
Decomposition Algorithms for Training
Large-scale Semiparametric Support Vector

Machines

Sangkyun Lee and Stephen J. Wright

Computer Sciences Department, University of Wisconsin-Madison,
1210 W. Dayton St., Madison, WI 53706, USA

{sklee,swright}@cs.wisc.edu

Abstract. We describe a method for solving large-scale semiparametric
support vector machines (SVMs) for regression problems. Most of the
approaches proposed to date for large-scale SVMs cannot accommodate
the multiple equality constraints that appear in semiparametric prob-
lems. Our approach uses a decomposition framework, with a primal-dual
algorithm to find an approximate saddle point for the min-max formu-
lation of each subproblem. We compare our method with algorithms
previously proposed for semiparametric SVMs, and show that it scales
well as the number of training examples grows.

Key words: semiparametric SVM, regression, decomposition, primal-
dual gradient projection

1 Introduction

Support Vector Machines (SVMs) are the most widely used nonparametric meth-
ods in machine learning, which aims to find a function that performs well in
classifying or fitting given data. The power of SVM lies in the fact that it does
not require the user to define the class of functions from which the observations
might have been generated. In a sense, this is also a weakness, in that prior
knowledge of the function class is often available for use. Semiparametric SVM
formulations introduce parametric components into the model of the classify-
ing / regression function, alongside the nonparametric contribution. The basis
functions in the parametric part of the model can be chosen to embed prior
knowledge and can be used for analyzing the effects of certain covariates, thus
giving semiparametric SVM the potential advantages of both parametric and
nonparametric methods.

Despite the benefits, semiparametric models have not drawn much attention
from the machine learning community, possibly in part because the optimization
problems arising from semiparametric SVMs are harder to solve than those gen-
erated by standard SVMs. This paper describes an efficient approach for finding
solutions to large-scale semiparametric SVM problems. We focus on the formula-
tion of semiparametric SVM regression first introduced in [1], which gives rise to

a dual problem which is a convex quadratic program (QP) with several equality
constraints as well as bound constraints.

To motivate our description of solvers for semiparametric SVMs, we discuss
first the state of the art for solvers that tackle the standard SVM dual formula-
tion, which is

min
x

1
2
xTQx + pTx s.t. yTx = 0, 0 ≤ x ≤ C1 , (1)

where x, y, and 1 := (1, 1, . . . , 1) are column vectors of length n. Many effec-
tive algorithms for this problem solve a sequence of subproblems, each of which
updates some subvector of x while leaving the remaining elements unchanged.
These algorithms can be categorized into two distinct groups. In the first group,
the subvector is very short, typically containing just two components. Since the
subproblem can be solved analytically for such a small number of variables, no
numerical solver is needed. The subproblems are inexpensive, but many itera-
tions are usually needed to reach a solution with acceptable quality. Sequential
Minimal Optimization (SMO) [2] and its variants such as LIBSVM [3] fall into
this category. In the second group of solvers, the subvectors are longer, requiring
the subproblems to be solved with a QP solver that exploits the structure of the
application. Although we face the burden of designing an efficient, robust QP
solver, methods in the second group often show faster convergence than those
in the first group. Successful instances of methods in the second group include
SVMlight[4] and GPDT [5, 6]. The QP solvers used in the second group can be
applied to the full problem, thus solving it in one “outer” iteration, though this
approach is not usually effective for large data sets.

In general, the methods in both groups discussed above are specialized to han-
dle the single equality constraint in (1) along with the bound constraints. The
analytic subproblem solution in SMO can be acquired only when the subprob-
lem has up to one (or two in case of the modified SMO [7]) equality constraint.
The subproblem selection algorithm of SVMlight strongly depends upon the ex-
istence of a single equality constraint; the same is true of GPDT, which uses a
projection algorithm from [8]. Semiparametric SVMs, however, require solution
of the following generalization of (1):

min
x

F (x) :=
1
2
xTQx + pTx s.t. Ax = b, 0 ≤ x ≤ C1, (2)

where A ∈ IRK×n and b ∈ IRK , where K ≥ 1 is the number of parametric
basis functions that we wish to include in the model. For semiparametric SVM
regression, Smola, Frieß, and Schölkopf [1] proposed to apply a primal-dual in-
terior point method based on the code LOQO. The size of problems that can be
handled is thus limited by the need to perform a full evaluation of the matrix Q
and the need for repeated factorizations of matrices of about this size. (The ap-
proach could however be used as the inner loop of a decomposition method in the
second group discussed above.) Kienzle and Schölkopf [9] suggested a Minimal
Primal Dual (MPD) algorithm. This algorithm use a variant of the method of

multipliers to formulate a sequence of convex quadratic programs of dimension
n with bound constraints only (no equalities), which are solved by a method
that selects a single component for updating at each iteration. (In this sense, it
is akin to the methods in the first group described above.) We give further de-
tails on MPD as we introduce our methods below. This approach does not scale
well as the size n of the problem grows, but its performance can be improved
by embedding it in a decomposition framework, as described below. We include
both MPD and its decomposition variants in our computational tests of Sect. 5.

In this paper, we propose an approach that is related to MPD but that differs
in several ways. First, it is a primal-dual approach; we alternate between steps in
a subvector of x and steps in the Lagrange multipliers for the constraintsAx = b.
Second, subvectors of x with more than 1 element are allowed. Third, two-metric
gradient projection techniques are used in taking steps in the x components.
Throughout, we take account of the fact that n may be very large, that Q
cannot practically be computed and stored in its entirety, and that operations
involving even modest-sized submatrices of Q are expensive.

We compare our approach computationally with MPD as stand-alone solvers,
and also in a decomposition framework.

The remainder of the paper is structured as follows. In the next section,
we define the semiparametric SVM regression problem and show that its dual
has the form (2). Section 3 outlines the decomposition framework, while Sect. 4
describes the primal-dual method that we propose for solving the subproblems
that arise from decomposition. Section 5 presents some computational results.

2 Semiparametric SVM Regression

We consider a regression problem for data {(ti,yi)}Mi=1 where ti ∈ IRN are
feature vectors and yi ∈ IR are outcomes. We wish to find a function h that
minimizes ε-insensitive loss function `ε(h; t,y) := max{0, |y − h(t)| − ε}, while
maximizing the margin as in [10]. Following [1, 9], we formulate the semipara-
metric SVM regression problem as follows:

min
w,β,ξ,ξ∗

1
2
wTw + C

M∑
i=1

(ξi + ξ∗i) (3a)

s.t. yi − 〈w, φ(ti)〉 −
K∑
j=1

βjψj(ti) ≤ ε+ ξi for i = 1, . . . ,M (3b)

〈w, φ(ti)〉+
K∑
j=1

βjψj(ti)− yi ≤ ε+ ξ∗i for i = 1, . . . ,M (3c)

ξ ≥ 0, ξ∗ ≥ 0 . (3d)

where φ is a feature mapping function which defines a positive semidefinite kernel
κ(ti, tj) := 〈φ(ti), φ(tj)〉, for all i, j ∈ {1, . . . ,M}, while {ψj}Kj=1 are the basis
functions for the parametric part of the model function. The model function is

defined as an extended linear model of parametric and nonparametric parts, that
is, h(t) = 〈w, φ(t)〉 +

∑K
j=1 βjψj(t). We typically have K � M . If K = 1 and

ψ1 is a constant function, we recover the standard SVM regression problem.
The Wolfe-dual of (3) has the form (2), where

x =
[
α
α∗

]
∈ IR2M for the dual vectors α and α∗ of (3b) and (3c), resp.,

p = [ε− y1, . . . , ε− yM , ε+ y1, . . . , ε+ yM]T ∈ IR2M ,

Qij =

{
yiyjκ(ti, tj) if 1 ≤ i, j ≤M , or M + 1 ≤ i, j ≤ 2M
−yiyjκ(ti, tj) otherwise

,

b = 0 ,

and

A =

ψ1(t1) · · · ψ1(tM) −ψ1(t1) · · · −ψ1(tM)
ψ2(t1) · · · ψ2(tM) −ψ2(t1) · · · −ψ2(tM)

...
. . .

...
...

. . .
...

ψK(t1) · · · ψK(tM) −ψK(t1) · · · −ψK(tM)

 ∈ IRK×2M .

Introducing η as the Lagrange multipliers for the constraints Ax = b in (2),
the Karush-Kuhn-Tucker (KKT) optimality conditions for (2), stated here for
later reference, are as follows:(

Qx + p+ATη
)
i
≥ 0 if xi = 0 (4a)(

Qx + p+ATη
)
i
≤ 0 if xi = C (4b)(

Qx + p+ATη
)
i

= 0 if xi ∈ (0, C) (4c)

Ax = b (4d)
0 ≤ x ≤ C1 . (4e)

If the kernel function κ is positive semidefinite, the Hessian matrix Q of (2) is
also positive semidefinite, by definition. Therefore the objective function F (·) of
(2) is convex, and as we only have linear constraints, the dual objective of (2)
is a concave function in terms of the dual variable η. Therefore the primal-dual
pair (x,η) satisfying the conditions in (4) is the saddle point of (2). Moreover,
η agrees with β in (3) since η is the double dual variable of β (refer [11] for
details.) As our primal-dual solver discussed in Sect. 4 provides the optimal value
of η, there is no need to compute β separately.

3 Decomposition Framework

In this section we outline the decomposition strategy, giving details of two key
aspects.

3.1 Subproblem Definition

The convex quadratic program (2) becomes harder to solve as the number of
variables n := 2M grows (where M is the number of data points), as the Hessian
Q in (2) is dense and poorly conditioned for typical choices of the kernel function
κ. The decomposition framework can alleviate these difficulties by working with
a subset xB, B ⊂ {1, 2, . . . , n} of the variables at a time, fixing the other variables
xN , N = {1, 2, . . . , n}\B at their current values. We usually choose the number
of elements nB in B to be much smaller than n. By partitioning the data objects
p, A, and Q in the obvious way, we obtain the following subproblem at outer
iteration k:

min
xB

f(xB) :=
1
2
xTBQBBxB + (QBNxkN + pB)TxB (5)

s.t. ABxB = −ANxkN + b, 0 ≤ xB ≤ C1,

where xkN contains the current values of the N components. This problem has
the same form as (2); we discuss solution methods in Sect. 4.

Since our emphasis in this paper is computational, we leave a convergence
theory for this decomposition framework for future work. Suffice for the present
to make a few remarks. If B is chosen so that the columns of AB corresponding
to components of xB that are away from their bounds in (5) form a full-row-
rank matrix, and if appropriate two-sided projections of QBB are positive defi-
nite, then (5) has a primal-dual solution (x∗B,η

∗) that corresponds to a solution
(x∗,η∗) = (x∗B,x

∗
N ,η

∗) of (2), when xkN = x∗N . Perturbation results can be used
to derive a local convergence theory, and it may be possible to derive a global
theory from appropriate generalizations of the results in [12].

3.2 Working Set Selection

The selection of working set B at each outer iteration is inspired by the approach
of Joachims [4], later improved by Serafini and Zanni [6]. The size of the working
set is fixed at some value nB, of which up to nc are allowed to be “fresh” indices
while the remainder are carried over from the current working set. Given the
current primal-dual iterate (xk+1,ηk+1), we find the indices corresponding to
the nonzero components di obtained from the following problem:

min
d

(
∇F (xk+1) + (ηk+1)TA

)T
d

s.t.

0 ≤ di ≤ 1 if xk+1
i = 0,

−1 ≤ di ≤ 0 if xk+1
i = C,

−1 ≤ di ≤ 1 if xk+1
i ∈ (0, C),

#{di|di 6= 0} ≤ nc.

(6)

Note that the objective function of (6) is a linearization of the Lagrangian func-
tion of F at the current primal-dual pair (xk+1,ηk+1). Our approach is moti-
vated by the KKT conditions (4), and indeed can be solved by simply sorting

the violations of these conditions. It contrasts with previous methods [4, 6, 12], in
which the equality constraints are enforced explicitly in the working set selection
subproblem. Our approach has no requirements on the size of nc, yet it is still
effective when ηk+1 is close to the optimal value η∗.

Earlier analysis of decomposition algorithms based on working set selection
schemes has been performed by Lin [13], who shows linear convergence for the
case of a single constraint, under positive definiteness assumptions on Q. Tseng
and Yun [12] proposed a decomposition framework for a formulation similar
to (2) that includes multiple equality constraints. They present a convergence
analysis which assumes that the subproblems at each step of decomposition are
solved exactly, although they do not discuss techniques for solving the subprob-
lem. Their working set selection algorithm requires relatively high complexity
(O(K3n2)) in general, compared with the O(n log n) complexity of our approach.

The (up to) nc new components from (6) are augmented to a total of nB
entries by adding indices from the previous working set B according to a certain
priority. We choose the indices of the off-bounds components (0 < xk+1

i < C)
first, and then those of lower and upper bounds. We reduce nc as the change
between two consecutive working sets decreases, as in [6]. We observe that adap-
tive reduction of nc provides better convergence of the Lagrange multiplier ηk,
and helps avoid zigzagging between two working sets without making further
progress. Adaptive reduction also helps not to degrade the benefit of optimizing
many new components in a single decomposition step.

Our decomposition framework is summarized in Algorithm 1.

Algorithm 1 Decomposition Framework
1. Initialization. Choose an initial point x1 of (2) (possibly infeasible), initial guess
of the Lagrange multiplier η1, positive integers nB ≥ K and 0 < nc < nB, and
convergence tolerance tolD. Choose an initial working set B and set k ← 1.

2. Subproblem. Solve the subproblem (5) for the current working set B, to obtain
solution xk+1

B together with Lagrange multiplier ηk+1 of the equality constraints. Set
xk+1 = (xk+1

B ,xk
N).

3. Gradient Update. Evaluate the gradient of the Lagrangian of (2), by incrementally
updating ∇F , as indicated here:

∇F (xk+1) + (ηk+1)TA = ∇F (xk) +

»
QBB
QNB

–
(xk+1
B − xk

B) + (ηk+1)TA .

4. Convergence Check. If the maximal violation of the KKT conditions (4) falls
below tolD, terminate with the primal-dual solution (xk+1,ηk+1).

5. Working Set Update. Find a new working set B as described in Sect. 3.2.
6. Set k ← k + 1 and go to step 2.

4 Subproblem Solver

Recalling that the decomposition framework requires both a primal solution xB
and Lagrange multipliers η to be obtained for the subproblem (5), we consider
the following min-max formulation of (5):

max
η

min
xB∈Ω

L(xB,η) , (7)

where Ω = {x ∈ IRnB |0 ≤ x ≤ C1} and

L(xB,η) := f(xB) + ηT (ABxB +ANxkN) .

In this section we describe a primal-dual approach for solving (7), in which
steps are taken in xB and η in an alternating fashion. Scalings that include
second-order information are applied to both primal and dual steps. We call the
approach PDSG (for “Primal-Dual Scaled Gradient”).

Our approach can be viewed as an extreme variant of the method of multi-
pliers [14], in which we do not attempt to minimize the augmented Lagrangian
between updates of the Lagrange multiplier estimates, but rather take a single
step along a partial, scaled, and projected gradient direction in the primal space.
In describing the general form of each iteration, we use superscripts ` to denote
iteration counts, bearing in mind that they refer to the inner iterations of the
decomposition framework (and hence are distinct from the superscripts k of the
previous section, which denote outer iterations).

x`+1
B ← x`B + s(x`B,η

`) (8a)

η`+1 ← η` + t(x`+1
B ,η`) , (8b)

where s(·, ·) and t(·, ·) are steps, defined below. In computational testing, we
found PDSG to be superior to methods more like traditional method-of-multiplier
approaches, which would take multiple steps in xB in between successive steps
in η.

Primal Step. In the `-th iteration of the subproblem solver, we choose a small
sub-working set W` ⊂ B containing at most nW elements (where nW is a user-
defined parameter), containing those indices in B that are among the nW most-
violated KKT conditions (4a)-(4c) for the subproblem (5). We define the further
subset W̄` by selecting those indices i ∈ W` that are not at one of their bounds
0 and C. We then construct the block-diagonal nB × nB matrix H`, as follows:

H`
ij =

Qij + τδij if i ∈ W̄` and j ∈ W̄`

Qii if i = j and i ∈ W` \ W̄`

∞ if i = j and i /∈ W`

0 otherwise,

(9)

where δij = 1 if i = j and 0 otherwise, while τ is a small positive parameter (we
use τ = 10−8) chosen to ensure that the “block” part of H` is numerically non-
singular. Since we apply the inverse of this matrix to the gradient in computing

the step, the components of the matrix-vector product that correspond to the
∞ entries will evaluate to zero. Specifically, we obtain the search direction as
follows:

d` := x`B − IPΩ

(
x`B −

(
H`
)−1∇xBL(x`B,η

`)
)

(10)

where IPΩ(·) is a projection operator to the set Ω, which is trivial to compute
since this set is defined by simple bounds. This is essentially the two-metric
gradient projection search direction [15] applied to the subvector defined byW`.
Given this direction, the primal step s from (8a) is defined to be

s(x`B,η
`) = α`d

` , (11)

where α` ∈ IR is the unconstrained minimizer of L(·,η`) along the line segment
connecting x`B to x`B + d`.

Dual Update. The step in the dual variable η is a Newton-like step in the dual
objective function for (5), which is

g(η) := min
xB∈Ω

L(xB,η).

This is a piecewise quadratic concave function. Since its second derivative does
not exist, we cannot take a true Newton step. However, we use a slight modifica-
tion of the procedure in Kienzle and Schölkopf [9] to form a diagonal approxima-
tion G to this matrix. Their procedure progressively updates G by applying one
step of Gauss-Jacobi-like procedure at each iteration of the MPD optimization
scheme. Unlike MPD, our modification estimates G both internally and exter-
nally to the optimization loop. The external estimation ensures us to have an
approximation with a certain quality before performing any dual updates. We
refer the reader to [9] for additional details. The dual step t in (8b) is thus
simply

t(x`+1
B ,η`) = −G−1∇ηL(x`+1

B ,η`). (12)

Our subproblem algorithm is summarized in Algorithm 2.

Algorithm 2 Subproblem solver: PDSG
1. Initialization. Given a index set B, choose initial points x1

B and η1. Choose nW
such that 1 ≤ nW ≤ nB. Choose small positive convergence tolerance tolS. Set `← 1.

2. Sub-Working Set Selection. Construct W` (with at most nW elements) and W̄`

as described above.

3. Primal-Dual Update. Take the primal step according to (8a) and (11), then the
dual step according to (8b) and (12).

4. Convergence Check. If the maximal KKT violation of the current primal-dual
pair (x`+1

B ,η`+1) is less than tolS, exit. Otherwise, go to step 2.

5 Experiments

We report on computational experiments that show the intrinsic benefits of the
PDSG approach, as well as the benefits of the decomposition strategy, when ap-
plied to a simple semiparametric SVM regression problem. We compare PDSG
with the MPD algorithm of Kienzle and Schölkopf [9], which has slightly better
performance and lower memory requirement than the interior-point-based ap-
proach used in [1]. We also show the advantage of semiparametric modeling on
a real world problem.

Implementations. We implemented both the decomposition framework (Algo-
rithm 1) and the PDSG subproblem solver (Algorithm 2) in C++. The code was
developed by modifying the GPDT code of Serafini, Zanghirati, and Zanni [5]1,
and retains many features of this code. Our code caches once-computed kernel
entries for reuse, with the least-recently-used (LRU) replacement strategy. For
efficiency, our subproblem solver exploits warm starting; the most recent val-
ues of the primal and dual variables are used as the starting points in the next
invocation of the subproblem solver. We also implemented the MPD solver [9]
in C++, again basing the implementation on GPDT. Our codes can be invoked
either with the decomposition framework, or in “stand-alone” mode, in which
the solver is applied directly to the stated problem.

5.1 Toy Problem

For the semiparametric regression test problem, we choose the modified Mexican
hat function studied in [1, 9]:

ω(t) = sin(t) + sinc (2π(t− 5)) .

To generate data, we sample the function ω at uniform random points ti ∈ IR
in the interval [0, 10], making M samples in total. The observations yi’s are
corrupted with additive Gaussian noise ζi with mean 0 and standard deviation
0.2, that is, yi = ω(ti) + ζi. In the training process, we use Gaussian kernel
κ(x, y) = exp(−γ||x − y||2) with γ = 0.25, and set the insensitivity width ε of
the loss function to ε = 0.05, as in [1]. The optimal tradeoff parameter value of
C = 0.5 is found by 10-fold cross validation (CV) in [1] using very small samples
(M = 50). Since we are interested in the convergence behavior of algorithms
with larger samples, we performed computational experiments with C = 0.1,
C = 1, and C = 10. Our model is h(t) = 〈w, φ(t)〉 +

∑K
j=1 βjψj(t), with two

basis functions ψ1(t) = sin(t) and ψ2(t) = sinc (2π(t− 5)) as in [9].
The size of the sample dataset M is varied from 500 to 100000. The subprob-

lem size nB and the maximum number of new components in each subproblem nc

are fixed to 500 and 100, respectively, as these values gave good performance on
the largest data set. Similarly, we fix the sub-working set size nW to 2. (We tried

1 GPDT is available at http://mloss.org/software/view/54/

103 104 105
10−1

100

101

102

103

104

105

Training size M

To
ta

l c
pu

tim
e

in
 s

ec
on

ds
 (C

=1
)

D:PDSG
D:MPD
PDSG
MPD

103 104 105
10−1

100

101

102

103

104

105

Training size M

To
ta

l c
pu

tim
e

in
 s

ec
on

ds

D:PDSG C=0.1
D:PDSG C=1.0
D:PDSG C=10
MPD C=0.1
MPD C=1.0
MPD C=10

Fig. 1. Left plot shows total runtimes using solvers PDSG and MPD in stand-alone
mode and inside of the decomposition framework (D:PDSG and D:MPD) with C = 1.
Right plot shows the total runtimes of D:PDSG (our proposed method) and MPD with
different C values. For larger number of training examples M , updating of the full
gradient in Step 3 of Algorithm 1 dominates the computation, blurring the distinction
between PDSG and MPD as subproblem solvers (left plot). D:PDSG outperforms MPD
for all C values tried (right plot). Stand-alone algorithms are run only for training-set
size up to 10000 because of their high computational cost.

various other values between 1 and 25, but 2 was slightly better than several
alternatives.) In each setting, we use a kernel cache of 400MB in size.

Growth of the total runtime of the algorithms with increasing size of the
data set is shown in Fig. 1. When the decomposition framework is used, the
stopping threshold values are set to tolD = 0.001 and tolS = 0.0005. In stand-
alone settings, we set tolS = 0.001. We impose a slightly tighter threshold on
subproblem solvers inside the decomposition framework to reduce the number of
decomposition steps. Outer iterations in the decomposition framework become
more costly as the number of variables increases, mainly because the full gra-
dient update in Step 3 of Algorithm 1 becomes more expensive. The benefit of
using decomposition framework becomes larger as the dataset size grows. For
instance, D:PDSG is about 100 times faster than MPD when M = 10000. In de-
composition settings, using PDSG as the inner solver found the solution two to
three times faster than using MPD as the inner solver on average. Our proposed
method D:PDSG shows quite stable scaling behavior for different values of C.

Convergence and Complexity. The different convergence behavior of PDSG and
MPD is illustrated in Fig. 2. Here both solvers are asked to solve a semiparamet-
ric regression problem discussed above with 1000 samples, in stand-alone mode.
In the top and middle plots, the dual and primal infeasibility, respectively, are
more rapidly reduced with PDSG than with MPD. (Note that since we project
the iterates xk to the bound constraints set, the KKT condition (4e) is always
satisfied.) The bottom plot of Fig. 2 shows the changes of the first Lagrange
multiplier (the coefficient of the first basis function). In that, MPD is showing
the typical behavior of the method of multipliers: sudden changes are made,

0 2 4 6 8 10 12 14
0

1

2

3

KK
T

vi
ol

at
io

n
(4

a)
−(

4c
)

Time (sec)

PDSG
MPD

0 2 4 6 8 10 12 14
0

10

20

30

40

KK
T

vi
ol

at
io

n
(4

d)

Time (sec)

PDSG
MPD

0 2 4 6 8 10 12 14
0

0.5

1

1.5

M
ul

tip
lie

r

Time (sec)

PDSG
MPD

Fig. 2. Convergence of PDSG and
MPD in stand-alone mode (Mex-
ican hat, dataset size M=1000).
PDSG requires about 2 seconds to
reach convergence, whereas MPD
takes about 14 seconds. (Top)
maximum violation of the dual
feasibility conditions (4a), (4b),
(4c). (Middle) maximum violation
of the primal equality constraints
(4d). (Bottom) convergence of the
first Lagrange multiplier to its op-
timal value of 1. The horizontal
axis represents elapsed CPU time.

but time gaps between such changes are rather large. In contrast, PDSG keeps
making changes to the multiplier, resulting in a faster approach to the optimal
value.

When the sub-working-set size nW is smaller than the working-set size nB
of the subproblem (5), PDSG has computational complexity O(KnB), the same
as MPD, where K is the number of equality constraints in (2). Dual updates in
Algorithm 2 requires O(KnB) operations; all primal updates are done in O(nB).
The effect of increasing K on the total time taken by D:PDSG is shown in Fig. 3.
We use the basis functions

ψj(t) =

{
cos(jπt) j = 0, 2, 4, . . .
sin(jπt) j = 1, 3, 5, . . .

and datasets of size M = 1000 randomly sampled from the Mexican hat function.
Other settings are the same as the previous experiment. As expected, we observe
linear scaling of total runtime with K.

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

Number of equality constraints K

To
ta

l c
pu

tim
e

in
 s

ec
on

ds

Fig. 3. Total solution time for
D:PDSG with increasing num-
ber of equality constraints K.
Measurements are averaged over
10 repetitions with different ran-
dom datasets (M=1000) sampled
from the Mexican hat function,
and error bars (hardly visible)
show the standard deviations. The
time complexity of D:PDSG is
O(uKnB) where u is the number
of outer iterations. Solver time ap-
pears to increase linearly with K.

5.2 Milan Respiratory Illness Dataset

We consider a dataset2 from the study on the effect of air pollution on respiratory
illness in Milan, Italy, during 1980–89 [16]. This dataset consists of daily records
of environmental conditions and the number of deaths due to respiratory diseases
(total 3652 records, 9 features). All features are scaled linearly to the range [0, 1].
We construct a test set by holding out 20% of randomly chosen records from the
dataset, using the remaining records for training.

We hypothesize a simple semiparametric model to predict the number of
respiratory deaths, inspired by [16]:

hsp(t) = 〈w, φ(t)〉+ β1(ttemp) + β2(tSO2) + β3(ttemp)2 + β4(tSO2)2 + β5 ,

where the features ttemp and tSO2 correspond to mean temperature and SO2

level of the day, respectively. Our purpose is to study how those two elements
affect the respiratory illness.

We fit our semiparametric model to the training data, and compare its pre-
diction performance on the test set to that of a nonparametric model

hnp(t) = 〈w, φ(t)〉+ β1 .

With Gaussian kernel (γ = 25.0) and ε-insensitive loss function (ε = 0.01), we
perform 10-fold CV on the training set to determine the best balancing param-
eter C for each of semiparametric and nonparametric models independently.

The results are shown in Table 1. The semiparametric model attained smaller
prediction error on the test set than the nonparametric model, indicating that the
embedding of prior knowledge in hsp while retaining the power of nonparametric
approaches is beneficial. Moreover, the parametric components in the trained
semiparametric model

hsp(t) = 〈w∗, φ(t)〉−0.30(ttemp)+0.26(tSO2)+0.22(ttemp)2−0.07(tSO2)2+0.22 .

reveal that (i) deaths are lower in the middle of the temperature range, and (ii)
there is an almost linear increase of death rate with SO2 level. These results
broadly agree with the outcomes of [16], which were acquired from completely
different statistical analysis techniques. It is difficult to perform model interpre-
tation of this type with nonparametric approaches.

6 Conclusions

We have presented a new method for semiparametric SVM regression problems,
which extends a number of previous approaches in being able to handle multiple
equality constraints. Our method combines a decomposition framework with
a primal-dual scaled gradient solver for the subproblems. Computational tests
indicate that the approach improves on previously proposed methods.
2 Available at http://www.uow.edu.au/~mwand/webspr/data.html

Table 1. Nonparametric and semiparametric regression on Milan dataset. The loss
penalty parameter C is determined by cross validation. Comparing the prediction per-
formance on the test set by mean square error (MSE) values, the semiparametric model
performed better than the nonparametric model by 2.8%. No significant difference of
the number of support vectors (SVs) was found between the two methods.

Model C Fraction of SVs Training Time (s) Test Error (MSE)

Nonparametric (hnp) 0.025 46.7% 1.17 0.019368

Semiparametric (hsp) 0.01 46.9% 5.35 0.018828

Future work includes reducing the cost of the full gradient update by using
a randomized sampling procedure for the components of the gradient, as has
been tried in a different context in [17]. While the concept is simple, it is not
straightforward to implement this technique in conjunction with caching of ker-
nel entries, which is so important to efficient implementation of SVM solvers
based on QP formulations. Other research topics include devising a more ef-
fective update strategy for the dual variables η in the subproblem solver, and
theoretical analyses both of the decomposition framework (including the working
set selection technique) and the subproblem solver.

Acknowledgements

The authors acknowledge the support of NSF Grants CCF-0430504, DMS-0427689,
CNS-0540147, and DMS-0914524. The first author was supported in part by
Samsung Scholarship from the Samsung Foundation of Culture.

References

1. Smola, A.J., Frieß, T.T., Schölkopf, B.: Semiparametric support vector and linear
programming machines. In: Advances in Neural Information Processing Systems
11, Cambridge, MA, USA, MIT Press (1999) 585–591

2. Platt, J.C.: Fast training of support vector machines using sequential minimal
optimization. In Schölkopf, B., Burges, C., Smola, A., eds.: Advances in Kernel
Methods - Support Vector Learning. MIT Press, Cambridge, MA (1999) 185–208

3. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. (April
2009) version 2.89, http://www.csie.ntu.edu.tw/~cjlin/libsvm.

4. Joachims, T.: Making large-scale support vector machine learning practical. In
Schölkopf, B., Burges, C., Smola, A., eds.: Advances in Kernel Methods - Support
Vector Learning. MIT Press, Cambridge, MA (1999) 169–184

5. Serafini, T., Zanghirati, G., Zanni, L.: Gradient projection methods for large
quadratic programs and applications in training support vector machines. Opti-
mization Methods and Software 20(2–3) (2004) 353–378

6. Serafini, T., Zanni, L.: On the working set selection in gradient projection-based
decomposition techniques for support vector machines. Optimization Methods and
Software 20 (2005) 583–596

7. Keerthi, S.S., Gilbert, E.G.: Convergence of a generalized smo algorithm for svm
classifier design. Machine Learning 46(1-3) (2002) 351–360

8. Dai, Y.H., Fletcher, R.: New algorithms for singly linearly constrained quadratic
programs subject to lower and upper bounds. Mathematical Programming, Series
A 106 (2006) 403–421

9. Kienzle, W., Schölkopf, B.: Training support vector machines with multiple equal-
ity constraints. In: Machine Learning: ECML 2005. Volume 16. (October 2005)

10. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: COLT ’92: Proceedings of the fifth annual workshop on Computa-
tional learning theory, New York, NY, USA, ACM (1992) 144–152

11. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA
(2001)

12. Tseng, P., Yun, S.: A coordinate gradient descent method for linearly constrained
smooth optimization and support vector machines training. Published online in
Computational Optimization and Applications (October 2008)

13. Lin, C.J.: Linear convergence of a decomposition method for support vector ma-
chines. Technical report, Department of Computer Science and Information Engi-
neering, National Taiwan University (2001)

14. Bertsekas, D.P.: Nonlinear Programming. Second edn. Athena Scientific (1999)
15. Gafni, E.M., Bertsekas, D.P.: Two-metric projection methods for constrained op-

timization. SIAM Journal on Control and Optimization 22 (1984) 936–964
16. Vigotti, M.A., Rossi, G., Bisanti, L., Zanobetti, A., Schwartz, J.: Short term effects

of urban air pollution on respiratory health in Milan, Italy, 1980-89. Journal of
Epidemiology Community Health 50 (1996) s71–75

17. Shi, W., Wahba, G., Wright, S.J., Lee, K., Klein, R., Klein, B.: LASSO-
Patternsearch algorithm with application to opthalmology data. Statistics and
its Interface 1 (January 2008) 137–153

