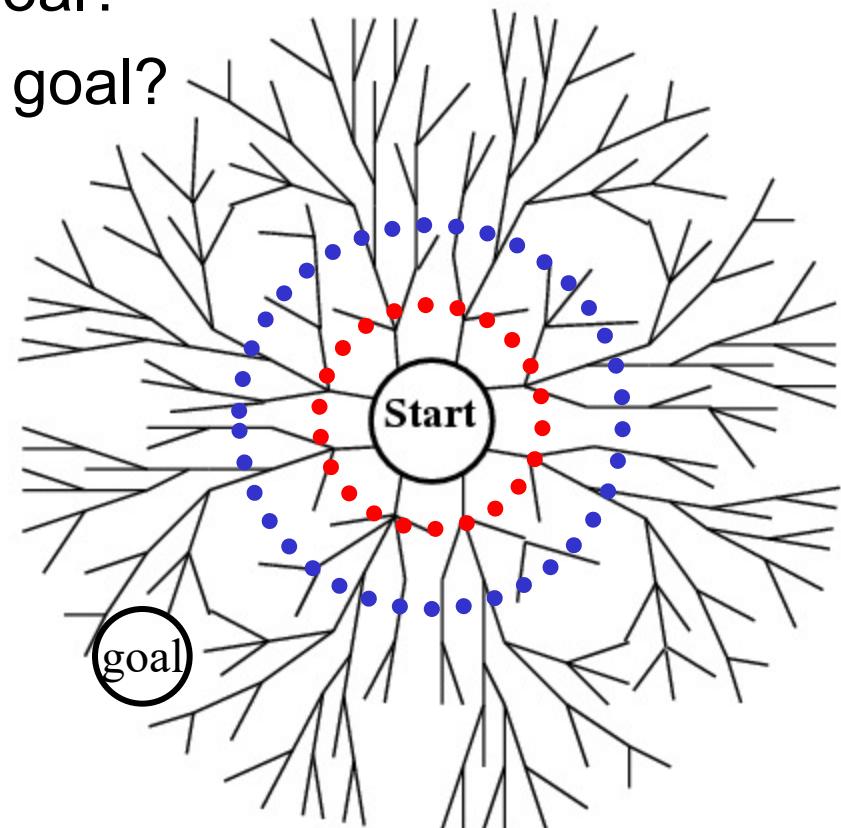
Looking foolish?
Indeed. But let's be
consistent...

... until much later we pop G.

We need **back pointers** to
recover the solution path.

Performance of BFS

- Assume:
 - the graph may be infinite.
 - Goal(s) exists and is only finite steps away.
- Will BFS find at least one goal?
- Will BFS find the least cost goal?
- Time complexity?
 - # states generated
 - Goal d edges away
 - Branching factor b
- Space complexity?
 - # states stored



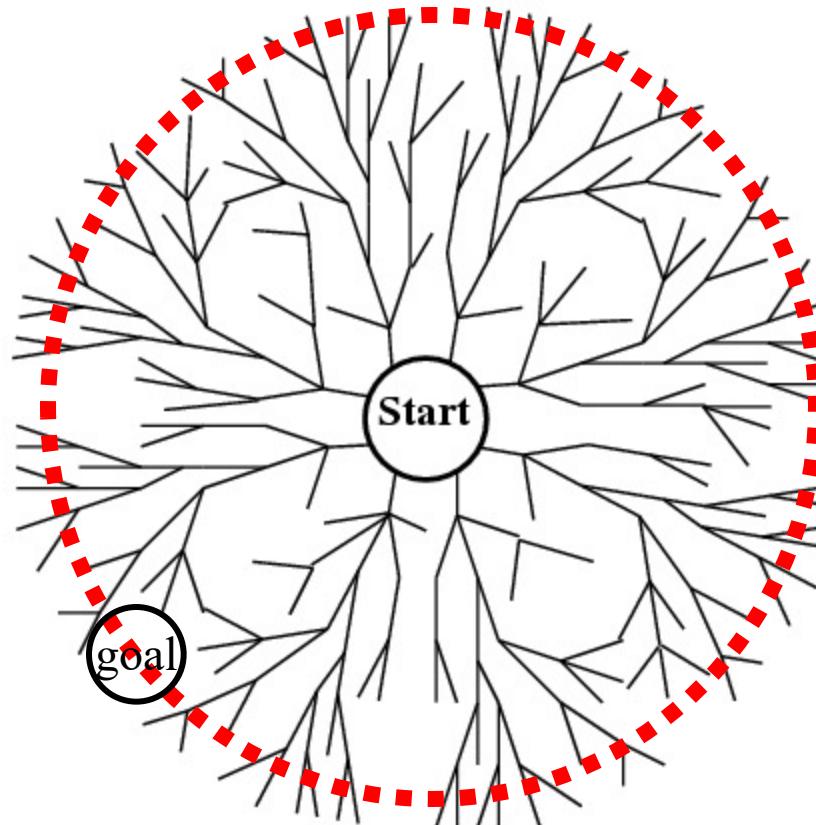
Performance of BFS

Four measures of search algorithms:

- **Completeness** (not finding all goals): yes, BFS will find a goal.
- **Optimality**: yes if edges cost 1 (more generally positive non-decreasing in depth), **no otherwise**.
- **Time** complexity (worst case): goal is the last node at radius d .
 - Have to generate all nodes at radius d .
 - $b + b^2 + \dots + b^d \sim O(b^d)$
- **Space** complexity (bad)
 - Back pointers for all generated nodes $O(b^d)$
 - The queue / fringe (smaller, but still $O(b^d)$)

What's in the fringe (queue) for BFS?

- Convince yourself this is $O(b^d)$



Performance of search algorithms on trees

b: branching factor (assume finite) d: goal depth

	Complete	optimal	time	space
Breadth-first search	Y	Y, if ¹	$O(b^d)$	$O(b^d)$

1. Edge cost constant, or positive non-decreasing in depth

Performance of BFS

Four measures of search algorithms:

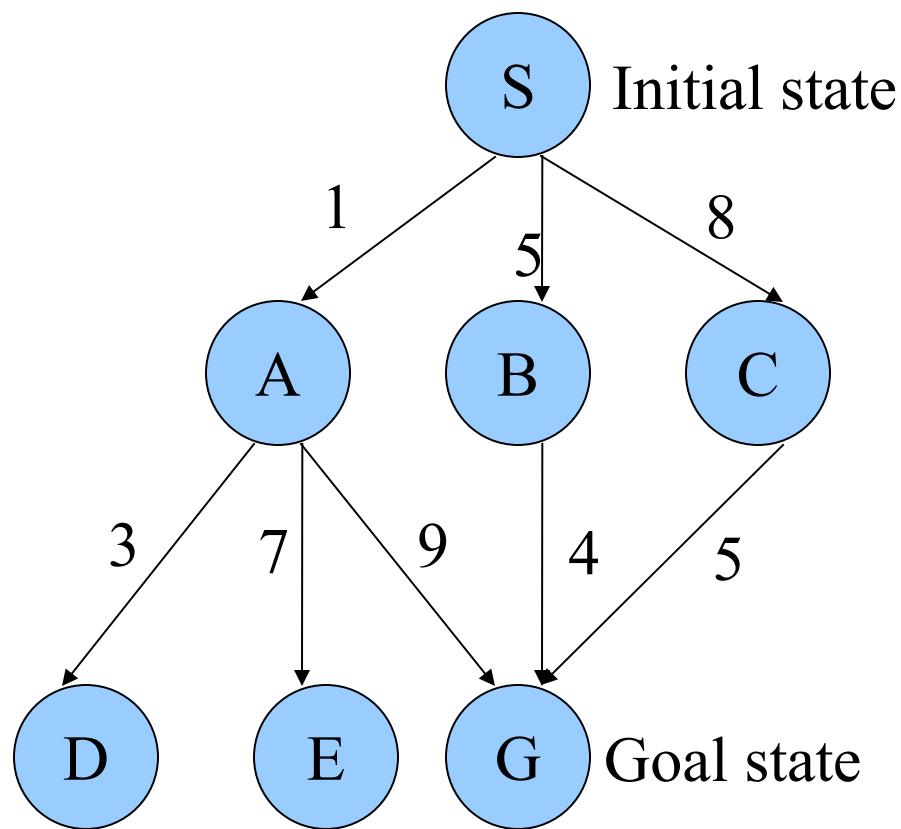
- **Completeness** (not finding all goals): find a goal.
- **Optimality**: yes if edges cost 1 (more generally positive non-decreasing with depth), **no otherwise**.
- **Time** complexity (worst case): goal is the last node at radius d .
 - Have to generate all nodes at radius d .
 - $b + b^2 + \dots + b^d \sim O(b^d)$
- **Space** complexity (bad, Figure 3.11)
 - Back points for all generated nodes $O(b^d)$
 - The queue (smaller, but still $O(b^d)$)

Solution:
Uniform-cost
search

Uniform-cost search

- Find the least-cost goal
- Each node has a path cost from start (= sum of edge costs along the path).
- Expand the least cost node first.
- Use a **priority queue** instead of a normal queue
 - Always take out the least cost item

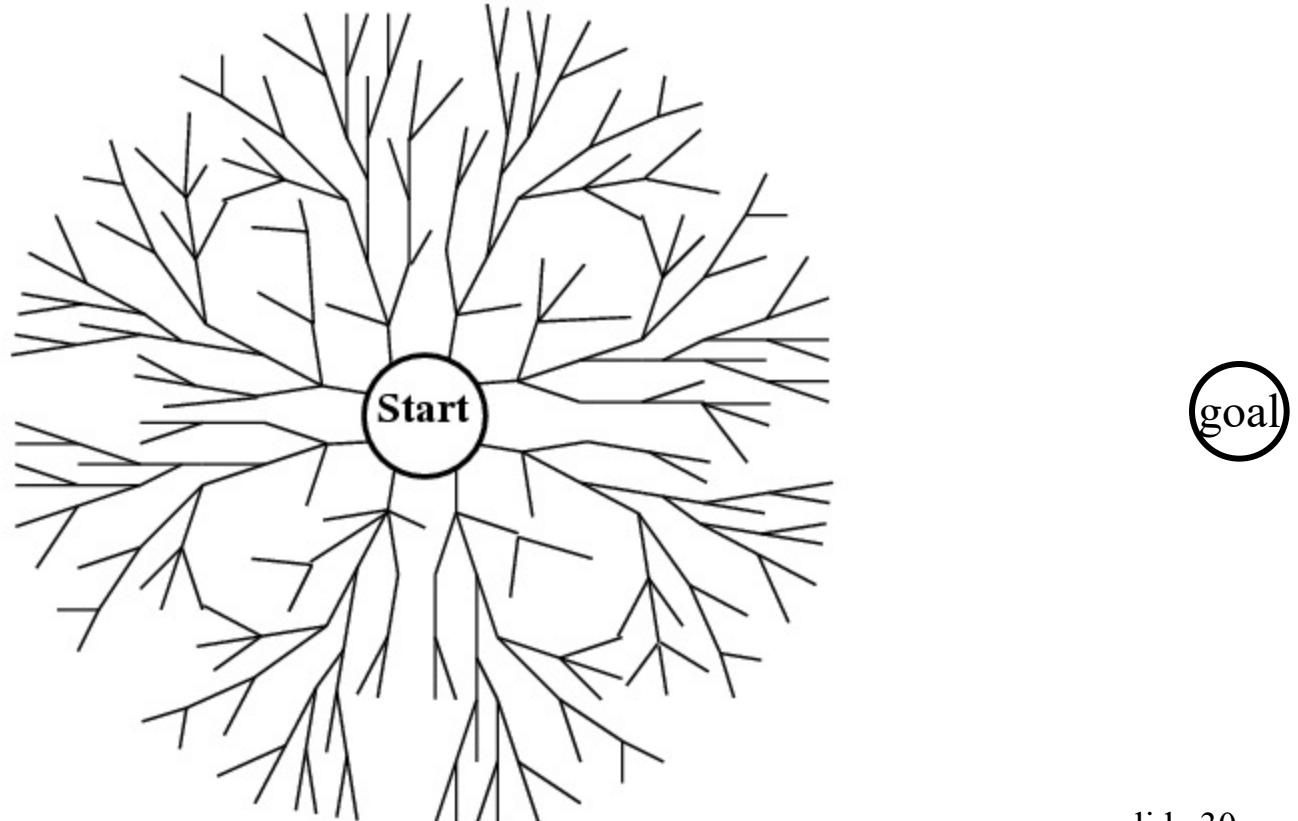
Example



(All edges are directed, pointing downwards)

Uniform-cost search (UCS)

- Complete and optimal (if edge costs $\geq \varepsilon > 0$)
- Time and space: can be much worse than BFS
 - Let C^* be the cost of the least-cost goal
 - $O(b^{C^*/\varepsilon})$



Performance of search algorithms on trees

b: branching factor (assume finite) d: goal depth

	Complete	optimal	time	space
Breadth-first search	Y	Y, if ¹	$O(b^d)$	$O(b^d)$
Uniform-cost search ²	Y	Y	$O(b^{C^*/\varepsilon})$	$O(b^{C^*/\varepsilon})$

1. edge cost constant, or positive non-decreasing in depth
2. edge costs $\geq \varepsilon > 0$. C^* is the best goal path cost.

General State-Space Search Algorithm

```
function general-search(problem, QUEUEING-FUNCTION)
  ; problem describes the start state, operators, goal test, and
  ; operator costs
  ; queueing-function is a comparator function that ranks two states
  ; general-search returns either a goal node or "failure"

  nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
  loop
    if EMPTY(nodes) then return "failure"
    node = REMOVE-FRONT(nodes)
    if problem.GOAL-TEST(node.STATE) succeeds then return node
    nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
      problem.OPERATORS))
    ; succ(s)=EXPAND(s, OPERATORS)
    ; Note: The goal test is NOT done when nodes are generated
    ; Note: This algorithm does not detect loops
  end
```

Recall the bad space complexity of BFS

Four measures of search algorithms:

- **Completeness** (not finding all goals): find a goal.
- **Optimality**: yes if edges cost 1 (more generally positive non-decreasing with depth), **no otherwise**.
- **Time complexity**: goal is the last node at radius d .
 - Have to generate b^{d+1} nodes at radius d .
 - $b + b^2 + \dots + b^d \sim O(b^d)$
- **Space complexity** (bad, Figure 3.11)
 - Back points for all generated nodes $O(b^d)$
 - The queue (smaller, but still $O(b^d)$)

Solution:
Uniform-cost
search

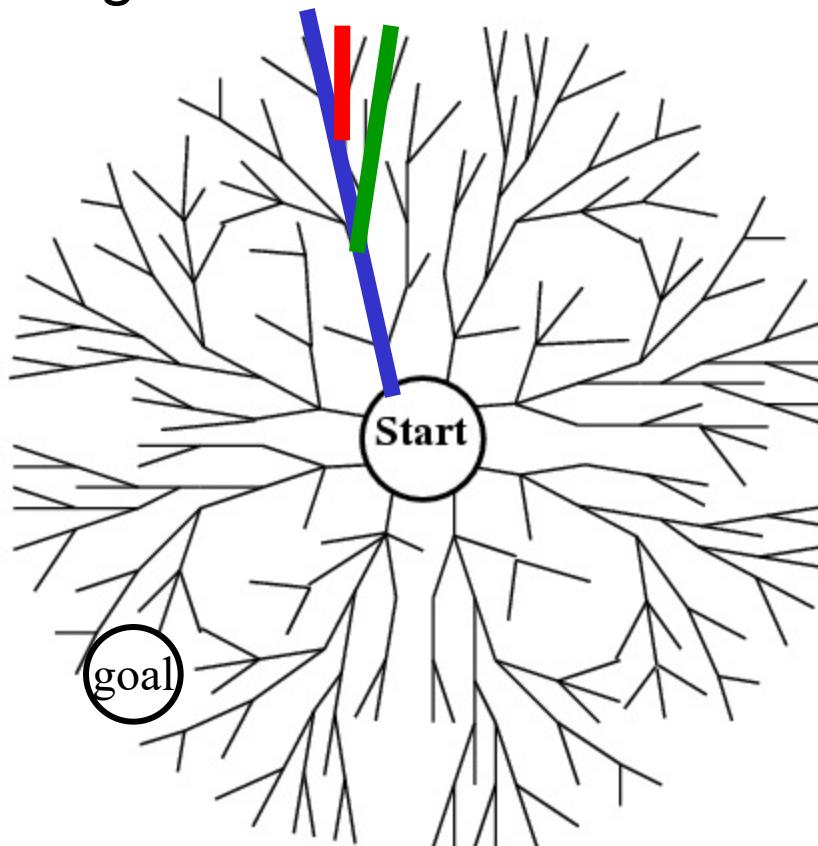
Solution:
Depth-first
search

Depth-first search

Expand the deepest node first

1. Select a direction, go deep to the end
2. Slightly change the end
3. Slightly change the end some more...

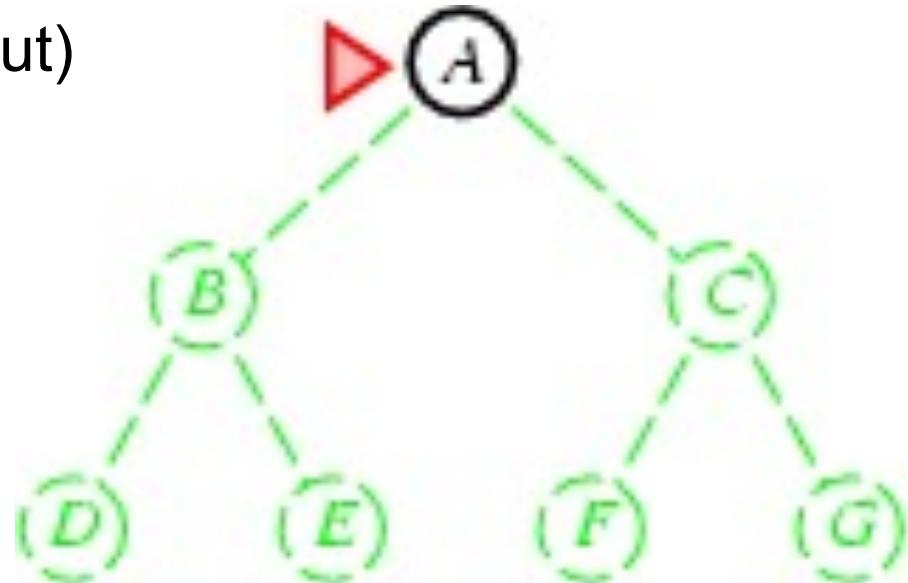
fan



Depth-first search (DFS)

Use a **stack** (First-in Last-out)

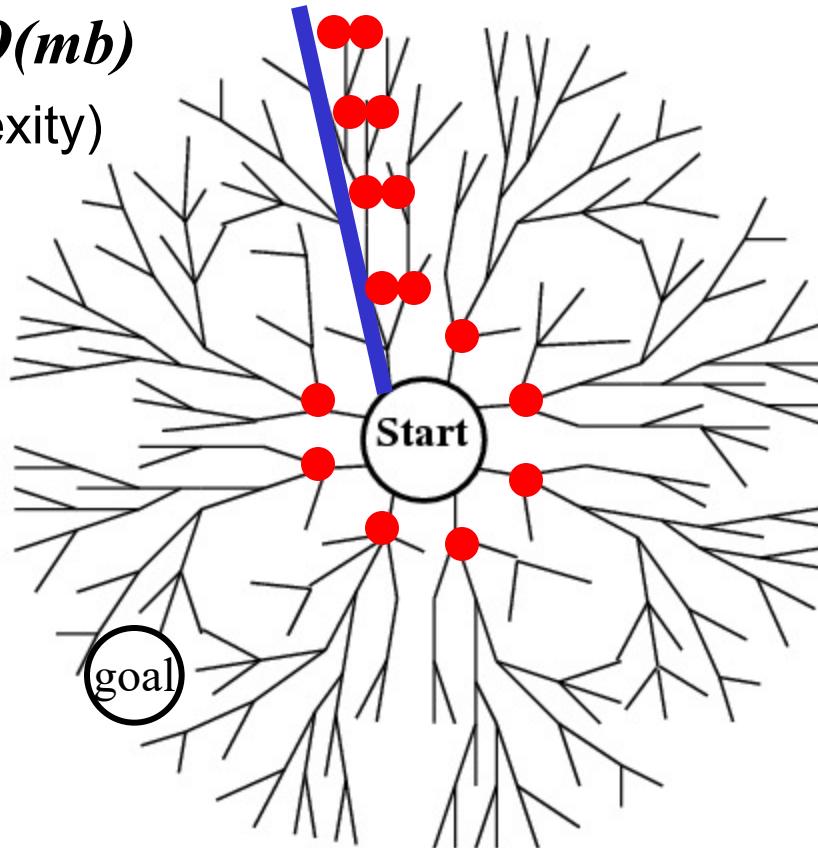
1. push(Initial states)
2. While (stack not empty)
3. s = pop()
4. if (s==goal) success!
5. T = succs(s)
6. push(T)
7. endWhile



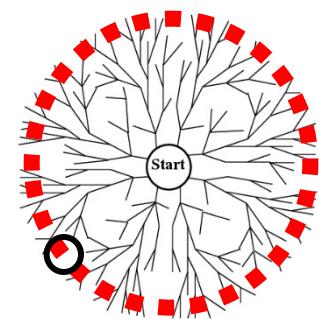
stack (**fringe**)
[] \leftrightarrow

What's in the fringe for DFS?

- m = maximum depth of graph from start
- $m(b-1) \sim O(mb)$
(Space complexity)



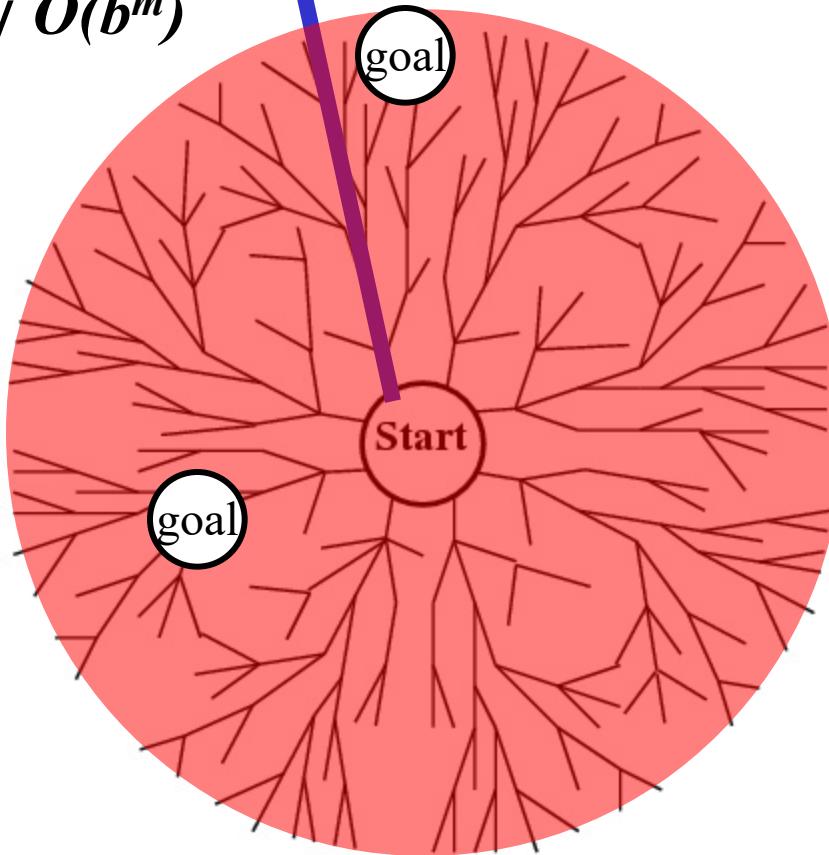
c.f. BFS $O(b^d)$



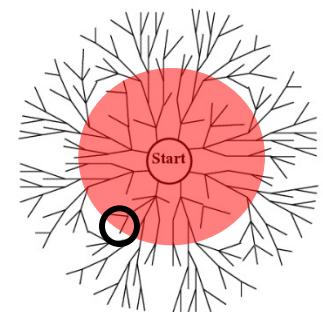
- “backtracking search” even less space
 - generate siblings (if applicable)

What's wrong with DFS?

- Infinite tree: may not find goal (incomplete)
- May not be optimal
- Finite tree: may visit almost all nodes, time complexity $O(b^m)$



c.f. BFS $O(b^d)$



Performance of search algorithms on trees

b: branching factor (assume finite) d: goal depth m: graph depth

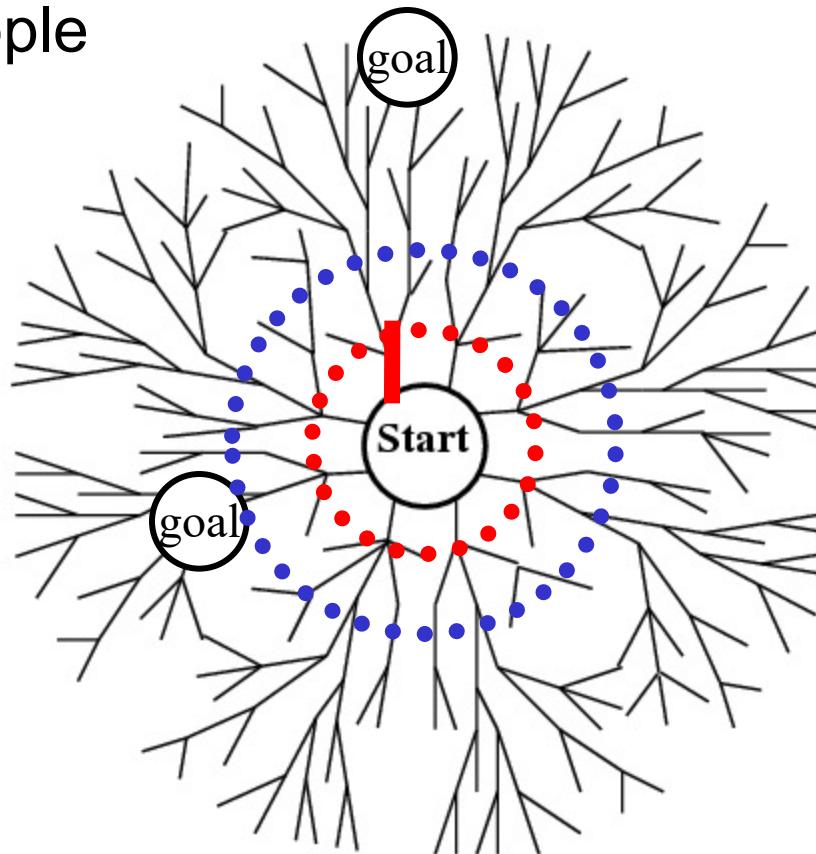
	Complete	optimal	time	space
Breadth-first search	Y	Y, if ¹	$O(b^d)$	$O(b^d)$
Uniform-cost search ²	Y	Y	$O(b^{C^*/\varepsilon})$	$O(b^{C^*/\varepsilon})$
Depth-first search	N	N	$O(b^m)$	$O(bm)$

1. edge cost constant, or positive non-decreasing in depth
2. edge costs $\geq \varepsilon > 0$. C^* is the best goal path cost.

How about this?

1. DFS, but stop if path length > 1.
2. If goal not found, repeat DFS, stop if path length > 2.
3. And so on...

fan within ripple



Iterative deepening

- Search proceeds like BFS, but fringe is like DFS
 - Complete, optimal like BFS
 - Small space complexity like DFS
- A huge waste?
 - Each deepening repeats DFS from the beginning
 - No! $db + (d-1)b^2 + (d-2)b^3 + \dots + b^d \sim O(b^d)$
 - Time complexity like BFS
- Preferred uninformed search method

Performance of search algorithms on trees

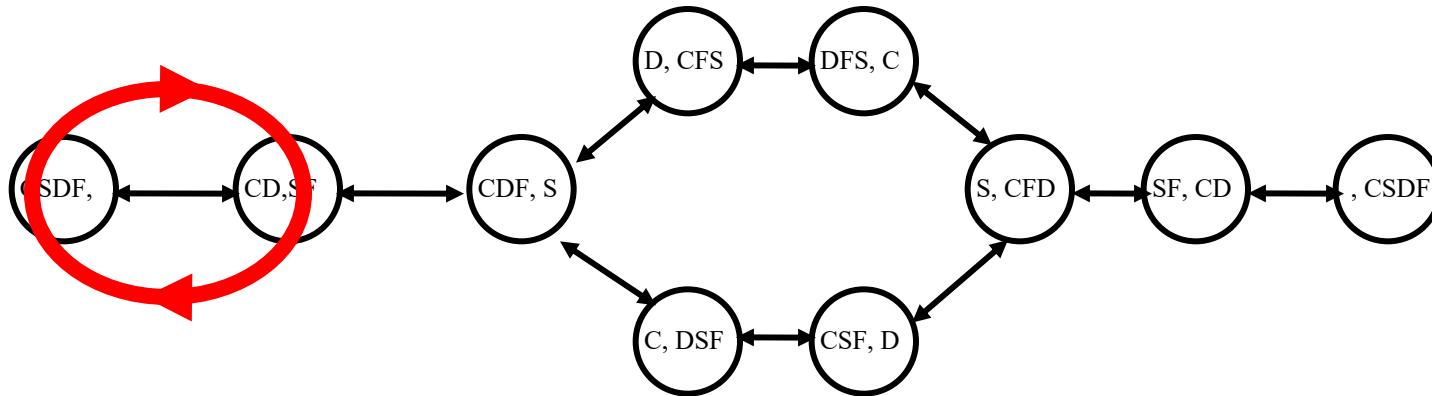
b: branching factor (assume finite) d: goal depth m: graph depth

	Complete	optimal	time	space
Breadth-first search	Y	Y, if ¹	$O(b^d)$	$O(b^d)$
Uniform-cost search ²	Y	Y	$O(b^{C^*/\varepsilon})$	$O(b^{C^*/\varepsilon})$
Depth-first search	N	N	$O(b^m)$	$O(bm)$
Iterative deepening	Y	Y, if ¹	$O(b^d)$	$O(bd)$

1. edge cost constant, or positive non-decreasing in depth
2. edge costs $\geq \varepsilon > 0$. C^* is the best goal path cost.

If state space graph is not a tree

- The problem: repeated states

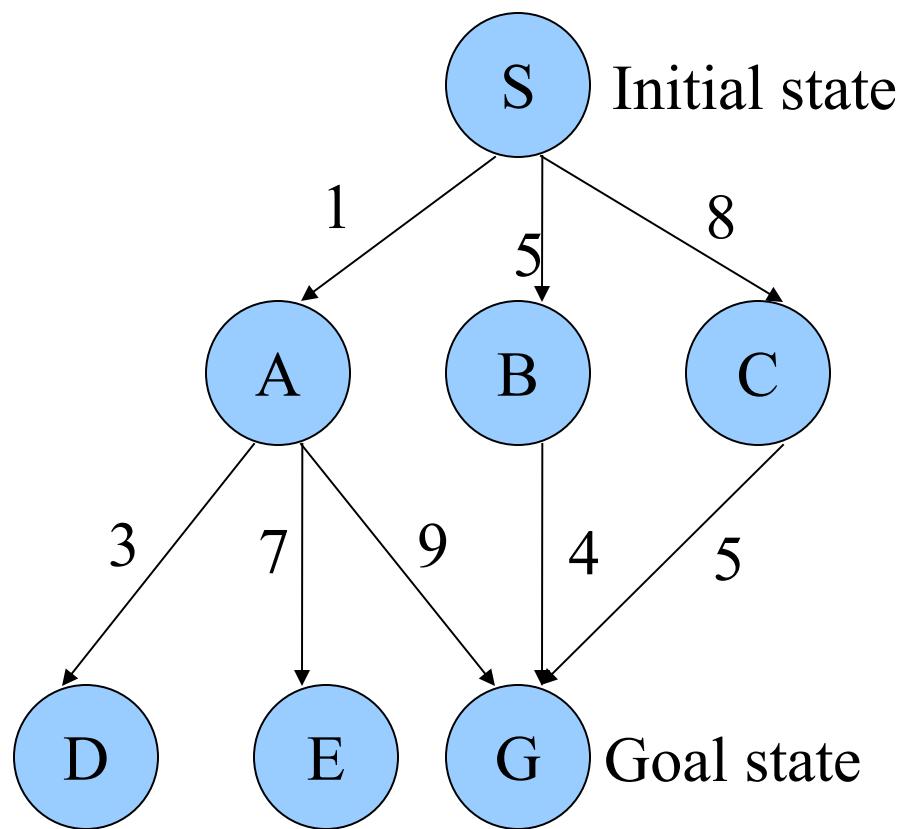


- Ignore the danger of repeated states: wasteful (BFS) or impossible (DFS). Can you see why?
- How to prevent it?

If state space graph is not a tree

- We have to remember already-expanded states (**CLOSED**).
- When we take out a state from the fringe (OPEN),
 - check whether it is in CLOSED (already expanded).
 - If yes, throw it away.
 - If no, expand it (add successors to OPEN), and move it to CLOSED.

Example

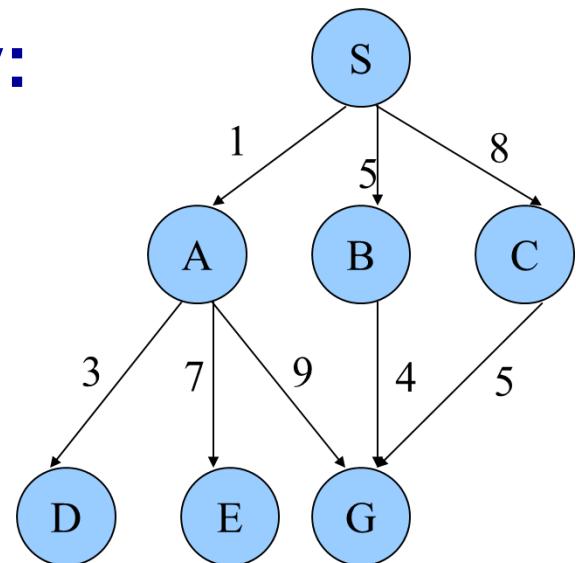


(All edges are directed, pointing downwards)

Nodes expanded by:

- Breadth-First Search: S A B C D E G

Solution found: S A G



- Uniform-Cost Search: S A D B C E G

Solution found: S B G (This is the only uninformed search that worries about costs.)

- Depth-First Search: S A D E G

Solution found: S A G

- Iterative-Deepening Search: S A B C S A D E G

Solution found: S A G

Depth-First Search

expanded	
node	nodes list
-----	-----
S	{ S }
A	{ A B C }
D	{ D E G B C }
E	{ E G B C }
G	{ G B C }
	{ B C }

Solution path found is S A G <-- this G has cost 10
Number of nodes expanded (including goal node) = 5

Uniform-Cost Search

expanded	node	nodes list
	-----	-----
	S	{ S }
	A	{ A(1) B(5) C(8) }
	D	{ D(4) B(5) C(8) E(8) G(10) } (note, we don't return G)
	B	{ B(5) C(8) E(8) G(10) }
	C	{ C(8) E(8) G(9) G(10) }
	E	{ E(8) G(9) G(10) G(13) }
	G	{ }

Solution path found is S B G <-- this G has cost 9, not 10
Number of nodes expanded (including goal node) = 7

What you should know

- Problem solving as search: state, successors, goal test
- Uninformed search
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - **Iterative deepening**
- Can you unify them using the same algorithm, with different priority functions?
- Performance measures
 - Completeness, optimality, time complexity, space complexity

