
slide 1

CS540 Intro to AI
Uninformed Search

University of Wisconsin-Madison
Spring 2022

slide 2

Many AI problems can be
formulated as search.

slide 3

slide 4

http://xkcd.com/1134/

slide 5

http://xkcd.com/1134/

slide 6

The search problem

• State space S : all valid configurations
• Initial state I={(CSDF,)} Í S
• Goal state G={(,CSDF)} Í S
• Successor function succs(s)Í S : states reachable in

one step from state s
§ succs((CSDF,)) = {(CD, SF)}
§ succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}

• Cost(s,s’)=1 for all steps. (weighted later)
• The search problem: find a solution path from a state

in I to a state in G.
§ Optionally minimize the cost of the solution.

C S D F

slide 7

Search examples
• 8-puzzle

• States = 3x3 array configurations
• action = up to 4 kinds of movement
• Cost = 1 for each move

slide 8

Search examples
• Water jugs: how to get 1?

State = (x,y), where x = number of gallons of water in the 5-
gallon jug and y is gallons in the 2-gallon jug

Initial State = (5,0)
Goal State = (*,1), where * means any amount

5 2

slide 9

Search examples
• Water jugs: how to get 1?

State = (x,y), where x = number of gallons of water in the 5-
gallon jug and y is gallons in the 2-gallon jug

Initial State = (5,0)
Goal State = (*,1), where * means any amount
Operators

(x,y) -> (0,y) ; empty 5-gal jug
(x,y) -> (x,0) ; empty 2-gal jug
(x,2) and x<=3 -> (x+2,0) ; pour 2-gal into 5-gal
(x,0) and x>=2 -> (x-2,2) ; pour 5-gal into 2-gal
(1,0) -> (0,1) ; empty 5-gal into 2-gal

5 2

slide 10

Search examples

slide 11

Search examples
• Route finding (State? Successors? Cost weighted)

slide 13

A directed graph in state space

• In general there will be many generated, but un-
expanded states at any given time
• One has to choose which one to expand next

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

C S D F

start goal

slide 14

Different search strategies
• The generated, but not yet expanded states form the

fringe (OPEN).
• The essential difference is which one to expand first.
• Deep or shallow?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

start goal

slide 15

Uninformed search on trees
• Uninformed means we only know:

– The goal test
– The succs() function

• But not which non-goal states are better: that would
be informed search (next topic).

• For now, we also assume succs() graph is a tree.
§ Won’t encounter repeated states.
§ We will relax it later.

• Search strategies: BFS, UCS, DFS, IDS
• Differ by what un-expanded nodes to expand

slide 16

Breadth-first search (BFS)
Expand the shallowest node first
• Examine states one step away from the initial states
• Examine states two steps away from the initial states
• and so on…
ripple

goal

slide 17

Breadth-first search (BFS)
Use a queue (First-in First-out)
1. en_queue(Initial states)
2.While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

slide 18

Breadth-first search (BFS)

queue (fringe, OPEN)
à [A] à

Use a queue (First-in First-out)
1. en_queue(Initial states)
2.While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

slide 19

Breadth-first search (BFS)

queue (fringe, OPEN)
à [CB] à A

Use a queue (First-in First-out)
1. en_queue(Initial states)
2.While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

slide 20

Breadth-first search (BFS)

queue (fringe, OPEN)
à [EDC] à B

Use a queue (First-in First-out)
1. en_queue(Initial states)
2.While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

slide 21

Breadth-first search (BFS)

queue (fringe, OPEN)
à[GFED] à C

If G is a goal, we've seen it, but
we don't stop!

Use a queue (First-in First-out)
1. en_queue(Initial states)
2.While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

slide 22

Breadth-first search (BFS)

queue
à[] àG

... until much later we pop G.

We need back pointers to
recover the solution path.

Looking foolish?
Indeed. But let’s be
consistent…

Use a queue (First-in First-out)
1. en_queue(Initial states)
2.While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Search tree

slide 23

Performance of BFS
• Assume:

§ the graph may be infinite.
§ Goal(s) exists and is only finite steps away.

• Will BFS find at least one goal?
• Will BFS find the least cost goal?
• Time complexity?

§ # states generated
§ Goal d edges away
§ Branching factor b

• Space complexity?
§ # states stored goal

slide 24

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node at

radius d.
§ Have to generate all nodes at radius d.
§ b + b2 + … + bd ~ O(bd)

• Space complexity (bad)
§ Back pointers for all generated nodes O(bd)
§ The queue / fringe (smaller, but still O(bd))

slide 25

What’s in the fringe (queue) for BFS?
• Convince yourself this is O(bd)

goal

slide 26

Performance of search algorithms on trees

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. Edge cost constant, or positive non-decreasing in depth

b: branching factor (assume finite) d: goal depth

slide 27

Q1-1: You are running BFS on a finite tree-structured state space
graph that does not have a goal state. What is the behavior of BFS?

1. Visit all N nodes, then
return one at random

2. Visit all N nodes, then
return “failure”

3. Visit all N nodes, then
return the node
farthest from the initial
state

4. Get stuck in an infinite
loop

slide 28

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing with depth), no otherwise.
• Time complexity (worst case): goal is the last node at

radius d.
§ Have to generate all nodes at radius d.
§ b + b2 + … + bd ~ O(bd)

• Space complexity (bad, Figure 3.11)
§ Back points for all generated nodes O(bd)
§ The queue (smaller, but still O(bd))

Solution:
Uniform-cost

search

slide 29

Uniform-cost search
• Find the least-cost goal
• Each node has a path cost from start (= sum of edge

costs along the path).
• Expand the least cost node first.
• Use a priority queue instead of a normal queue

§ Always take out the least cost item

slide 30

Example

S

A B C

D E G

1
5 8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

slide 31

Uniform-cost search (UCS)
• Complete and optimal (if edge costs ³ e > 0)
• Time and space: can be much worse than BFS

§ Let C* be the cost of the least-cost goal
§ O(bC*/ e)

goal

slide 32

Performance of search algorithms on trees

O(bC*/e)O(bC*/e)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ³ e > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth

slide 33

Q1-2: You are running UCS in the state space graph below. You just called
the successor function on node D. What is the cost of node F?

1. 2

2. 7

3. 8

4. 9

slide 34

Q1-3: You are running UCS in the state space graph below. You just
expanded (visited) node C. What node will the search expand next?

1. A

2. D

3. E

4. F

slide 35

General State-Space Search Algorithm

function general-search(problem, QUEUEING-FUNCTION)
;; problem describes the start state, operators, goal test, and
;; operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or "failure"

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop

if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))
;; succ(s)=EXPAND(s, OPERATORS)
;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops

end

slide 36

Recall the bad space complexity of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing with depth), no otherwise.
• Time complexity (worst case): goal is the last node at

radius d.
§ Have to generate all nodes at radius d.
§ b + b2 + … + bd ~ O(bd)

• Space complexity (bad, Figure 3.11)
§ Back points for all generated nodes O(bd)
§ The queue (smaller, but still O(bd))

Solution:
Depth-first

search

Solution:
Uniform-cost

search

slide 37

Depth-first search
Expand the deepest node first
1. Select a direction, go deep to the end
2. Slightly change the end
3. Slightly change the end some more…
fan

goal

slide 38

Depth-first search (DFS)
Use a stack (First-in Last-out)
1. push(Initial states)
2.While (stack not empty)
3. s = pop()
4. if (s==goal) success!
5. T = succs(s)
6. push(T)
7. endWhile stack (fringe)

[] ó

slide 39

What’s in the fringe for DFS?
• m = maximum depth of graph from start
• m(b-1) ~ O(mb)
(Space complexity)

• “backtracking search” even less space
§ generate siblings (if applicable)

goal c.f. BFS O(bd)

slide 40

What’s wrong with DFS?
• Infinite tree: may not find goal (incomplete)
• May not be optimal
• Finite tree: may visit almost all nodes, time

complexity O(bm)

goal

goal

c.f. BFS O(bd)

slide 41

Performance of search algorithms on trees

O(bm)O(bm)NNDepth-first
search

O(bC*/e)O(bC*/e)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ³ e > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

slide 42

Q2-1: You are running DFS in the state space graph below. DFS
expands nodes left to right. G is the goal state. The state space

graph is infinite (the path after D does not terminate). What is the
behavior of DFS? 1. Get stuck

in an
infinite loop

2. Return A

3. Return G

4. Return
“failure”

slide 43

Q2-2: You need to search a randomly generated state space graph
with one goal, uniform edges costs, d=2, and m=100. Considering
worst case behavior, do you select BFS or DFS for your search?

1. BFS

2. DFS

slide 44

How about this?
1. DFS, but stop if path length > 1.
2. If goal not found, repeat DFS, stop if path length > 2.
3. And so on…
fan within ripple

goal

goal

slide 45

Iterative deepening
• Search proceeds like BFS, but fringe is like DFS

§ Complete, optimal like BFS
§ Small space complexity like DFS
§ Time complexity like BFS

• Preferred uninformed search method

slide 46

Performance of search algorithms on trees

O(bm)O(bm)NNDepth-first
search

O(bC*/e)O(bC*/e)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

O(bd)O(bd)Y, if 1YIterative
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ³ e > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

slide 47

If state space graph is not a tree
• The problem: repeated states

• Ignore the danger of repeated states: wasteful (BFS)
or impossible (DFS). Can you see why?
• How to prevent it?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

slide 48

If state space graph is not a tree
• We have to remember already-expanded states

(CLOSED).
• When we take out a state from the fringe (OPEN),

check whether it is in CLOSED (already expanded).
§ If yes, throw it away.
§ If no, expand it (add successors to OPEN), and

move it to CLOSED.

slide 49

Nodes expanded by:

• Breadth-First Search: S A B C D E G
Solution found: S A G

• Uniform-Cost Search: S A D B C E G
Solution found: S B G (This is the only uninformed

search that worries about costs.)
• Depth-First Search: S A D E G

Solution found: S A G

• Iterative-Deepening Search: S A B C S A D E G
Solution found: S A G

slide 50

Q3-1: Consider the state space graph below. Goal states have bold
borders. Nodes are expanded left to right when there are ties. What

solution path is returned by BFS?
1. IADFH

2. IADFJ

3. IAG

4. ICEG

slide 51

Q3-2: Consider the state space graph below. Goal states have bold
borders. Nodes are expanded left to right when there are ties. What

solution path is returned by UCS?
1. IADFH

2. IADFJ

3. IAG

4. ICEG

slide 52

Q3-3: Consider the state space graph below. Goal states have bold
borders. Nodes are expanded left to right when there are ties. What

solution path is returned by DFS?
1. IADFH

2. IADFJ

3. IAG

4. ICEG

slide 53

Q3-4: Consider the state space graph below. Goal states have bold
borders. Nodes are expanded left to right when there are ties. What

solution path is returned by IDS?
1. IADFH

2. IADFJ

3. IAG

4. ICEG

slide 56

What you should know
• Problem solving as search: state, successors, goal test
• Uninformed search

§ Breadth-first search
• Uniform-cost search

§ Depth-first search
§ Iterative deepening

• Can you unify them using the same algorithm, with
different priority functions?
• Performance measures

§ Completeness, optimality, time complexity, space
complexity

