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Outline

e Sequential-move games

— Game trees, minimax, search approaches

* Speeding up sequential-move game search

— Pruning, heuristics



Sequential-Move Games

More complex games with multiple moves
* Instead of normal form, extensive form

* Represent with a tree

* Rewards at leaves

* Find strategies: perform search over the tre

* Nash equilibrium still well-defined

— Backward induction Wik



II-Nim: Example Sequential-Move Game

2 piles of sticks, each with 2 sticks.

Each player takes one or more sticks from pile
Take last stick: lose -

Two players: Max and Min

If Max wins, its score is +1; otherwise -1

Min’s score is —Max’s (two-player zero-sum)
Use Max’s as the score of the game



Game Trajectory
(ii, ii)
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Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)

Min takes two sticks from the other pile

(ir_)
Max takes the last stick

(_I_)

Max gets score -1



Game tree for II-Nim

Two players: who 1s to move
Max and Min (i i)y MAX—T——""" 4 this state |

Max wants the largest score
Convention: score 1s w.r.t. _the first Min wants the smallest score
layer Max. Min’s score = — Max




Game tree for [I-Nim
Two players:

Max and Min (}“) Max\

Symmetry .y Min _ iy Min
(iif) = (ii 1) i -

Max wants the largest score
Min wants the smallest score
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(_ ”) Max (I I) Max (_ I) Max

Max wants the largest score
Min wants the smallest score



Game tree for II-Nim
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Game tree for II-Nim
Two players:

Max and Min (}n) Max\

Il Min (- ii) Min

T~
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Game tree for II-Nim
Two players:

Max and Min (}n) Max\

Il Min (- i) Min\
}I) Max\ (i) Max (- i) Max (- i) Max (_1_) Max
+
(- iyMn [ Min | [ j)Min

-1

Max wants the largest score
Min wants the smallest score



Game tree for II-Nim
Two players:

Max and Min (}n) Max\

Il Min (- i) Min\
} ! Max\ LA (i) Max | [(--) Max
+1
_ = Min _ \ Min _ = Min _ y Min
(-_i) (- -) (- i) (1 )
-1 -

Max wants the largest score
Min wants the smallest score



Two players:

Game tree for II-Nim

Max and Min (}n) Max\
Il Min (- i) Min\
(- ii) Max (i i) Max (- i) Max (- i) Max (- -) Max
/ \ 1
(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
-1 -1 1

Max wants the largest score
Min wants the smallest score




Two players:

Game tree for II-Nim

Max and Min (}n) Max\
Il Min (- i) Min\
(- ii) Max (i i) Max (- i) Max (- i) Max (- -) Max
/ \ 1
(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
-1 -1 1

(- -) Max
+1 Max wants the largest score

Min wants the smallest score




Two players:

Game tree for II-Nim

Max and Min (}n) Max\
Il Min (- i) Min\
(- ii) Max (i i) Max (- i) Max (- i) Max (- -) Max
/ \ 1
(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
-1 -1 1

(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score




Game tree for II-Nim
Two players:

Max and Min y Max\

/(I ) Mm\ (- i7 Min\
(- ii) Max (i i) Max (- i) Max (- i) Max 21_) Max
(-_i) Min <-h‘" (- i) "D (- o) Min (- -) Min
1 1 1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score



Game tree for II-Nim

Two players:
Max and Min

(}”) Max\

(- ii) Min

N

(- -) Max

+1

) (- i) 'V'Q
(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
+1 -1 +1 -1 -1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score




Game tree for II-Nim

Two players:
Max and Min (i ii) Max

/(;}i) Max\ (i i) Max (- i) Max (- i) Max (_1_) Max
+1 -1 -1 +

(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min

+1 -1 +1 -1 1

(- -) Max (- -) Max

+1 +1 Max wants the largest score

Min wants the smallest score



Game tree for II-Nim

Two players:
Max and Min

(i ii) Min (- ii) Min
/(_41” Max\ (i) Max (- i) Max (- i) Max (_1_) Max
+1 -1 -1 +
(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
+1 -1 +1 -1 1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score



Game tree for II-Nim

Two players:

Max and Min (ii_ii) Max\
| i Min (- ii) Min
-1 / \
(- ii) Max (i i) Max (- i) Max (- i) Max (- -) Max
/ \ +1 -1 -1 +1

(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
+1 -1 +1 -1 1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score




Game tree for II-Nim

Two players:
Max and Min

/f;ﬂll) Max
(_ I) Min (
+1 -1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score



Break & Quiz

Q 2.1: We are playing a game where Player A goes first and has 4 moves.
Player B goes next and has 3 moves. Player A goes next and has 2 moves.
Player B then has one move.

How many nodes are there in the minimax tree, including termination
nodes (leaves)?

A.23
B. 65
C.41
D. 2
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Break & Quiz

Q 2.1: We are playing a game where Player A goes first and has 4 moves.
Player B goes next and has 3 moves. Player A goes next and has 2 moves.
Player B then has one move.

How many nodes are there in the minimax tree, including termination
nodes (leaves)?

A. 23

B.65(1+4+4*3+4*3*2 +4*3*2 =65. Note the root and leaf
nodes.)

C.41
D. 2
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Q 2.2: During minimax tree search, must we examine every node?

* A. Always
* B. Sometimes
* C. Never
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Break & Quiz

Q 2.2: During minimax tree search, must we examine every node?

* A. Always (No: consider layer k, where we take the max of all the mins
of its children at layer k+1. If the current value of a min node at k+1
already smaller than the current max, we don’t need to continue the
minimization.)

e B. Sometimes

* C. Never (No: the event above may simply not happen).



Our Approach So Far

We find the minimax value/strategy bottom up

* Minimax value: score of terminal node when both players play
optimally
— Max’s turn, take max of children
— Min’s turn, take min of children

 Can implement this as depth-first search: minimax algorithm



Minimax Algorithm

function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if (s is a terminal state )
then return ( terminal value of s )

else
a :=—infinity
for each s’ in Succ(s)
a := max( a, Min-value(s’))
return o

function Min-Value(s)
output: best-score (for Min) available from s

if (s is a terminal state )
then return ( terminal value of s)
else
B :=infinity
for each s’ in Succs(s)
B :=min( B, Max-value(s’))

return

Time complexity?
° O(bm)
Space complexity?
e O(bm)



Minimax algorithm in execution

max GLOO@

'




Minimax algorithm in execution

max




Minimax algorithm in execution

max GLOO@

'

max E G

min
The execution on the
terminal nodes is omitted.
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Minimax algorithm in execution
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Minimax algorithm in execution
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Minimax algorithm in execution
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Minimax algorithm in execution
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Minimax algorithm in execution

o= 100
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Can We Do Better?

One downside: we had to examine the entire tree

An idea to speed things up: pruning
 @Goal: want the same minimax value, but faster
* We can get rid of bad branches
* Same principle as quiz question




Alpha-beta pruning

function Max-Value (s,a,B)
inputs:

s: current state in game, Max about to play

a: best score éhighest) for Max along path to s

B: best score (lowest) for Min along path to s
output: min(B , best-score (for Max) available from s)

if (s is aterminal state )
then return ( terminal value of s )
else for each s’ in Succ(s)
o :=max(a, Min-value(s’,a,B?)
if (o> B )thenreturn B /* alpha pruning */
return a

function Min-Value(s,a,B)
output: max(a , best-score (for Min) available from s )

if (s is aterminal state )
then return ( terminal value of s)
else for each s’ in Succs(s)
B:=min(B, Max-value(s;a,B))
if (0 2 B ) then return o /* beta pruning */
return B

Starting from the root:
Max-Value(root, -oo, +c0)



Alpha-Beta Pruning

How effective is alpha-beta pruning?

* Depends on the order of successors!
— Best case, the #of nodes to search is O(b™/2)

— Happens when each player's best move is the leftmost child.
— The worst case is no pruning at all.

* In DeepBlue, the average branching factor was about 6
with alpha-beta instead of 35-40 without.



Minimax With Heuristics

Note that long games may require huge computation

* To deal with this: limit d for the search depth
* Q: What to do at depth d, but no termination yet?

— A: Use a heuristic evaluation function e(x)

function MINIMAX(x, d) returns an estimate of x’s utility value
inputs: x, current state in game
d, an upper bound on the search depth

if 7 is a terminal state then return Max’s payoff at =
else if ¢ = 0 then return ¢(x)
else if it is Max’s move at x then

return max{MINIMAX(y,d—1) : y is a child of x}
else return min{ MINIMAX(y,d—1) : y is a child of x}

Credit: Dana Nau



Heuristic Evaluation Functions

e(x) can be any computable function of x; e.g. a weighted sum
of features (like our linear models)

e(x) = wifi(z) + wafol@) + ... + wy fulz)

Chess example: fi(x) = difference between number of white
and black, with i ranging over piece types.
— Set weights according to piece importance

— E.g., 1(# white pawns - # black pawns) + 3(#white knights - # black
knights)



Going Further

 Monte Carlo tree search (MCTS)
— Uses random sampling of the search space
— Choose some children (heuristics to figure out #)
— Record results, use for future play
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® AI p h a G O a n d Ot h e r b ig re S u |tS ! The agent (Black) learns to capture walls and corners in the early game




From Extensive Form back to Normal Form Game

A pure strategy for a player is the
mapping between all possible states the
player can see, to the move the player o

would make. / \R

Player A has 4 pure strategies:

A’s strategy I: (12, 4=2>L)
A’s strategy Il: (1L, 4=>R)
A’s strategy Ill: (1R, 4=>L)

A’s strategy IV: (12R, 42R) +g

Player B has 3 pure strategies. / \

B’s strategy I: (2L, 3=R)
B’s strategy Il: (2>M, 32>R)
B’s strategy Ill: (2R, 32>R)

How many pure strategies if each player
can see N states, and has b moves at
each state?



Matrix Normal Form of games

A’s strategy |: (1L, 4->L)

As strategy II: (1L, 4>R) '/ \
A's strategy lll: (12R, 4->L)

A’s strategy IV: (12R, 42R)

B's strategy I: (2L, 35R) / \\ \
B’s strategy Il: (2->M, 32R)

B’s strategy lll: (2R, 32R) +
va \*
() ()
The matrix normal form is the game value matrix indexed by each player’s -1 +4
strategies.
B-| B-Il |B-IlI The matrix encodes
. 1 every outcome of the
7 3 ' game! The rules etc. are
Al |7 |3 |4 < no longer needed.
A-lll |5 5 5
A-IV |5 5 5




Another example of normal form

+5

L/ \ /\+2
[N

« How many pure strategies does A have?
e How many does B have?
 What is the matrix form of this game?



Matrix normal form example

L
L/ \ B-I [B-Il [B-lll [B-IV
(_%) (©)

A-l -1 -1 2 2

-b
\R

/ nEHEEE

()

() e A-llI

gl gl N
NI N DN

5 2
L/ &* A-IV | 5 2
)

® How many pure strategies does A have? 4
A-l (1L, 4>L) A-ll (1=>L,4>R) A-lll (12R,4>L) AV (1R, 45R)

® How many does B have? 4
B-1 (2L, 3°L) B-ll (25L,32>R) B-lll (2°5R,35L) B-IV (22R, 3°>R)

®  What is the matrix form of this game?



Minimax in Matrix Normal Form

(1)

* Player A: for each L INR
strategy, consider all B’s % 5
counter strategies (a L/ M\\ 4 \
row in the matrix), find = = y (-a)\* E
the minimum value in VO
that row. Pick the row i

)
4

. . B-I B-1l | B-lll
with the maximum W e
minimum value. N Y

e Here maximin=5 il I R
A-IV | 5 5 5




Minimax in Matrix Normal Form

each column. Pick the column with
the minimum maximum value.

-b -b
. . L R R
Here minimax =5 M
() () (4) ()
+7 +3 -a +5
/e

() ()
Fundamental game theory result (proved by -1 +4

(1)
Player B: find the maximum value in |/ a &
(2) 3)

von Neumann): B-1 IB-Il 1Bl
In a 2-player, zero-sum game of perfect |17 3 |1
information (sequential moves),
Minimax==Maximin. And there always Al A S b
exists an optimal pure strategy foreach |A-lll |5 |5
player. A-IV |5 5 5




Minimax in Matrix Normal Form

We can also check for mutual best

(1)
2N
2) 3)

-b
L \ R
M
() () (4)
+7 +3 a
L

()
1

responses
Bl B-Il B-Ill
A-l 7 3 EB
A-ll 7 (3 4
A-lll 5 (5 5
A-IV 5 5 5

-b
&
()
+5

/N

()
+4



Minimax in Matrix Normal Form

(1)
Interestingly, A can tell B irN I/ &
advance what strategy A will @ %

-b
use (the maximin), and this L/ \\ x
information will not help B! 0 M N " )
Similarly B can tell A what +7 +3 e +5

strategy B will use. / \2

In fact A knows what B’s () ()
strategy will be. i

And B knows A’s too. B-l | B-Il |B-lI
And A knows that Bknows F [a1 [7 [3 |-
oo o A-ll |7 3 4
The game is at an equilibrium INTRG 5 z
A-IV | 5 5 5




