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Outline

• Sequential-move games
– Game trees, minimax, search approaches

• Speeding up sequential-move game search
– Pruning, heuristics



Sequential-Move Games

More complex games with multiple moves
• Instead of normal form, extensive form
• Represent with a tree
• Rewards at leaves
• Find strategies: perform search over the tree

• Nash equilibrium still well-defined
– Backward induction Wiki



II-Nim: Example Sequential-Move Game

2 piles of sticks, each with 2 sticks. 
• Each player takes one or more sticks from pile
• Take last stick: lose

• Two players: Max and Min
• If Max wins, its score is +1; otherwise -1 
• Min’s score is –Max’s (two-player zero-sum)
• Use Max’s as the score of the game

(ii, ii)



Game Trajectory
(ii, ii) 



Game Trajectory
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Max takes one stick from one pile

(i, ii)



Game Trajectory
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Max takes one stick from one pile

(i, ii)
Min takes two sticks from the other pile

(i,-)



Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)
Min takes two sticks from the other pile

(i,-)
Max takes the last stick

(-,-)
Max gets score -1



Game tree for II-Nim
(ii ii) Max

Convention: score is w.r.t. the first 
player Max.  Min’s score = – Max

who is to move 
at this state

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score



(ii ii) Max

(i  ii) Min (- ii) MinSymmetry
(i ii) = (ii i)

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim



(ii ii) Max

(i  ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim



(ii ii) Max

(i  ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim



(ii ii) Max

(i  ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim



(ii ii) Max

(i  ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim



(ii ii) Max

(i  ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim



(ii ii) Max

(i  ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim



(ii ii) Max

(i  ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

(- -) Max
+1

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim



(ii ii) Max

(i  ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim



(ii ii) Max

(i  ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min 
+1 

(- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- i) Min
+1

Game tree for II-Nim



(ii ii) Max

(i  ii) Min (- ii) Min

(i i) Max
+1 

(- ii) Max 
+1 

(- i) Max   
-1 

(- i) Max   
-1 

(- -) Max
+1

(- i) Min 
+1 

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

Game tree for II-Nim



(ii ii) Max

(i i) Max
+1 

(- ii) Max 
+1 

(- i) Max   
-1 

(- i) Max   
-1 

(- -) Max
+1

(- i) Min 
+1 

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min  
-1 

(i  ii) Min   
-1 

Game tree for II-Nim



(i i) Max
+1 

(- ii) Max 
+1 

(- i) Max   
-1 

(- i) Max   
-1 

(- -) Max
+1

(- i) Min 
+1 

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min  
-1 

(i  ii) Min  
-1 

(ii ii) Max  
-1 

Game tree for II-Nim



(i i) Max
+1 

(- ii) Max 
+1 

(- i) Max   
-1 

(- i) Max   
-1 

(- -) Max
+1

(- i) Min 
+1 

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min  
-1 

(i  ii) Min  
-1 

(ii ii) Max  
-1 

Game tree for II-Nim



(ii ii) Max  
-1 

(i  ii) Min
-1 

(- ii) Min  
-1 

(i i) Max
+1 

(- ii) Max 
+1 

(- i) Max   
-1 

(- i) Max   
-1 

(- -) Max
+1

(- i) Min 
+1 

(- -) Min
-1

(- i) Min
+1

(- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players: 
Max and Min

Max wants the largest score
Min wants the smallest score

The first player always loses, if the 
second player plays optimally!

Game tree for II-Nim



Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves. 
Player B goes next and has 3 moves. Player A goes next and has 2 moves. 
Player B then has one move.

How many nodes are there in the minimax tree, including termination 
nodes (leaves)? 
• A. 23
• B. 65
• C. 41
• D. 2
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Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves. 
Player B goes next and has 3 moves. Player A goes next and has 2 moves. 
Player B then has one move.
How many nodes are there in the minimax tree, including termination 
nodes (leaves)? 
• A. 23
• B. 65 (1 + 4 + 4*3 + 4*3*2 + 4*3*2 = 65. Note the root and leaf 

nodes.)
• C. 41
• D. 2



Break & Quiz
Q 2.2: During minimax tree search, must we examine every node?

• A. Always
• B. Sometimes
• C. Never
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Break & Quiz
Q 2.2: During minimax tree search, must we examine every node?

• A. Always (No: consider layer k, where we take the max of all the mins 
of its children at layer k+1. If the current value of a min node at k+1
already smaller than the current max, we don’t need to continue the 
minimization.)

• B. Sometimes
• C. Never (No: the event above may simply not happen).



Our Approach So Far

We find the minimax value/strategy bottom up

• Minimax value: score of terminal node when both players play 
optimally
– Max’s turn, take max of children
– Min’s turn, take min of children

• Can implement this as depth-first search: minimax algorithm



function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if ( s is a terminal state )
then return ( terminal value of s )
else 

α := – infinity
for each s’ in Succ(s)

α := max( α , Min-value(s’))
return α

function Min-Value(s)
output: best-score (for Min) available from s

if ( s is a terminal state )
then return ( terminal value of s)
else 

β := infinity
for each s’ in Succs(s)

β := min( β , Max-value(s’))
return β

Minimax Algorithm
Time complexity?
• O(bm)
Space complexity?
• O(bm)
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Minimax algorithm in execution
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The execution on the 
terminal nodes is omitted.

Minimax algorithm in execution
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Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=150
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Minimax algorithm in execution
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Can We Do Better?

One downside: we had to examine the entire tree
An idea to speed things up: pruning
• Goal: want the same minimax value, but faster
• We can get rid of bad branches
• Same principle as quiz question



Alpha-beta pruning
function Max-Value (s,α,β)
inputs:

s: current state in game, Max about to play
α: best score (highest) for Max along path to s
β: best score (lowest) for Min along path to s

output: min(β , best-score (for Max) available from s)
if ( s is a terminal state )
then return ( terminal value of s )
else for each s’ in Succ(s)

α := max( α , Min-value(s’,α,β))
if ( α ≥ β ) then return β   /* alpha pruning */

return α
function Min-Value(s,α,β)
output: max(α , best-score (for Min) available from s )

if ( s is a terminal state )
then return ( terminal value of s)
else for each s’ in Succs(s)

β := min( β , Max-value(s’,α,β))
if (α ≥ β ) then return α   /* beta pruning */
return β

Starting from the root:
Max-Value(root, -¥, +¥)



How effective is alpha-beta pruning?

• Depends on the order of successors!
– Best case, the #of nodes to search is O(bm/2)
– Happens when each player's best move is the leftmost child.  
– The worst case is no pruning at all.

• In DeepBlue, the average branching factor was about 6 
with alpha-beta instead of 35-40 without.

Alpha-Beta Pruning



Minimax With Heuristics

Note that long games may require huge computation
• To deal with this: limit d for the search depth
• Q: What to do at depth d, but no termination yet?

– A: Use a heuristic evaluation function e(x)

Credit: Dana Nau



Heuristic Evaluation Functions
• e(x) can be any computable function of x; e.g. a weighted sum 

of features (like our linear models)

• Chess example: fi(x) = difference between number of white 
and black, with i ranging over piece types.
– Set weights according to piece importance
– E.g., 1(# white pawns - # black pawns) + 3(#white knights - # black 

knights)



Going Further

• Monte Carlo tree search (MCTS)
– Uses random sampling of the search space
– Choose some children (heuristics to figure out #)
– Record results, use for future play
– Self-play

• AlphaGo and other big results!

Credit: Surag Nair



From Extensive Form back to Normal Form Game
• A pure strategy for a player is the 

mapping between all possible states the 
player can see, to the move the player 
would make.

• Player A has 4 pure strategies:
A’s strategy I: (1àL, 4àL)
A’s strategy II: (1àL, 4àR)
A’s strategy III: (1àR, 4àL)
A’s strategy IV: (1àR, 4àR)

• Player B has 3 pure strategies:
B’s strategy I: (2àL, 3àR)
B’s strategy II: (2àM, 3àR)
B’s strategy III: (2àR, 3àR)

• How many pure strategies if each player 
can see N states, and has b moves at 
each state?

(1)-
a

(4)-
a

(3)-
b

(2)-
b

( )
+5

( )
+4

( )
-1

( )
+3

( )
+7

L

R

RR
M

L

RL



Matrix Normal Form of games

• The matrix normal form is the game value matrix indexed by each player’s 
strategies.

A’s strategy I: (1àL, 4àL)
A’s strategy II: (1àL, 4àR)
A’s strategy III: (1àR, 4àL)
A’s strategy IV: (1àR, 4àR)
B’s strategy I: (2àL, 3àR)
B’s strategy II: (2àM, 3àR)
B’s strategy III: (2àR, 3àR)

(1)-
a

(4)-
a

(3)-
b

(2)-
b

( )
+5

( )
+4

( )
-1

( )
+3

( )
+7

L

R

RR
M

L

RL

B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

The matrix encodes 
every outcome of the 

game!  The rules etc. are 
no longer needed.



Another example of normal form

• How many pure strategies does A have?
• How many does B have?
• What is the matrix form of this game?

(1)
-a

(3)
-b

(2)
-b

( )
+2( )

+5
( )
+2

L

(4)
-a

( )
+4

( )
-1

R

R
R L

L

RL



• How many pure strategies does A have?  4
A-I (1àL, 4àL)  A-II (1àL,4àR)  A-III (1àR,4àL)  A-IV (1àR, 4àR)

• How many does B have?  4
B-I (2àL, 3àL)  B-II (2àL,3àR)  B-III (2àR,3àL)  B-IV (2àR, 3àR)

• What is the matrix form of this game?

Matrix normal form example
(1)
-a

(3)
-b

(2)
-b

( )
+2( )

+5( )
+2

L

(4)
-a

( )
+4

( )
-1

R

R
R L

L

RL

2

2

2
2

B-IVB-IIIB-IIB-I

525A-IV

525A-III

244A-II
2-1-1A-I



Minimax in Matrix Normal Form
• Player A: for each 

strategy, consider all B’s 
counter strategies (a 
row in the matrix), find 
the minimum value in 
that row.  Pick the row 
with the maximum 
minimum value.

• Here maximin=5

B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

(1)
-a

(4)
-a

(3)
-b

(2)
-b

( )
+5

( )
+4

( )
-1

( )
+3

( )
+7

L

R

RR
M

L

RL



Minimax in Matrix Normal Form
• Player B: find the maximum value in 

each column.  Pick the column with 
the minimum maximum value.

• Here minimax = 5

B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

(1)
-a

(4)
-a

(3)
-b

(2)
-b

( )
+5

( )
+4

( )
-1

( )
+3

( )
+7

L

R

RR
M

L

RL

Fundamental game theory result (proved by 
von Neumann):

In a 2-player, zero-sum game of perfect 
information (sequential moves), 
Minimax==Maximin.  And there always 
exists an optimal pure strategy for each 
player.



Minimax in Matrix Normal Form
• We can also check for mutual best 

responses

B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

(1)
-a

(4)
-a

(3)
-b

(2)
-b

( )
+5

( )
+4

( )
-1

( )
+3

( )
+7

L

R

RR
M

L

RL



Minimax in Matrix Normal Form
• Player B: find the 

maximum value in each 
column.  Pick the column 
with the minimum 
maximum value.

• Here minimax = 5

B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

(1)
-a

(4)
-a

(3)
-b

(2)
-b

( )
+5

( )
+4

( )
-1

( )
+3

( )
+7

L

R

RR
M

L

RL

Fundamental game theory result 
(proved by von Neumann):

In a 2-player, zero-sum game 
of perfect information, 
Minimax==Maximin.  And 
there always exists an 
optimal pure strategy for 
each player.

Interestingly, A can tell B in 
advance what strategy A will 
use (the maximin), and this 
information will not help B!
Similarly B can tell A what 

strategy B will use.
In fact A knows what B’s 

strategy will be.
And B knows A’s too.

And A knows that B knows
…

The game is at an equilibrium


