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Problems of Interest

Want to find regularized solutions of systems of linear equations

min
x∈X

λ

2
||y − Ax ||22 + r(x),

where X is a closed convex set, y is an observation, A is a linear
operator, and r(x) is a regularizer (λ > 0).

We focus on two specific instances, compressive sensing and image
reconstruction.
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min
x∈X

λ

2
||y − Ax ||22 + r(x).

Compressive Sensing (CS)

x ∈ X = Rn is sparse; at
most S nonzero components.

A ∈ Rm×n is dense, m < n.

y ∈ Rm contains noisy
observations, y = Ax + z.

r(x) = ||x ||1.

A satisfies a property (RIP)
which guarantees the exact
recovery of the original signal
with a very high probability.

For certain A (e.g. DCT), we
can perform Au or AT v
efficiently without storing A.

Image Reconstruction (IR)

X ⊂ Rn×n is the set of
pixelated images with BV.

A ∈ Rn×n is dense in general.

y ∈ Rn×n is a distorted
image, y = Ax + z.

r(x) = TV (x).

A = I (denoising) or A is a
linear blur operator
(deblurring).

Can perform Au or AT v via
(de-)convolution.
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Calls for Efficient Implementations

The number of variables can be huge.

In CS, we are often interested in the signals with large
bandwidth.
In IR, nowadays cameras create huge images.

Time constraints for solving problems.

CS for MRI: doctors and patients are waiting for the
solutions.
IR for computer vision: fast (realtime) processing of
streamed images is required.
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Graphics Processors as Computation Devices
Graphics adapters have been evolved into massively parallel and
programmable computation units, in order to meet needs for realtime
graphics and realtime rendering.

The idea of using GPUs for generic computation goes back to late
70’s. But it gets spotlights only recently, as regular PCs (and laptops!)
begin to equip powerful GPUs, getting a name GPGPU.

History of GPGPU - General Purpose Computation using GPUs.

GPGPU using OpenGL API (2000∼).
- An industrial standard graphics library; not designed for computation.

GPGPU using vendor-specific softwares (2007∼present).
- Software depends on a vendor, but shows better performance.

GPGPU using OpenCL (2009∼present).
- An open-standard API for GPGPU, driven by Apple.

We consider CUDA (Compute Unified Device Architecture) from
NVIDIA, which defines a small extension of the standard C language.
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GPU Internals in CUDAChapter 3. Hardware Implementation 

 

!

16  CUDA Programming Guide Version 2.0!
 

!

 

A set of SIMT multiprocessors with on-chip shared memory. 

Figure 3-1. Hardware Model 
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GPU Computing
Pros.

Easy to parallelize existing algorithms.
- Rather than splitting the entire logic of algorithms in complicating
ways, focusing on parallelizing smaller logical units, e.g. each line of the
algorithm.

Cost effective.
- GeForce GTX 260 provides 216 cores at $200 ($.93 per core).
- Intel Core i7-920 CPU provides 4 cores at $280 ($70 per core).

Pervasive.
- My laptop has a GPU with 32 cores!.

Cons.

Limited data transfer bandwidth between host and GPU memory.
- GPU will be embedded in CPU chips soon.

Limited availability of GPU memory.
- Top-edge GPUs have up to 4GB, but smaller in general.
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Conditions for Efficient GPU Implementations

No frequent transfer of data between host and GPU memory.
- Data transfers only in the beginning and in the end of the algorithm.

Small memory footprint due to memory limitation.
- No O(n2) storage requirements.
- Choose A matrices in CS and IR which don’t have to be explicitly
stored.

Elementary logical units of the algorithm is simple.
- First-order methods are particularly suitable for creating many small
jobs to make all cores in a GPU busy.
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SpaRSA Algorithm [Wright and Nowak, 07] for CS

min
x∈Rn

1
2
||y − Ax ||22 + τ ||x ||1 = h(x) + τ ||x ||1. (1)

Consider a separable quadratic approximation h̄(x) of the smooth
part h(x) at some point xk (dropping constant term):

h̄(x) =
αk

2
||x − xk ||22 +∇h(xk )T (x − xk ). (2)

xk+1 ∈ arg min
x

h̄(x) + τ ||x ||1. (3)

Replacing xk with uk := xk −∇h(xk )/αk ,

h̄(x) =
αk

2
||x −

“
uk +∇h(xk )/αk

”
||22 +∇h(xk )T {x −

“
uk +∇h(xk )/αk

”
}

=
αk

2
||x − uk ||2((((((((

−∇h(xk )T (x − uk ) +(((((((
∇h(xk )T (x − uk ) + (const .)

(4)

Then

xk+1
i = arg min

x

{
1
2

(xi − ui
i )

2 +
τ

αk
|xi |
}

= sign(uk
i ) ·max

{
|uk

i | −
τ

αk
,0
}
.

(5)
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SpaRSA Algorithm (cont’)

1: k ← 0
2: Choose intial x0.
3: repeat
4: choose αk .
5: repeat
6: xk+1 ← solution of sub-problem.
7: Adjust αk .
8: until xk+1 satisfies an acceptance criterion.
9: k ← k + 1.

10: until stopping criterion is satisfied.
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Choice of αk

We choose αk so that αk I mimics the true Hessian ∇2h(x) over
the most recent two steps:

αk = arg min
α
||αk I(xk − xk−1)− (∇h(xk )−∇(h(xk−1)))||22

=
(sk )T r k

(sk )T (sk )
(6)

where sk = xk − xk−1 and r k = ∇h(xk )−∇h(xk−1). This
choice of α is inspired by [Barzilai and Borwein 88].
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Numerical Results

Wright, Nowak, Figueiredo, October 2007, submitted. 3

3. GROUP-SEPARABLE REGULARIZERS

In this section we consider group-separable (GS) regularizers of the

form (4). In this case, the minimization (6), instead of decoupling

into a set of one-dimensional minimizations (7), decouples into a set

ofm independent multi-dimensional minimizations, of the form

min
w∈Rl

1

2
‖w − b‖22 + β Φ(w), (11)

where l is the dimension of x[i], b = uk
[i], Φ = ci, and β = τ/αk.

GS regularizers are desirable when there exists a group structure

in x, which arises naturally in many applications.

• In brain imaging, the voxels associated with different func-

tional regions (e.g., motor or visual cortices) may be grouped

together in order to identify a sparse set of regional events. In

[3, 4], an EM algorithm (equivalent to IST) was proposed for

solving problems of this type.

• AGS-$2 penalty (Φ(w) = ci(w) = ‖w‖2) was proposed for
source localization in sensor arrays [20]; second-order cone

programming was used to solve the optimization problem.

• In gene expression analysis, some genes are organized in

functional groups. This has motivated an approach called

CAP (composite absolute penalty) [25], which has the form

(4), and uses a greedy optimization scheme [26].

GS regularizers have also been proposed for ANOVA regression

models [19, 21, 24], and Newton-type optimization methods have

been proposed in that context. An interior-point method for the GS-

$∞ case (Φ(w) = ci(w) = ‖w‖∞) was proposed in [23]. The
SpaRSA framework is versatile enough to handle the GS regularizes

arising all in the applications described above.

As in [5, 6], convex analysis can be used to obtain the solution of

(11). If Φ is a norm, it is proper, convex (maybe not strictly so), and

homogenous. Since the quadratic term in (11) is proper and strictly

convex, this problem has a unique solution, which can be written

explicitly as follows:

w = b− PβCΦ(b), (12)

where PB denotes the orthogonal projector onto setB, and CΦ is a

1-ball in the dual norm Φ", that is, CΦ = {w ∈ Rl : Φ"(w) ≤ 1}.
For Φ(w) = ‖w‖2, the dual norm is alsoΦ"(w) = ‖w‖2, thus

βC‖·‖2 = {w ∈ Rl : ‖w‖2 ≤ β}. Clearly, if ‖b‖2 ≤ β, then
PβC‖·‖2

(b) = b, thus b − PβC‖·‖2
(b) = 0. If ‖b‖2 > β, then

PβC‖·‖2
(b) = β b/‖b‖2. These two cases are written compactly as

w =
b

‖b‖2 max {‖b‖2 − β, 0} . (13)

Naturally, if l = 1, (13) reduces to the scalar soft-threshold (8).
For Φ(w) = ‖w‖∞, the dual norm is Φ"(w) = ‖w‖1, thus

βC‖·‖∞ = {w ∈ Rn : ‖w‖1 ≤ β}. In this case, the solution of
(11) is the residual of the orthogonal projection of b onto the $1 β-
ball. This projection (thus also the residual) can be computed with

O(l log l) cost, as recently shown in [3, 4, 10].

4. EXPERIMENTS

4.1. Speed Comparisons for the $2 − $1 Problem

The purpose of our first experiment is to compare SpaRSA with

the state-of-the-art algorithms IST and GPSR (see Subsection 1.3),

and the l1_ls method [18], in a typical CS scenario (as in [15, 18]):
f(x) = ‖Ax− y‖22, withA a 210 × 212 random matrix; y is gen-
erated as y = Axtrue + e, where e is a Gaussian white vector with
variance 10−4, and xtrue is a vector with 160 randomly placed ±1
spikes and zeros elsewhere. We use the $1 regularizer c(x) = ‖x‖1,
and τ = 0.1 ‖AT y‖∞, as in [15, 18]. In this (and all other) experi-
ments, αmax= 1/αmin= 1030 and η = 2 (for SpaRSA-monotone). To
perform the comparison, independently of the adopted stopping rule,

we first run l1_ls and then the other algorithms until each reaches the
same value of the objective function reached by l1_ls. Table 1 re-
ports the CPU times required by SpaRSA, two variants of GPSR,

l1_ls, and IST, as well as the final mean squared error (MSE) of the
reconstructions with respect toxtrue. These results show that, for this
$2 − $1 problem, SpaRSA is slightly faster than GPSR and clearly
faster than l1_ls and IST, while achieving a similar value of MSE.

Table 1. CPU times (average over 10 runs) of several algorithms on

the CS experiment described in the text.

Algorithm CPU time (secs.) MSE

SpaRSA 0.44 2.42e-3

SpaRSA-monotone 0.45 2.49e-3

GPSR-BB 0.55 2.81e-3

GPSR-Basic 0.69 2.59e-3

l1_ls 6.56 2.51e-3

IST 2.76 2.51e-3

An indirect comparison with other codes can be made via [18,

Table 1], which shows that l1_ls outperforms the method from [12]
(6.9 vs 11.3 secs.), as well as $1-magic by about two orders of mag-
nitude and pdco from SparseLab by about one order of magnitude.

The second experiment assesses how the computational cost of

SpaRSA grows with the size of matrix A, using a setup similar to
the one in [15, 18]. Assuming that the computational cost isO(nγ),
we obtain empirical estimates of γ. SpaRSA and SpaRSA-monotone
have empirical exponents of .88 and .87, respectively, similar to the
values .86 and .87 of GPSR and GPSR-Basic. IST has a similar
exponent .89, but a worse constant. For l1_ls, we found γ = 1.21,
in agreement with the value 1.2 reported in [18].

4.2. Group-Separable Regularizers

Here we illustrate the use of SpaRSA with the GS regularizers con-

sidered in Section 3. In our example, xtrue is a 212-dimensional

vector, divided intom = 64 groups of length li = 64. As above, A
a 210 × 212 random matrix and y is generated as y = Axtrue + e,
where e is Gaussian white noise with variance 10−4. To generate

xtrue, we randomly choose 8 groups and fill them with zero-mean

Gaussian random samples of unit variance; all other groups are filled

with zeros. Finally we run SpaRSA, with f(x) = ‖Ax− y‖22 and
c(x) as given by (4), where ci(x[i]) = ‖x[i]‖2. The value of τ
is hand-tuned for optimal performance. Fig. 1 shows the result ob-

tained by SpaRSA, based on the GS-$2 regularizer, which success-
fully recoverers the group structure of xtrue, as well as the result
obtained with the classical $1 regularizer, for the best choice of τ .

In the second experiment, we consider a similar scenario, with

a single difference. Each active group, instead of being filled with

Gaussian random samples, is filled with ones. This case is clearly

more adequate for a GS-$∞ regularizer, as illustrated in Fig. 2, which
achieves an almost perfect reconstruction, with an MSE 2 orders of

magnitude smaller than what is obtained with a GS-$2 regularizer.

Figure: Compressive sensing with a random sensing matrix A of
dimension 210 × 212 and 160 spikes, and with Gaussian noise with
variance 10−4.
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Image Reconstruction

We observe a distorted image y of u ∈ Ω ∈ R2, where Ω is a
image domain with bounded variation, via a transform:

y = Au + z (7)

We obtain an error-free image by solving the following problem
introduced by Rudin, Osher and Fatemi ‘92:

ROF Model

min
u∈Ω

∫
Ω

λ

2
||y − Au||22 + TV (u), TV (u) := |∇u|2. (8)

TV (u) is referred as the total-variation semi-norm, which is
suitable for penalizing fine distortions but preserving edges.
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Image Denoising (A = I)

As Ω has bounded variation,∫
Ω
|∇u| = max

||w ||2≤1

∫
Ω
∇u · w = max

||w ||2≤1

∫
Ω
−u∇ · w (9)

So the problem can be rewritten as:

min
u∈Ω

max
||w ||2≤1

`(x ,w) :=

∫
Ω
−u∇ · w +

λ

2
||y − u||2. (10)

The saddle-point is attained.
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Primal-Dual Hybrid Gradient Projection Algorithm
(PDHG) [Zhu and Chan ‘08]

1: Initial x0, w0.
2: k = 0.
3: repeat
4: Update the primal and dual variables:

wk+1 = P{w :||w ||2≤1}(wk + τk∇w`(xk ,wk ))

xk+1 = xk − σk∇x`(xk ,wk+1).
(11)

5: k ← k + 1.
6: until Duality gap falls below a threshold.

Steplength:

τk := (.2 + .8k)λ σk := (.5− 1/(3 + .2k))/τk . (12)
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Numerical Results
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Figure 3: Plot of relative duality gap G(yk ,xk)
G(y0,x0)

v.s. CPU time. Top left: test
problem 1. Top right: test problem2. Bottom: test problem 3.
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Figure: Duality gap of denoising problems of size 1282, 2562, and 5122.
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Implementing elementary operations on GPUs
CS: In SpaRSA algorithm, the major operations are:

Ax , AT x .
If A consists of m rows of a n × n DCT matrix, Ax and AT x
takes O(nlogn) using FFT, no need to store A.
Only O(m) storage is required.

Level-1 BLAS operations.
Parallel design/coding is required for each operation.
Can use CUBLAS, but custom codes are often better.

IR: PDHG algorithm.

∇u, ∇ · w by finite difference methods.
The (i , j)-th output element is computed by looking
neighboring positions of (i , j) in u or w .
GPUs provide great features to speedup these 2-D data
access patterns with spatial locality.

Ax , AT x .
2-D DFT and inverse DFT (CUFFT) for deblurring.

Level-1 BLAS operations.
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1-D Compressive Sensing (SpaRSA)
We use one of the two GPUs in GeForce 9800 GX2 device, i.e. 128
cores, with 512MB global memory at 64GB/s.

τ/τmax
CPU GPU Speedup

iters time (s) MSE iters time (s) MSE total iter
.000100 103 4.32 8.1e-10 129 0.16 7.2e-10 26 33
.000033 135 5.52 1.3e-10 126 0.15 2.0e-10 37 34
.000010 143 5.81 9.8e-11 139 0.17 1.3e-10 35 34

Table: DCT sensing matrix of dim. 8192× 65536, with 1638 spikes

τ/τmax
CPU GPU Speedup

iters time (s) MSE iters time (s) MSE total iter
0.000100 107 107.08 9.1e-10 129 2.08 8.5e-10 51 62
0.000033 131 129.10 1.7e-10 131 2.10 1.6e-10 61 61
0.000010 149 145.31 1.0e-10 160 2.57 9.0e-11 57 61

Table: DCT sensing matrix of dim. 131072× 1048576, with 26214 spikes
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2-D Compressive Sensing (SpaRSA)

τ/τmax
CPU GPU Speedup

iters time (s) MSE iters time (s) MSE total iter
0.10 62 2.56 1.9e-05 67 0.09 1.9e-05 27 30
0.05 67 2.68 4.8e-06 68 0.08 4.8e-06 32 32
0.02 77 3.06 9.7e-07 83 0.10 9.6e-07 30 32

Table: DCT sensing matrix of dim. 1311× 65536, with 60 spikes

τ/τmax
CPU GPU Speedup

iters time (s) MSE iters time (s) MSE total iter
0.10 64 98.25 3.2e-05 64 1.00 3.1e-05 98 98
0.05 65 103.10 7.9e-06 70 1.08 7.9e-06 95 102
0.02 80 117.97 1.5e-06 84 1.30 1.5e-06 91 95

Table: DCT sensing matrix of dim. 20972× 1048576, with 1031 spikes
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Image Denoising
Image
size Tol CPU GPU Speedup

iters time (s) iters time (s) total iter

1282
1.e-2 11 0.03 11 0.02 2 2
1.e-4 79 0.21 79 0.02 11 11
1.e-6 338 0.90 329 0.07 14 13

2562
1.e-2 13 0.17 13 0.02 9 9
1.e-4 68 0.81 68 0.03 32 32
1.e-6 304 3.57 347 0.11 33 38

5122
1.e-2 12 0.95 12 0.03 31 31
1.e-4 54 3.96 54 0.05 76 76
1.e-6 222 16.08 238 0.19 84 90

10242
1.e-2 14 5.42 14 0.08 64 64
1.e-4 69 25.80 69 0.24 106 106
1.e-6 296 103.54 324 1.02 102 111

20482
1.e-2 13 31.41 13 0.28 114 114
1.e-4 67 149.24 67 0.90 165 165
1.e-6 319 694.16 338 4.12 169 179

Table: Computational results of image denoising (λ=0.041.)
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Conclusion

GPUs provide good platforms to speed up algorithms which

incur no frequent data transfer,

have small memory footprints,

and consist of simple units easy to parallelize.

Analogy between GPUs and coprocessors in 80s.

Add 80287 to speed-up flops, along with 80286.

Add GPUs to speed-up flops by parallelism, along with CPUs.

Intel is planning to embed GPUs in CPU chips.

GPUs provide a promising platform for:

Speeding-up existing algorithms.

Designing new parallel optimization algorithms.
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Thank you.

Paper: http://www.cs.wisc.edu/~sklee/

Code: http://www.cs.wisc.edu/~swright/GPUreconstruction/
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