

CS 540 Introduction to Artificial Intelligence **Linear Models & Linear Regression**

University of Wisconsin-Madison

Spring, 2022

Outline

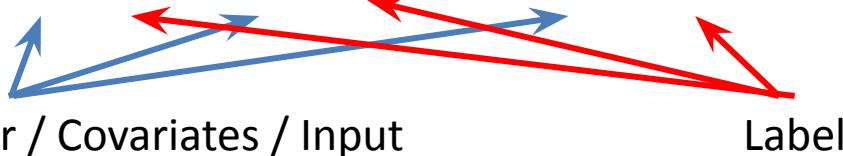
- Supervised Learning with Linear Models
 - Parameterized model, model classes, linear models, train vs. test
- Linear Regression
 - Least squares, normal equations, residuals, logistic regression

Supervised Learning

Supervised learning:

- Make predictions, classify data, perform regression

- Dataset: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$



- Goal: find function $f : X \rightarrow Y$ to predict label on **new** data

indoor

outdoo

Regression

- Continuous label $y \in \mathbb{R}$
- Squared loss function $\ell(f(x), y) = (f(x) - y)^2$
- Finding f that minimizes the empirical risk

$$\frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

Functions/Models

The function f is usually called a model

- Which possible functions should we consider?
- One option: **all functions**

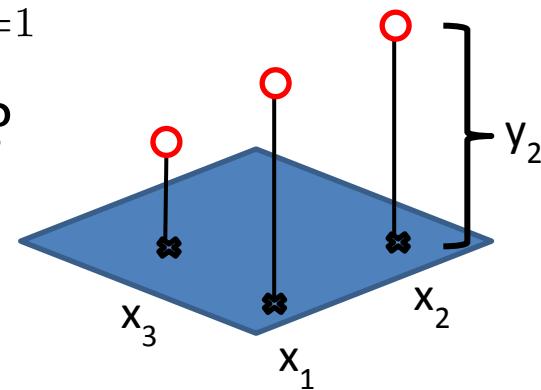
– Not a good choice. Consider

$$f(x) = \sum_{i=1}^n \mathbb{1}\{x = x_i\} y_i$$

– Training loss: **zero**. Can't do better!

– How will it do on x not in the training set?

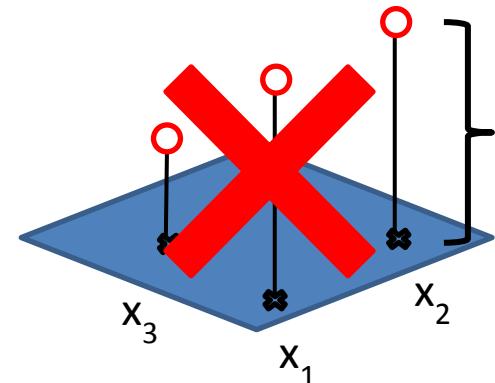
(cannot generalize)



Functions/Models

Don't want all functions

- Instead, pick a specific class
- Parametrize it by weights/parameters
- **Example:** linear models



$$f(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d = \theta_0 + x^T \theta$$

Weights/ Parameters

Training The Model

- Parametrize it by weights/parameters
- Minimize the loss

Best parameters = $\min_{\theta} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$

best function f

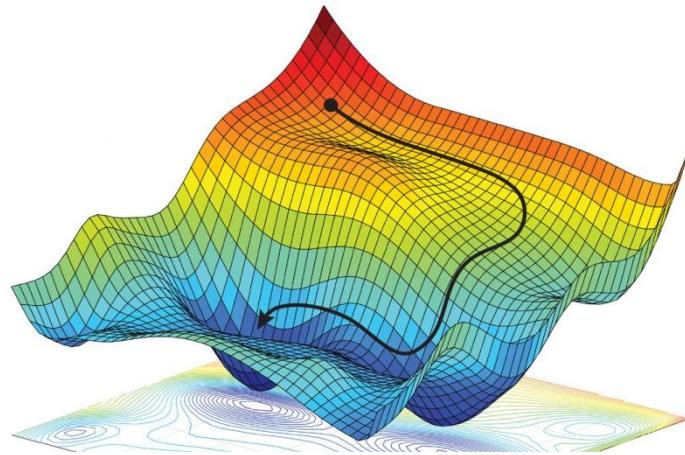
Linear model class f

$$= \frac{1}{n} \sum_{i=1}^n \ell(\theta_0 + x_i^T \theta, y_i)$$
$$= \frac{1}{n} \sum_{i=1}^n (\theta_0 + x_i^T \theta - y_i)^2$$

Square loss

How Do We Minimize?

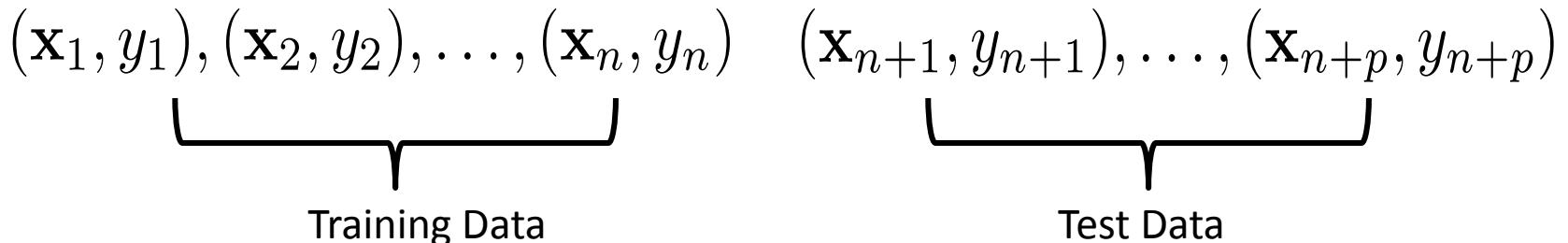
- Need to solve something that looks like $\min_{\theta} g(\theta)$
- Generic optimization problem; many algorithms
 - A popular choice: **stochastic gradient descent (SGD)**
- Most algorithms iterative:
find some sequence of
points heading towards the
optimum



Train vs Test

Now we've trained, have some f parametrized by θ

- Train loss is small $\rightarrow f$ predicts most x_i correctly
- How does f do on points not in training set? **“Generalizes!”**
- To evaluate this, reserve a **test** set. Do **not** train on it!

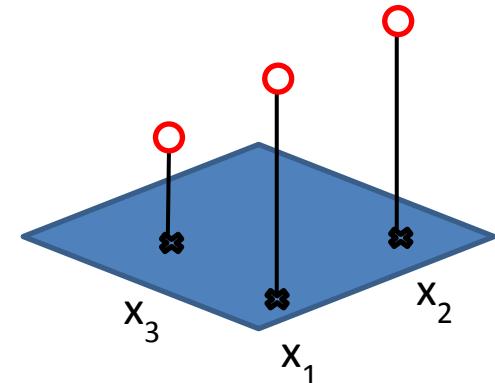
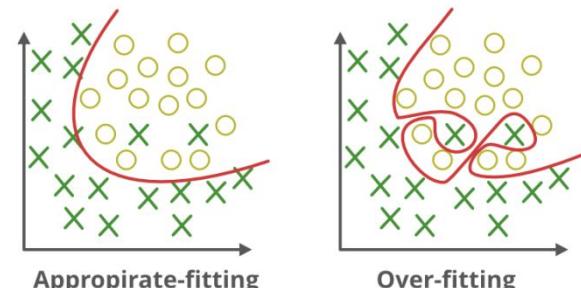


Train vs Test

Use the test set to evaluate f

- Why? Back to our “perfect” train function
- Training loss: 0. Every point matched perfectly
- How does it do on test set? **Fails completely!**

- Test set helps detect **overfitting**
 - Overfitting: too focused on train points
 - “Bigger” class: more prone to overfit
 - Need to consider **model capacity**



Break & Quiz

Q 2.1: When we train a model, we are

- A. Optimizing the parameters and keeping the features fixed.
- B. Optimizing the features and keeping the parameters fixed.
- C. Optimizing the parameters and the features.
- D. Keeping parameters and features fixed and changing the predictions.

Break & Quiz

Q 2.1: When we train a model, we are

- **A. Optimizing the parameters and keeping the features fixed.**
- B. Optimizing the features and keeping the parameters fixed.
- C. Optimizing the parameters and the features.
- D. Keeping parameters and features fixed and changing the predictions.

Break & Quiz

Q 2.1: When we train a model, we are

- A. Optimizing the parameters and keeping the features fixed.
- B. Optimizing the features and keeping the parameters fixed)
(Feature vectors x_i don't change during training).
- C. Optimizing the parameters and the features. (Same as B)
- D. Keeping parameters and features fixed and changing the predictions. (We can't train if we don't change the parameters)

Break & Quiz

- **Q 2.2:** You have trained a classifier, and you find there is significantly **higher** loss on the test set than the training set. What is likely the case?
 - A. You have accidentally trained your classifier on the test set.
 - B. Your classifier is generalizing well.
 - C. Your classifier is generalizing poorly.
 - D. Your classifier is ready for use.

Break & Quiz

- **Q 2.2:** You have trained a classifier, and you find there is significantly **higher** loss on the test set than the training set. What is likely the case?
 - A. You have accidentally trained your classifier on the test set.
 - B. Your classifier is generalizing well.
 - **C. Your classifier is generalizing poorly.**
 - D. Your classifier is ready for use.

Break & Quiz

- **Q 2.2:** You have trained a classifier, and you find there is significantly **higher** loss on the test set than the training set. What is likely the case?
 - A. You have accidentally trained your classifier on the test set. **(No, this would make test loss lower)**
 - B. Your classifier is generalizing well. **(No, test loss is high means poor generalization)**
 - **C. Your classifier is generalizing poorly.**
 - D. Your classifier is ready for use. **(No, will perform poorly on new data)**

Break & Quiz

- **Q 2.3:** You have trained a classifier, and you find there is significantly **lower** loss on the test set than the training set. What is likely the case?
 - A. You have accidentally trained your classifier on the test set.
 - B. Your classifier is generalizing well.
 - C. Your classifier is generalizing poorly.
 - D. Your classifier needs further training.

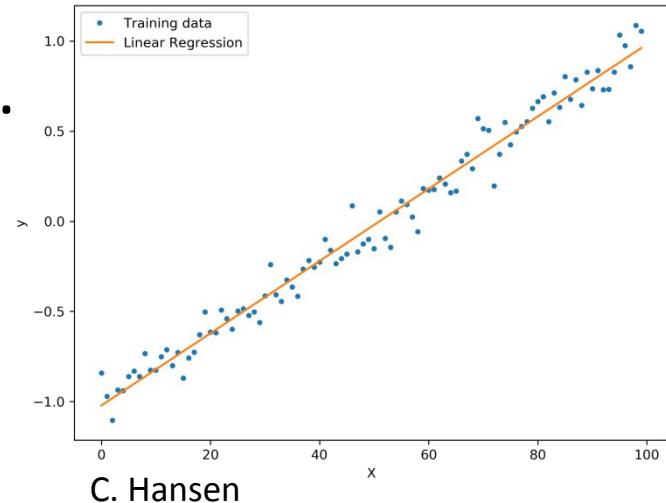
Break & Quiz

- **Q 2.3:** You have trained a classifier, and you find there is significantly **lower** loss on the test set than the training set. What is likely the case?
 - A. You have accidentally trained your classifier on the test set. (This is very likely, loss will usually be the lowest on the data set on which a model has been trained)
 - B. Your classifier is generalizing well.
 - C. Your classifier is generalizing poorly.
 - D. Your classifier needs further training.

Linear Regression

Simplest type of regression problem.

- **Inputs:** $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$
 - x 's are vectors, y 's are scalars.
 - “Linear”: predict a linear combination of x components + intercept



$$f(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d = \theta_0 + \mathbf{x}^T \boldsymbol{\theta}$$

- **Want:** parameters $\boldsymbol{\theta}$

Linear Regression Setup

Problem Setup

- Goal: figure out how to minimize square loss
- Let's organize it. Train set $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$
 - Since $f(x) = \theta_0 + x^T \theta$, use a notational trick by augmenting feature vector with a constant dimension of 1:

$$x = \begin{bmatrix} 1 \\ x \end{bmatrix}$$

- Then, with this one more dimension we can write (θ contains θ_0 now)

$$f(x) = x^T \theta$$

Linear Regression Setup

Problem Setup

- Train set $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$
- Take train features and make it a $n \times (d+1)$ matrix, and y a vector:

$$X = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_n^T \end{bmatrix} \quad y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

- Then, the empirical risk is $\frac{1}{n} \|X\theta - y\|^2$

Finding The Estimated Parameters

Have our loss: $\frac{1}{n} \|X\theta - y\|^2$

- Could optimize it with SGD, etc...
- But the minimum also has a closed-form solution (vector calculus):

Hat: indicates an estimate $\hat{\theta} = (X^T X)^{-1} X^T y$

 Not always invertible...

“Normal Equations”

How Good are the Estimated Parameters?

Now we have parameters $\hat{\theta} = (X^T X)^{-1} X^T y$

- How good are they?
- Predictions are $f(x_i) = \hat{\theta}^T x_i = ((X^T X)^{-1} X^T y)^T x_i$
- Errors (“residuals”)

$$|y_i - f(x_i)| = |y_i - \hat{\theta}^T x_i| = |y_i - ((X^T X)^{-1} X^T y)^T x_i|$$

- If data is linear, residuals are 0. Almost never the case!
- **Mean squared error** on a test set

$$\frac{1}{m} \sum_{i=n+1}^{n+m} (\hat{\theta}^T x_i - y_i)^2$$

Linear Regression → Classification?

What if we want the same idea, but y is 0 or 1?

- Need to convert the $\theta^T x$ to a probability in $[0,1]$

$$p(y = 1|x) = \frac{1}{1 + \exp(-\theta^T x)}$$

Logistic function

Why does this work?

- If $\theta^T x$ is really big, $\exp(-\theta^T x)$ is really small $\rightarrow p$ close to 1
- If really negative \exp is huge $\rightarrow p$ close to 0

“Logistic Regression”

Reading

- Linear regression, logistic regression, stochastic gradient descent by Prof. Zhu
<https://pages.cs.wisc.edu/~jerryzhu/cs540/handouts/regression.pdf>