
CS 540 Introduction to Artificial Intelligence
Games II

University of Wisconsin-Madison
Spring 2022

Outline

• Sequential-move games
– Game trees, minimax, search approaches

• Speeding up sequential-move game search
– Pruning, heuristics

Sequential-Move Games

More complex games with multiple moves
• Instead of normal form, extensive form
• Represent with a tree
• Rewards at leaves
• Find strategies: perform search over the tree

• Nash equilibrium still well-defined
– Backward induction Wiki

II-Nim: Example Sequential-Move Game

2 piles of sticks, each with 2 sticks.
• Each player takes one or more sticks from pile
• Take last stick: lose

• Two players: Max and Min
• If Max wins, its score is +1; otherwise -1
• Min’s score is –Max’s (two-player zero-sum)
• Use Max’s as the score of the game

(ii, ii)

Game Trajectory
(ii, ii)

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)
Min takes two sticks from the other pile

(i,-)

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)
Min takes two sticks from the other pile

(i,-)
Max takes the last stick

(-,-)
Max gets score -1

Game tree for II-Nim
(ii ii) Max

Convention: score is w.r.t. the first
player Max. Min’s score = – Max

who is to move
at this state

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(ii ii) Max

(i ii) Min (- ii) MinSymmetry
(i ii) = (ii i)

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min
+1

(- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- i) Min
+1

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

Game tree for II-Nim

(ii ii) Max

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min
-1

(i ii) Min
-1

Game tree for II-Nim

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min
-1

(i ii) Min
-1

(ii ii) Max
-1

Game tree for II-Nim

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min
-1

(i ii) Min
-1

(ii ii) Max
-1

Game tree for II-Nim

(ii ii) Max
-1

(i ii) Min
-1

(- ii) Min
-1

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- -) Min
-1

(- i) Min
+1

(- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

The first player always loses, if the
second player plays optimally!

Game tree for II-Nim

Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves.
Player B goes next and has 3 moves. Player A goes next and has 2 moves.
Player B then has one move.

How many nodes are there in the minimax tree, including termination
nodes (leaves)?
• A. 23
• B. 65
• C. 41
• D. 2

Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves.
Player B goes next and has 3 moves. Player A goes next and has 2 moves.
Player B then has one move.

How many nodes are there in the minimax tree, including termination
nodes (leaves)?
• A. 23
• B. 65
• C. 41
• D. 2

Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves.
Player B goes next and has 3 moves. Player A goes next and has 2 moves.
Player B then has one move.
How many nodes are there in the minimax tree, including termination
nodes (leaves)?
• A. 23
• B. 65 (1 + 4 + 4*3 + 4*3*2 + 4*3*2 = 65. Note the root and leaf

nodes.)
• C. 41
• D. 2

Break & Quiz
Q 2.2: During minimax tree search, must we examine every node?

• A. Always
• B. Sometimes
• C. Never

Break & Quiz
Q 2.2: During minimax tree search, must we examine every node?

• A. Always
• B. Sometimes
• C. Never

Break & Quiz
Q 2.2: During minimax tree search, must we examine every node?

• A. Always (No: consider layer k, where we take the max of all the mins
of its children at layer k+1. If the current value of a min node at k+1
already smaller than the current max, we don’t need to continue the
minimization.)

• B. Sometimes
• C. Never (No: the event above may simply not happen).

Our Approach So Far

We find the minimax value/strategy bottom up

• Minimax value: score of terminal node when both players play
optimally
– Max’s turn, take max of children
– Min’s turn, take min of children

• Can implement this as depth-first search: minimax algorithm

function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if (s is a terminal state)
then return (terminal value of s)
else

α := – infinity
for each s’ in Succ(s)

α := max(α , Min-value(s’))
return α

function Min-Value(s)
output: best-score (for Min) available from s

if (s is a terminal state)
then return (terminal value of s)
else

β := infinity
for each s’ in Succs(s)

β := min(β , Max-value(s’))
return β

Minimax Algorithm
Time complexity?
• O(bm)
Space complexity?
• O(bm)

S

A

C
200

D
100

B

E
120

F
20

max

min

max

min

G

H
150

I
100

α=-¥

Minimax algorithm in execution

Minimax algorithm in execution

S

A

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=-¥

β=+¥

H
150

I
100

S

A

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=-¥

β=200

H
150

I
100

The execution on the
terminal nodes is omitted.

Minimax algorithm in execution

S

A
100

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=-¥

β=100

H
150

I
100

Minimax algorithm in execution

S

A
100

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=100

β=100

H
150

I
100

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

α=100

β=+¥A
100

C
200

D
100

H
150

I
100

Minimax algorithm in execution

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=120A
100

C
200

D
100

α=100

H
150

I
100

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=-¥

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=150

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=150

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G
150

β=20A
100

C
200

D
100

α=100

H
150

I
100

Minimax algorithm in execution

S

B
20

E
120

F
20

max

min

max

min

G
150

A
100

C
200

D
100

α=100

H
150

I
100

Can We Do Better?

One downside: we had to examine the entire tree
An idea to speed things up: pruning
• Goal: want the same minimax value, but faster
• We can get rid of bad branches
• Same principle as quiz question

Alpha-beta pruning
function Max-Value (s,α,β)
inputs:

s: current state in game, Max about to play
α: best score (highest) for Max along path to s
β: best score (lowest) for Min along path to s

output: min(β , best-score (for Max) available from s)
if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succ(s)

α := max(α , Min-value(s’,α,β))
if (α ≥ β) then return β /* alpha pruning */

return α
function Min-Value(s,α,β)
output: max(α , best-score (for Min) available from s)

if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succs(s)

β := min(β , Max-value(s’,α,β))
if (α ≥ β) then return α /* beta pruning */
return β

Starting from the root:
Max-Value(root, -¥, +¥)

How effective is alpha-beta pruning?

• Depends on the order of successors!
– Best case, the #of nodes to search is O(bm/2)
– Happens when each player's best move is the leftmost child.
– The worst case is no pruning at all.

• In DeepBlue, the average branching factor was about 6
with alpha-beta instead of 35-40 without.

Alpha-Beta Pruning

Minimax With Heuristics

Note that long games may require huge computation
• To deal with this: limit d for the search depth
• Q: What to do at depth d, but no termination yet?

– A: Use a heuristic evaluation function e(x)

Credit: Dana Nau

Heuristic Evaluation Functions
• e(x) can be any computable function of x; e.g. a weighted sum

of features (like our linear models)

• Chess example: fi(x) = difference between number of white
and black, with i ranging over piece types.
– Set weights according to piece importance
– E.g., 1(# white pawns - # black pawns) + 3(#white knights - # black

knights)

Going Further

• Monte Carlo tree search (MCTS)
– Uses random sampling of the search space
– Choose some children (heuristics to figure out #)
– Record results, use for future play
– Self-play

• AlphaGo and other big results!

Credit: Surag Nair

From Extensive Form back to Normal Form Game
• A pure strategy for a player is the

mapping between all possible states the
player can see, to the move the player
would make.

• Player A has 4 pure strategies:
A’s strategy I: (1àL, 4àL)
A’s strategy II: (1àL, 4àR)
A’s strategy III: (1àR, 4àL)
A’s strategy IV: (1àR, 4àR)

• Player B has 3 pure strategies:
B’s strategy I: (2àL, 3àR)
B’s strategy II: (2àM, 3àR)
B’s strategy III: (2àR, 3àR)

• How many pure strategies if each player
can see N states, and has b moves at
each state?

(1)-
a

(4)-
a

(3)-
b

(2)-
b

()
+5

()
+4

()
-1

()
+3

()
+7

L

R

RR
M

L

RL

Matrix Normal Form of games

• The matrix normal form is the game value matrix indexed by each player’s
strategies.

A’s strategy I: (1àL, 4àL)
A’s strategy II: (1àL, 4àR)
A’s strategy III: (1àR, 4àL)
A’s strategy IV: (1àR, 4àR)
B’s strategy I: (2àL, 3àR)
B’s strategy II: (2àM, 3àR)
B’s strategy III: (2àR, 3àR)

(1)-
a

(4)-
a

(3)-
b

(2)-
b

()
+5

()
+4

()
-1

()
+3

()
+7

L

R

RR
M

L

RL

B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

The matrix encodes
every outcome of the

game! The rules etc. are
no longer needed.

Another example of normal form

• How many pure strategies does A have?
• How many does B have?
• What is the matrix form of this game?

(1)
-a

(3)
-b

(2)
-b

()
+2()

+5
()
+2

L

(4)
-a

()
+4

()
-1

R

R
R L

L

RL

• How many pure strategies does A have? 4
A-I (1àL, 4àL) A-II (1àL,4àR) A-III (1àR,4àL) A-IV (1àR, 4àR)

• How many does B have? 4
B-I (2àL, 3àL) B-II (2àL,3àR) B-III (2àR,3àL) B-IV (2àR, 3àR)

• What is the matrix form of this game?

Matrix normal form example
(1)
-a

(3)
-b

(2)
-b

()
+2()

+5()
+2

L

(4)
-a

()
+4

()
-1

R

R
R L

L

RL

2

2

2
2

B-IVB-IIIB-IIB-I

525A-IV

525A-III

244A-II
2-1-1A-I

Minimax in Matrix Normal Form
• Player A: for each

strategy, consider all B’s
counter strategies (a
row in the matrix), find
the minimum value in
that row. Pick the row
with the maximum
minimum value.

• Here maximin=5

B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

(1)
-a

(4)
-a

(3)
-b

(2)
-b

()
+5

()
+4

()
-1

()
+3

()
+7

L

R

RR
M

L

RL

Minimax in Matrix Normal Form
• Player B: find the maximum value in

each column. Pick the column with
the minimum maximum value.

• Here minimax = 5

B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

(1)
-a

(4)
-a

(3)
-b

(2)
-b

()
+5

()
+4

()
-1

()
+3

()
+7

L

R

RR
M

L

RL

Fundamental game theory result (proved by
von Neumann):

In a 2-player, zero-sum game of perfect
information (sequential moves),
Minimax==Maximin. And there always
exists an optimal pure strategy for each
player.

Minimax in Matrix Normal Form
• We can also check for mutual best

responses

B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

(1)
-a

(4)
-a

(3)
-b

(2)
-b

()
+5

()
+4

()
-1

()
+3

()
+7

L

R

RR
M

L

RL

Minimax in Matrix Normal Form
• Player B: find the

maximum value in each
column. Pick the column
with the minimum
maximum value.

• Here minimax = 5

B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

(1)
-a

(4)
-a

(3)
-b

(2)
-b

()
+5

()
+4

()
-1

()
+3

()
+7

L

R

RR
M

L

RL

Fundamental game theory result
(proved by von Neumann):

In a 2-player, zero-sum game
of perfect information,
Minimax==Maximin. And
there always exists an
optimal pure strategy for
each player.

Interestingly, A can tell B in
advance what strategy A will
use (the maximin), and this
information will not help B!
Similarly B can tell A what

strategy B will use.
In fact A knows what B’s

strategy will be.
And B knows A’s too.

And A knows that B knows
…

The game is at an equilibrium

