

CS 540 Introduction to Artificial Intelligence

Logic

University of Wisconsin-Madison

Spring, 2022

Logic & AI

Why are we studying logic?

- **Traditional** approach to AI ('50s-'80s)
 - “Symbolic AI”
 - The Logic Theorist – 1956
 - Proved a bunch of theorems!
- Logic also the language of:
 - Knowledge rep., databases, etc.



Symbolic Techniques in AI

Lots of systems based on symbolic approach:

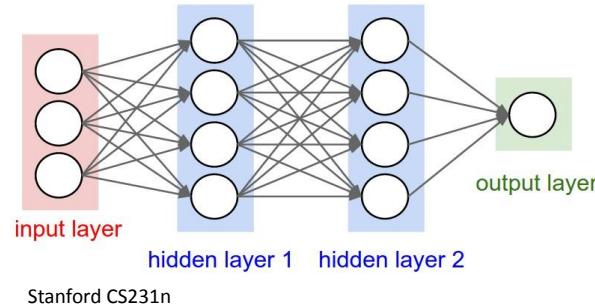
- Ex: expert systems, planning, more
- Playing great chess
- **Less popular recently!**

J. Gardner

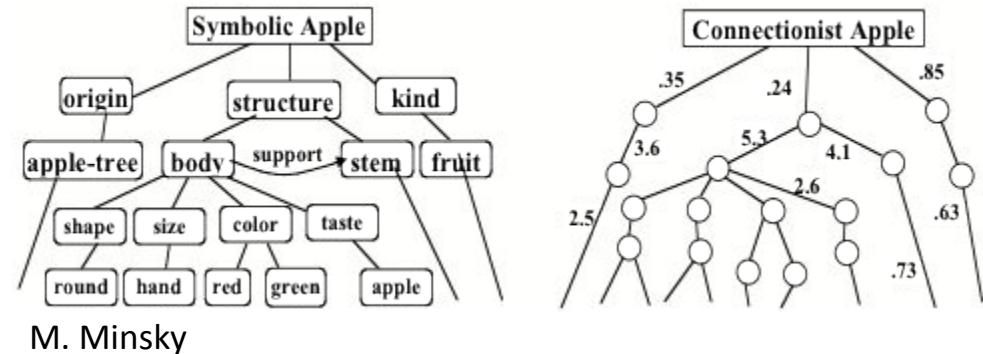
Symbolic vs Connectionist

Rival approach: **connectionist**

- Probabilistic models
- Neural networks
- **Extremely popular** last 20 years



Stanford CS231n

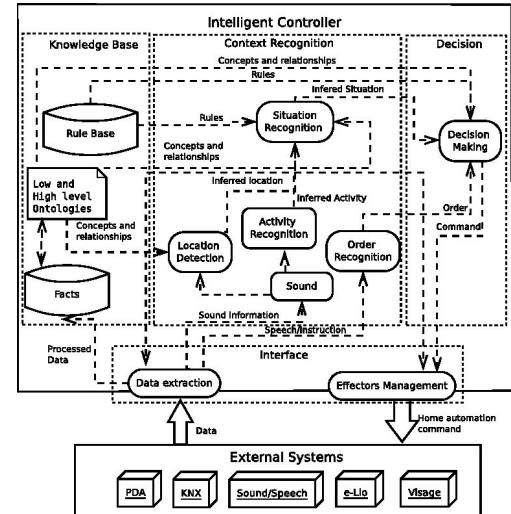


M. Minsky

Symbolic vs Connectionist

Analogy: Logic versus probability

- Which is better?
- Future: combination; best-of-both-worlds
 - Actually been worked on:
 - **Example:** Markov Logic Networks

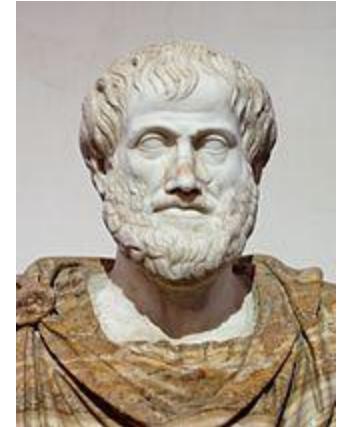


Outline

- Introduction to logic
 - Arguments, validity, soundness
- Propositional logic
 - Sentences, semantics, inference
- First order logic (FOL)
 - Predicates, objects, formulas, quantifiers

Basic Logic

- Arguments, premises, conclusions
 - Argument: a set of sentences (premises) + a sentence (a conclusion)
 - **Validity:** argument is valid iff it's necessary that if all premises are true, the conclusion is true
 - **Soundness:** argument is sound iff valid & premises true
 - **Entailment:** when valid arg., premises entail conclusion



Propositional Logic Basics

Logic Vocabulary:

- Sentences, symbols, connectives, parentheses
 - Symbols: P, Q, R, ... (**atomic** sentences)
 - Connectives:

\wedge	and	[conjunction]
\vee	or	[disjunction]
\Rightarrow	implies	[implication]
\Leftrightarrow	is equivalent	[biconditional]
\neg	not	[negation]
 - Literal: P or negation $\neg P$

Propositional Logic Basics

Examples:

- $(P \vee Q) \Rightarrow S$
 - “If it is cold or it is raining, then I need a jacket”
- $Q \Rightarrow P$
 - “If it is raining, then it is cold”
- $\neg R$
 - “It is not hot”

Propositional Logic Basics

Several rules in place

- Precedence: \neg , \wedge , \vee , \Rightarrow , \Leftrightarrow
- Use parentheses when needed
- Sentences: **well-formed** or not
well-formed:

$P \Rightarrow Q \Rightarrow S$ **not well-formed**
(not associative!)


```
#include<stdio.h>
#include<conio.h>
void main() { // main() Function Must Be There
    clrscr();
    printf("Welcome to DataFlair");
    getch(); // helps to print the message "Welcome to DataFlair"
} // Semicolon After Each Statement
Program Enclosed Within Curly Braces
```

Annotations on the code:

- Including Header Files: Points to `#include<stdio.h>` and `#include<conio.h>`
- Single Line Comment: Points to `// helps to print the message "Welcome to DataFlair"`
- Program Enclosed Within Curly Braces: Points to the closing brace `}`
- main() Function Must Be There: Points to the `main()` function declaration.
- Semicolon After Each Statement: Points to the semicolon `;` at the end of the `getch();` statement.

Sentences & Semantics

- Think of symbols as defined by user
- Sentences: built up from symbols with connectives
 - **Interpretation**: assigning True / False to symbols
 - **Semantics**: interpretations for which sentence evaluates to True
 - **Model**: (of a set of sentences) interpretation for which all sentences are True

Evaluating a Sentence

- Example:

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
<i>false</i>	<i>false</i>	<i>true</i>	<i>false</i>	<i>false</i>	<i>true</i>	<i>true</i>
<i>false</i>	<i>true</i>	<i>true</i>	<i>false</i>	<i>true</i>	<i>true</i>	<i>false</i>
<i>true</i>	<i>false</i>	<i>false</i>	<i>false</i>	<i>true</i>	<i>false</i>	<i>false</i>
<i>true</i>	<i>true</i>	<i>false</i>	<i>true</i>	<i>true</i>	<i>true</i>	<i>true</i>

- Note:

- If P is false, $P \Rightarrow Q$ is true regardless of Q (“5 is even implies 6 is odd” is True!)
- Causality unneeded: (“5 is odd implies the Sun is a star” is True!)

Evaluating a Sentence: Truth Table

- **Ex:**

P	Q	R	$\neg P$	$Q \wedge R$	$\neg P \vee Q \wedge R$	$\neg P \vee Q \wedge R \Rightarrow Q$
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1

- **Satisfiable**
 - There exists some interpretation where sentence true

Break & Quiz

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- (i) $\neg(\neg p \rightarrow \neg q) \wedge r$
- (ii) $(\neg p \vee \neg q) \rightarrow (p \vee \neg r)$

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Break & Quiz

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- (i) $\neg(\neg p \rightarrow \neg q) \wedge r$
- (ii) $(\neg p \vee \neg q) \rightarrow (p \vee \neg r)$

- A. Both
- B. Neither
- **C. Just (i)**
- D. Just (ii)

Break & Quiz

Q 1.2: Let A = “Aldo is Italian” and B = “Bob is English”. Formalize “Aldo is Italian or if Aldo isn’t Italian then Bob is English”.

- a. $A \vee (\neg A \rightarrow B)$
- b. $A \vee B$
- c. $A \vee (A \rightarrow B)$
- d. $A \rightarrow B$

Break & Quiz

Q 1.2: Let A = “Aldo is Italian” and B = “Bob is English”. Formalize “Aldo is Italian or if Aldo isn’t Italian then Bob is English”.

- a. $A \vee (\neg A \rightarrow B)$
- b. $A \vee B$ (equivalent!)
- c. $A \vee (A \rightarrow B)$
- d. $A \rightarrow B$

Break & Quiz

Q 1.3: How many different assignments can there be to
 $(x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \dots \vee (x_n \wedge y_n)$

- A. 2
- B. 2^n
- C. 2^{2n}
- D. $2n$

Break & Quiz

Q 1.3: How many different assignments can there be to
 $(x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \dots \vee (x_n \wedge y_n)$

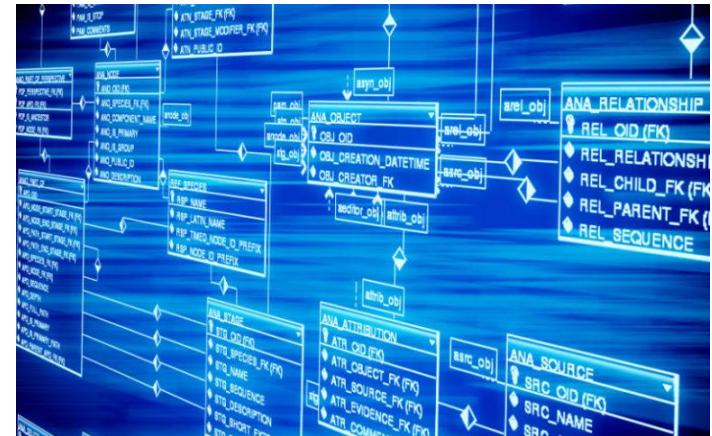
- A. 2
- B. 2^n
- C. 2^{2n}
- D. $2n$

Knowledge Bases

- **Knowledge Base (KB):** A set of sentences
 - Like a long sentence, connect with conjunction

Model of a KB: interpretations where all sentences are True

Goal: inference to discover new sentences



Entailment

Entailment: a sentence logically follows from others

- Like from a KB. Write $A \models B$
- $A \models B$ iff in every interpretation where A is true, B is also true

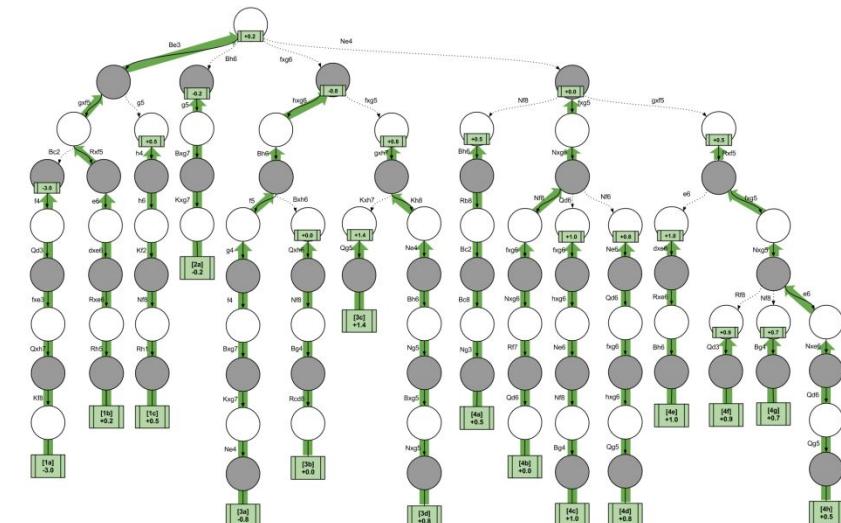
All interpretations

B is true

A is true

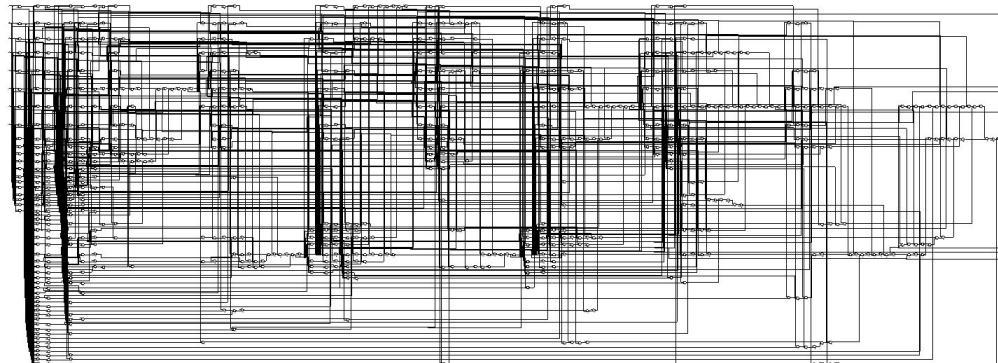
Inference

- Given a set of sentences (a KB), **logical inference** creates new sentences
 - Compare to prob. inference!
- Challenges:**
 - Soundness
 - Completeness
 - Efficiency



Methods of Inference: 1. Enumeration

- Enumerate all interpretations; look at the truth table
 - “Model checking”
- Downside: 2^n interpretations for n symbols



S. Leadley

Methods of Inference: 2. Using Rules

- *Modus Ponens*: $(A \Rightarrow B, A) \vDash B$
- And-elimination
- Logical equivalences

Logical equivalences

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \text{ commutativity of } \wedge$$

$$(\alpha \vee \beta) \equiv (\beta \vee \alpha) \text{ commutativity of } \vee$$

$$((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \text{ associativity of } \wedge$$

$$((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \text{ associativity of } \vee$$

$$\neg(\neg\alpha) \equiv \alpha \text{ double-negation elimination}$$

$$(\alpha \Rightarrow \beta) \equiv (\neg\beta \Rightarrow \neg\alpha) \text{ contraposition}$$

$$(\alpha \Rightarrow \beta) \equiv (\neg\alpha \vee \beta) \text{ implication elimination}$$

$$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \text{ biconditional elimination}$$

$$\neg(\alpha \wedge \beta) \equiv (\neg\alpha \vee \neg\beta) \text{ de Morgan}$$

$$\neg(\alpha \vee \beta) \equiv (\neg\alpha \wedge \neg\beta) \text{ de Morgan}$$

$$(\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \text{ distributivity of } \wedge \text{ over } \vee$$

$$(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \text{ distributivity of } \vee \text{ over } \wedge$$

You can use these equivalences to modify sentences.

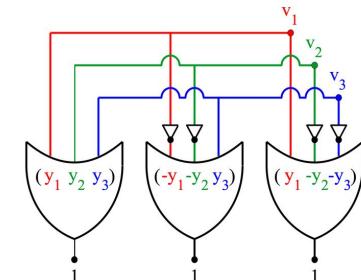
Methods of Inference: 3. Resolution

- Convert to special form and use a single rule
- **Conjunctive Normal Form (CNF)**

$$(\underbrace{\neg A \vee B \vee C}_{\text{a clause}}) \wedge (\neg B \vee A) \wedge (\neg C \vee A)$$

Conjunction of clauses; each clause disjunction of literals

- Simple rules for converting to CNF



Conjunctive Normal Form (CNF)

$$(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg P_{2,1} \vee B_{1,1})$$

- Replace all \leftrightarrow using biconditional elimination
- Replace all \rightarrow using implication elimination
- Move all negations inward using
 - double-negation elimination
 - de Morgan's rule
- Apply distributivity of \vee over \wedge

Convert example sentence into CNF

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}) \quad \text{starting sentence}$$

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

biconditional elimination

$$(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg(P_{1,2} \vee P_{2,1}) \vee B_{1,1})$$

implication elimination

$$(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge ((\neg P_{1,2} \wedge \neg P_{2,1}) \vee B_{1,1})$$

move negations inward

$$(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg P_{2,1} \vee B_{1,1})$$

distribute \vee over \wedge

Resolution steps

- Given KB and β (query)
- Add $\neg \beta$ to KB, show this leads to empty
(False. Proof by contradiction)
- Everything needs to be in CNF
- Example KB:
 - $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$
 - $\neg B_{1,1}$
- Example query: $\neg P_{1,2}$

Resolution preprocessing

- Add $\neg \beta$ to KB, convert to CNF:

$$a1: (\neg B_{1,1} \vee P_{1,2} \vee P_{2,1})$$

$$a2: (\neg P_{1,2} \vee B_{1,1})$$

$$a3: (\neg P_{2,1} \vee B_{1,1})$$

$$b: \neg B_{1,1}$$

$$c: P_{1,2}$$

- Want to reach goal: *empty*

Resolution

- Take any two clauses where one contains some symbol, and the other contains its complement (negative)

$$P \vee Q \vee R \qquad \neg Q \vee S \vee T$$

- Merge (resolve) them, throw away the symbol and its complement

$$P \vee R \vee S \vee T$$

- If two clauses resolve and there's no symbol left, you have reached *empty* (False). $KB \models \beta$
- If no new clauses can be added, KB does not entail β

Resolution example

a1: $(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1})$

a2: $(\neg P_{1,2} \vee B_{1,1})$

a3: $(\neg P_{2,1} \vee B_{1,1})$

b: $\neg B_{1,1}$

c: $P_{1,2}$

Resolution example

a1: $(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1})$

a2: $(\neg P_{1,2} \vee B_{1,1})$

a3: $(\neg P_{2,1} \vee B_{1,1})$

b: $\neg B_{1,1}$

c: $P_{1,2}$

Step 1: resolve a2, c: $B_{1,1}$

Step 2: resolve above and b: *empty*

Efficiency of the resolution algorithm

- Run time can be exponential in the worst case
 - Often much faster
- Factoring: if a new clause contains duplicates of the same symbol, delete the duplicates

PVRVPVT \sqsubseteq PVRVT

- If a clause contains a symbol and its complement, the clause is a tautology and useless, it can be thrown away

a1: $(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1})$

a2: $(\neg P_{1,2} \vee B_{1,1})$

$\sqsubseteq P_{1,2} \vee P_{2,1} \vee \neg P_{1,2}$ (tautology, throw away)

Break & Quiz

Q 2.1: What is the CNF for $(\neg p \wedge \neg(p \Rightarrow q))$

- A. $(\neg p \wedge \neg(p \Rightarrow q))$
- B. $(\neg p) \wedge (\neg p \vee \neg q)$
- C. $(\neg p \vee q) \wedge (p \vee \neg q) \wedge (p \vee q)$
- D. $(\neg p) \wedge (p) \wedge (\neg q)$

Break & Quiz

Q 2.1: What is the CNF for $(\neg p \wedge \neg(p \Rightarrow q))$

- A. $(\neg p \wedge \neg(p \Rightarrow q))$
- B. $(\neg p) \wedge (\neg p \vee \neg q)$
- C. $(\neg p \vee q) \wedge (p \vee \neg q) \wedge (p \vee q)$
- D. $(\neg p) \wedge (p) \wedge (\neg q)$

Break & Quiz

Q 2.2: Which has more rows: a truth table on n symbols, or a joint distribution table on n binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

Break & Quiz

Q 2.2: Which has more rows: a truth table on n symbols, or a joint distribution table on n binary random variables?

- A. Truth table
- B. Distribution
- **C. Same size**
- D. It depends

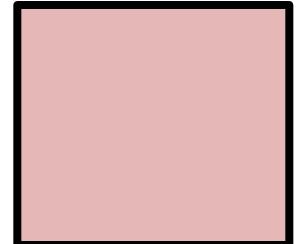
First Order Logic (FOL)

Propositional logic has some limitations

- Ex: how to say “all squares have four sides”
- No context, hard to generalize; express facts

FOL is a more expressive logic; works over

- Facts, Objects, Relations, Functions



First Order Logic syntax

- **Term**: an object in the world
 - **Constant**: Alice, 2, Madison, Green, ...
 - **Variables**: x, y, a, b, c, ...
 - **Function**(term₁, ..., term_n)
 - Sqrt(9), Distance(Madison, Chicago)
 - Maps one or more objects to another object
 - Can refer to an unnamed object: LeftLeg(John)
 - Represents a user defined functional relation
- A **ground term** is a term without variables.

FOL syntax

- **Atom:** smallest T/F expression
 - **Predicate**(term₁, ..., term_n)
 - Teacher(Jerry, you), Bigger(sqrt(2), x)
 - Convention: read “Jerry (is)Teacher(of) you”
 - Maps one or more objects to a truth value
 - Represents a user defined relation
 - **term₁ = term₂**
 - Radius(Earth)=6400km, 1=2
 - Represents the equality relation when two terms refer to the same object

FOL syntax

- **Sentence:** T/F expression
 - Atom
 - Complex sentence using connectives: $\wedge \vee \neg \Rightarrow \Leftarrow$
 - $\text{Less}(x, 22) \wedge \text{Less}(y, 33)$
 - Complex sentence using quantifiers \forall, \exists
- Sentences are evaluated under an interpretation
 - Which objects are referred to by constant symbols
 - Which objects are referred to by function symbols
 - What subsets defines the predicates

FOL quantifiers

- Universal quantifier: \forall
- Sentence is true **for all** values of x in the domain of variable x .
- Main connective typically is \Rightarrow
 - Forms if-then rules
 - “all humans are mammals”
$$\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)$$
 - Means if x is a human, then x is a mammal

FOL quantifiers

- Existential quantifier: \exists
- Sentence is true **for some** value of x in the domain of variable x .
- Main connective typically is \wedge
 - “some humans are male”
 $\exists x \text{ human}(x) \wedge \text{male}(x)$
 - Means there is an x who is a human and is a male