
slide 1

CS540 Intro to AI
Uninformed Search

Sharon Li
University of Wisconsin-Madison

Slides created by Xiaojin Zhu (UW-Madison),
lightly edited by Anthony Gitter

slide 2

Many AI problems can be
formulated as search.

slide 3

slide 4

http://xkcd.com/1134/

slide 5

http://xkcd.com/1134/

slide 6

The search problem

• State space S : all valid configurations
• Initial state I={(CSDF,)} Í S
• Goal state G={(,CSDF)} Í S
• Successor function succs(s)Í S : states reachable in

one step from state s
§ succs((CSDF,)) = {(CD, SF)}
§ succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}

• Cost(s,s’)=1 for all steps. (weighted later)
• The search problem: find a solution path from a state

in I to a state in G.
§ Optionally minimize the cost of the solution.

C S D F

slide 7

Search examples
• 8-puzzle

• States = 3x3 array configurations
• action = up to 4 kinds of movement
• Cost = 1 for each move

slide 8

Search examples
• Water jugs: how to get 1?

State = (x,y), where x = number of gallons of water in the 5-
gallon jug and y is gallons in the 2-gallon jug

Initial State = (5,0)
Goal State = (*,1), where * means any amount

5 2

slide 9

Search examples
• Water jugs: how to get 1?

State = (x,y), where x = number of gallons of water in the 5-
gallon jug and y is gallons in the 2-gallon jug

Initial State = (5,0)
Goal State = (*,1), where * means any amount
Operators

(x,y) -> (0,y) ; empty 5-gal jug
(x,y) -> (x,0) ; empty 2-gal jug
(x,2) and x<=3 -> (x+2,0) ; pour 2-gal into 5-gal
(x,0) and x>=2 -> (x-2,2) ; pour 5-gal into 2-gal
(1,0) -> (0,1) ; empty 5-gal into 2-gal

5 2

slide 10

Search examples

slide 11

Search examples
• Route finding (State? Successors? Cost weighted)

slide 13

A directed graph in state space

• In general there will be many generated, but un-
expanded states at any given time
• One has to choose which one to expand next

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

C S D F

start goal

slide 14

Different search strategies
• The generated, but not yet expanded states form the

fringe (OPEN).
• The essential difference is which one to expand first.
• Deep or shallow?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

start goal

slide 15

Uninformed search on trees
• Uninformed means we only know:

– The goal test
– The succs() function

• But not which non-goal states are better: that would
be informed search (next topic).

• For now, we also assume succs() graph is a tree.
§ Won’t encounter repeated states.
§ We will relax it later.

• Search strategies: BFS, UCS, DFS, IDS
• Differ by what un-expanded nodes to expand

slide 16

Breadth-first search (BFS)
Expand the shallowest node first
• Examine states one step away from the initial states
• Examine states two steps away from the initial states
• and so on…
ripple

goal

slide 17

Breadth-first search (BFS)
Use a queue (First-in First-out)
1. en_queue(Initial states)
2.While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

slide 18

Breadth-first search (BFS)

queue (fringe, OPEN)
à [A] à

Use a queue (First-in First-out)
1. en_queue(Initial states)
2.While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

slide 19

Breadth-first search (BFS)

queue (fringe, OPEN)
à [CB] à A

Use a queue (First-in First-out)
1. en_queue(Initial states)
2.While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

slide 20

Breadth-first search (BFS)

queue (fringe, OPEN)
à [EDC] à B

Use a queue (First-in First-out)
1. en_queue(Initial states)
2.While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

slide 21

Breadth-first search (BFS)

queue (fringe, OPEN)
à[GFED] à C

If G is a goal, we've seen it, but
we don't stop!

Use a queue (First-in First-out)
1. en_queue(Initial states)
2.While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

slide 22

Breadth-first search (BFS)

queue
à[] àG

... until much later we pop G.

We need back pointers to
recover the solution path.

Looking foolish?
Indeed. But let’s be
consistent…

Use a queue (First-in First-out)
1. en_queue(Initial states)
2.While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Search tree

slide 23

Performance of BFS
• Assume:

§ the graph may be infinite.
§ Goal(s) exists and is only finite steps away.

• Will BFS find at least one goal?
• Will BFS find the least cost goal?
• Time complexity?

§ # states generated
§ Goal d edges away
§ Branching factor b

• Space complexity?
§ # states stored goal

slide 24

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node at

radius d.
§ Have to generate all nodes at radius d.
§ b + b2 + … + bd ~ O(bd)

• Space complexity (bad)
§ Back pointers for all generated nodes O(bd)
§ The queue / fringe (smaller, but still O(bd))

slide 25

What’s in the fringe (queue) for BFS?
• Convince yourself this is O(bd)

goal

slide 26

Performance of search algorithms on trees

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. Edge cost constant, or positive non-decreasing in depth

b: branching factor (assume finite) d: goal depth

slide 27

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing with depth), no otherwise.
• Time complexity (worst case): goal is the last node at

radius d.
§ Have to generate all nodes at radius d.
§ b + b2 + … + bd ~ O(bd)

• Space complexity (bad, Figure 3.11)
§ Back points for all generated nodes O(bd)
§ The queue (smaller, but still O(bd))

Solution:
Uniform-cost

search

slide 28

Uniform-cost search
• Find the least-cost goal
• Each node has a path cost from start (= sum of edge

costs along the path).
• Expand the least cost node first.
• Use a priority queue instead of a normal queue

§ Always take out the least cost item

slide 29

Example

S

A B C

D E G

1
5 8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

slide 30

Uniform-cost search (UCS)
• Complete and optimal (if edge costs ³ e > 0)
• Time and space: can be much worse than BFS

§ Let C* be the cost of the least-cost goal
§ O(bC*/ e)

goal

slide 31

Performance of search algorithms on trees

O(bC*/e)O(bC*/e)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ³ e > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth

slide 32

General State-Space Search Algorithm

function general-search(problem, QUEUEING-FUNCTION)
;; problem describes the start state, operators, goal test, and
;; operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or "failure"

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop

if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))
;; succ(s)=EXPAND(s, OPERATORS)
;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops

end

slide 33

Recall the bad space complexity of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing with depth), no otherwise.
• Time complexity (worst case): goal is the last node at

radius d.
§ Have to generate all nodes at radius d.
§ b + b2 + … + bd ~ O(bd)

• Space complexity (bad, Figure 3.11)
§ Back points for all generated nodes O(bd)
§ The queue (smaller, but still O(bd))

Solution:
Depth-first

search

Solution:
Uniform-cost

search

slide 34

Depth-first search
Expand the deepest node first
1. Select a direction, go deep to the end
2. Slightly change the end
3. Slightly change the end some more…
fan

goal

slide 35

Depth-first search (DFS)
Use a stack (First-in Last-out)
1. push(Initial states)
2.While (stack not empty)
3. s = pop()
4. if (s==goal) success!
5. T = succs(s)
6. push(T)
7. endWhile stack (fringe)

[] ó

slide 36

What’s in the fringe for DFS?
• m = maximum depth of graph from start
• m(b-1) ~ O(mb)
(Space complexity)

• “backtracking search” even less space
§ generate siblings (if applicable)

goal c.f. BFS O(bd)

slide 37

What’s wrong with DFS?
• Infinite tree: may not find goal (incomplete)
• May not be optimal
• Finite tree: may visit almost all nodes, time

complexity O(bm)

goal

goal

c.f. BFS O(bd)

slide 38

Performance of search algorithms on trees

O(bm)O(bm)NNDepth-first
search

O(bC*/e)O(bC*/e)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ³ e > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

slide 39

How about this?
1. DFS, but stop if path length > 1.
2. If goal not found, repeat DFS, stop if path length > 2.
3. And so on…
fan within ripple

goal

goal

slide 40

Iterative deepening
• Search proceeds like BFS, but fringe is like DFS

§ Complete, optimal like BFS
§ Small space complexity like DFS

• A huge waste?
§ Each deepening repeats DFS from the beginning
§ No! db+(d-1)b2+(d-2)b3+…+bd ~ O(bd)
§ Time complexity like BFS

• Preferred uninformed search method

slide 41

Performance of search algorithms on trees

O(bm)O(bm)NNDepth-first
search

O(bC*/e)O(bC*/e)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

O(bd)O(bd)Y, if 1YIterative
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ³ e > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

slide 42

If state space graph is not a tree
• The problem: repeated states

• Ignore the danger of repeated states: wasteful (BFS)
or impossible (DFS). Can you see why?
• How to prevent it?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

slide 43

If state space graph is not a tree
• We have to remember already-expanded states

(CLOSED).
• When we take out a state from the fringe (OPEN),

check whether it is in CLOSED (already expanded).
§ If yes, throw it away.
§ If no, expand it (add successors to OPEN), and

move it to CLOSED.

slide 44

Example

S

A B C

D E G

1
5 8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

slide 45

Nodes expanded by:

• Breadth-First Search: S A B C D E G
Solution found: S A G

• Uniform-Cost Search: S A D B C E G
Solution found: S B G (This is the only uninformed

search that worries about costs.)
• Depth-First Search: S A D E G

Solution found: S A G

• Iterative-Deepening Search: S A B C S A D E G
Solution found: S A G

slide 46

Depth-First Search

slide 47

Uniform-Cost Search

slide 48

What you should know
• Problem solving as search: state, successors, goal test
• Uninformed search

§ Breadth-first search
• Uniform-cost search

§ Depth-first search
§ Iterative deepening

• Can you unify them using the same algorithm, with
different priority functions?
• Performance measures

§ Completeness, optimality, time complexity, space
complexity

