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Problems of Interest

Want to find regularized solutions of systems of linear equations
min 2|ly — Ax| + r(x)
xeX 2 y 2 ’

where X is a closed convex set, y is an observation, Ais a linear
operator, and r(x) is a regularizer (A > 0).

We focus on two specific instances, compressive sensing and image
reconstruction.
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A )
min Sy — Ax|g + r(x). }

Compressive Sensing (CS) Image Reconstruction (IR)
m x € X =R"is sparse; at m X C R™"is the set of
most S nonzero components. pixelated images with BV.
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m A satisfies a property (RIP) m A= /(denoising) or Ais a
which guarantees the exact linear blur operator
recovery of the original signal (deblurring).
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observations, y = Ax + z. image, y = Ax + z.

mr(x) =||x|]1. m r(x)=TV(x).

m A satisfies a property (RIP) m A= /(denoising) or Ais a
which guarantees the exact linear blur operator
recovery of the original signal (deblurring).

with a very high probability. m Can perform Au or ATv via

m For certain A (e.g. DCT), we (de-)convolution.
can perform Au or ATv
efficiently without storing A.
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Calls for Efficient Implementations

m The number of variables can be huge.

m In CS, we are often interested in the signals with large
bandwidth.
m In IR, nowadays cameras create huge images.

m Time constraints for solving problems.

m CS for MRI: doctors and patients are waiting for the
solutions.

m IR for computer vision: fast (realtime) processing of
streamed images is required.
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Graphics Processors as Computation Devices

Graphics adapters have been evolved into massively parallel and
programmable computation units, in order to meet needs for realtime
graphics and realtime rendering.

The idea of using GPUs for generic computation goes back to late
70’s. But it gets spotlights only recently, as regular PCs (and laptops!)
begin to equip powerful GPUs, getting a name GPGPU.

History of GPGPU - General Purpose Computation using GPUs.

m GPGPU using OpenGL API (2000~).
- An industrial standard graphics library; not designed for computation.

m GPGPU using vendor-specific softwares (2007 ~present).
- Software depends on a vendor, but shows better performance.

m GPGPU using OpenCL (2009~present).
- An open-standard API for GPGPU, driven by Apple.

We consider CUDA (Compute Unified Device Architecture) from
NVIDIA, which defines a small extension of the standard C language.
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GPU Internals in CUDA
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GPU Computing

Pros.

m Easy to parallelize existing algorithms.
- Rather than splitting the entire logic of algorithms in complicating
ways, focusing on parallelizing smaller logical units, e.g. each line of the
algorithm.

m Cost effective.
- GeForce GTX 260 provides 216 cores at $200 ($.93 per core).
- Intel Core i7-920 CPU provides 4 cores at $280 ($70 per core).

m Pervasive.
- My laptop has a GPU with 32 cores!.

Cons.

m Limited data transfer bandwidth between host and GPU memory.

- GPU will be embedded in CPU chips soon.

m Limited availability of GPU memory.
- Top-edge GPUs have up to 4GB, but smaller in general.
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Conditions for Efficient GPU Implementations

m No frequent transfer of data between host and GPU memory.
- Data transfers only in the beginning and in the end of the algorithm.

m Small memory footprint due to memory limitation.
- No O(r?) storage requirements.
- Choose A matrices in CS and IR which don’t have to be explicitly
stored.

m Elementary logical units of the algorithm is simple.
- First-order methods are particularly suitable for creating many small
jobs to make all cores in a GPU busy.
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SpaRSA Algorithm [Wright and Nowak, 07] for CS

1
min 11y — Ax[3 + 7llxlls = h(x) + . (1>J
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1
iy §||Y—AX||§+T||X||1=h(X)+T||X||1~ (1)J

Consider a separable quadratic approximation h(x) of the smooth
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SpaRSA Algorithm [Wright and Nowak, 07] for CS

1
iy §||}’—AX||§+T||X||1=h(X)+T||X||1~ (1)J
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part h(x) at some point x* (dropping constant term):

() = SEl1x = X3 + VAGR)T (x = x¥). @)

x<t1 e argmin A(x) + 7/1x]Js. (3)J

Replacing x* with uk := xk — Vh(x¥)/ay,

Ax) = Zllx = (UF + V(K)o ) 1B + VAT {x = (0 + Th(xk) /e )}

o y o @
:?HX_UKHW-FVh = U*) + (const.)
Then
xf1 = argmin {1(x,- —uh? + T|x,-|} = sign(uf) - max {|u4‘| - 0} .
X ) ok i i o’
(5)
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SpaRSA Algorithm (cont’)

1: k<0

2: Choose intial x°.
3: repeat

4:  choose ay.
5.  repeat
6: x¥t1 — solution of sub-problem.

7 Adjust a.

8: until x¥*! satisfies an acceptance criterion.
9 k— k+1.

10: until stopping criterion is satisfied.
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Choice of ay

We choose oy so that axI mimics the true Hessian V2h(x) over
the most recent two steps:

o = argmin [lakl(x* — x*1) — (Th(x*) — V(h(x*")))|
()7
(5)7(59)

where s = xkK — x*=1 and rk = Vh(x¥) — Vh(x*~"). This
choice of « is inspired by [Barzilai and Borwein 88].

(6)
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Numerical Results

| Algorithm | CPU time (secs.) | MSE |
SpaRSA 0.44 2.42e-3
SpaRSA-monotone 0.45 2.49e-3
GPSR-BB 0.55 2.81e-3
GPSR-Basic 0.69 2.59%-3
1 _Is 6.56 2.51e-3
IST 2.76 2.51e-3

Figure: Compressive sensing with a random sensing matrix A of
dimension 210 x 212 and 160 spikes, and with Gaussian noise with
variance 1074,
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Image Reconstruction
We observe a distorted image y of u € Q € R?, where Q is a
image domain with bounded variation, via a transform:
y=Au+z (7)

We obtain an error-free image by solving the following problem
introduced by Rudin, Osher and Fatemi ‘92:

ROF Model

. A 2 .
min [ Slly = AUl + TV(). TV(0) = [Vul. (@)

TV(u) is referred as the total-variation semi-norm, which is
suitable for penalizing fine distortions but preserving edges.
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Image Denoising (A =)

As Q has bounded variation,
/\ ul = max/ u-w= max/—uV-W 9)
[Iw]l2<1 llwll2<1Jq
So the problem can be rewritten as:

min max {(x,w) := /—UV-W—!—%H}/—UHZ. (10)}
Q

ue ||wlj2<1

The saddle-point is attained.
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Primal-Dual Hybrid Gradient Projection Algorithm
(PDHG) [Zhu and Chan ‘08]

1: Initial x0, w?.

2: k=0.

3: repeat

4:  Update the primal and dual variables:

Wkt — P{w:||w|\2§1}(wk + T Vwl(x*, wk))
Xk+1 _ Xk o O_kvxg(xk’ Wk+1).

5 K< Kk+1.
6: until Duality gap falls below a threshold.

Steplength:

Tk = (.2 4+ .8K)A ok = (5—1/(3+ .2k))/ 7. (12)
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Numerical Results
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Figure: Duality gap of denoising problems of size 1282, 2562, and 5122,
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Implementing elementary operations on GPUs
CS: In SpaRSA algorithm, the major operations are:

m Ax, ATx.
m If A consists of mrows of a n x n DCT matrix, Ax and A" x
takes O(nlogn) using FFT, no need to store A.
m Only O(m) storage is required.
m Level-1 BLAS operations.

m Parallel design/coding is required for each operation.
m Can use CUBLAS, but custom codes are often better.

IR: PDHG algorithm.

m Vu, V- w by finite difference methods.
m The (/,j)-th output element is computed by looking
neighboring positions of (i, j) in u or w.
m GPUs provide great features to speedup these 2-D data
access patterns with spatial locality.
m Ax, ATx.
m 2-D DFT and inverse DFT (CUFFT) for deblurring.

m Level-1 BLAS operations.
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1-D Compressive Sensing (SpaRSA)
We use one of the two GPUs in GeForce 9800 GX2 device, i.e. 128
cores, with 512MB global memory at 64GB/s.

" CPU GPU Speedup
mx | ters time (s) MSE | iters time (s) MSE | total iter
.000100 | 103 4.32 8.1e-10 | 129 0.16 7.2e-10 | 26 33
.000033 | 135 5.52 1.3e-10| 126 0.15 2.0e-10 | 37 34
.000010 | 143 5.81 9.8e-11 | 139 0.17 13e-10 | 35 34
Table: DCT sensing matrix of dim. 8192 x 65536, with 1638 spikes
T CPU GPU Speedup
max iters time (s) MSE | iters time (s) MSE | total iter
0.000100 | 107 107.08 9.1e-10 | 129 2.08 8.5e-10 | 51 62

0.000033 | 131 129.10 1.7e-10 | 131 2.10 1.6e-10 | 61 61
0.000010 | 149 145.31 1.0e-10 | 160 2.57 9.0e-11 | 57 61

Table: DCT sensing matrix of dim. 131072 x 1048576, with 26214 spikes
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2-D Compressive Sensing (SpaRSA)

CPU GPU Speedup
7/ Tmax iters time (s) MSE | iters time (s) MSE | total iter
0.10 62 256 19e-05| 67 0.09 19e-05| 27 30
0.05 67 268 48e06| 68 0.08 48e-06| 32 32
0.02 77 3.06 9.7e-07 | 83 0.10 9.6e-07 | 30 32

Table: DCT sensing matrix of dim. 1311 x 65536, with 60 spikes

CPU GPU Speedup
7/ T iters time (s) MSE | iters time (s) MSE | total iter
0.10 64 9825 32e-05| 64 1.00 3.1e-05| 98 98
0.05 65 103.10 7.9e-06 | 70 1.08 7.9e-06 | 95 102
0.02 80 11797 15e-06 | 84 130 1.5e-06| 91 95

Table: DCT sensing matrix of dim. 20972 x 1048576, with 1031 spikes
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Image Denoising

Image Tol CPU GPU Speedup
size iters time (s) | iters time (s) | total iter
1e2 | 11 0.03 11 0.02 2 2
1282 1e4 | 79 0.21 79 0.02 11 11
1.e-6 | 338 0.90 329 0.07 14 13
1e2 | 13 0.17 13 0.02 9 9
2562 1e-4 | 68 0.81 68 0.03 32 32
1.e-6 | 304 3.57 347 0.1 33 38
1.e-2 12 0.95 12 0.03 31 31
5122 1e4 | 54 3.96 54  0.05 76 76
1.e-6 | 222 16.08 | 238 0.19 84 90
1e2 | 14 542 14 0.08 64 64
10242 1e4 | 69 25.80 69 0.24 106 106
1.e-6 | 296 103.54 | 324 1.02 102 111
1e2 | 13 31.41 13 0.28 114 114
20482 1.e-4 | 67 14924 | 67 0.90 165 165
1.e-6 | 319 694.16 | 338 4.12 169 179

Table: Computational results of image denoising (A=0.041.)
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Conclusion

GPUs provide good platforms to speed up algorithms which
m incur no frequent data transfer,
m have small memory footprints,

m and consist of simple units easy to parallelize.

Analogy between GPUs and coprocessors in 80s.
m Add 80287 to speed-up flops, along with 80286.
m Add GPUs to speed-up flops by parallelism, along with CPUs.
m Intel is planning to embed GPUs in CPU chips.

GPUs provide a promising platform for:
m Speeding-up existing algorithms.

m Designing new parallel optimization algorithms.
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Thank you.

Paper: http://www.cs.wisc.edu/~sklee/

Code: http://www.cs.wisc.edu/~swright/GPUreconstruction/
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