Game Theoretic Resistance to DoS Attacks Using Hidden Difficulty Puzzles

Harikrishna¹, Venkatanathan¹ and Pandu Rangan²

¹College of Engineering Guindy, Anna University Chennai, Tamil Nadu, India

²Indian Institute of Technology, Madras, Tamil Nadu, India

・ 同 ト ・ ヨ ト ・ ヨ ト …

Outline

1 Introduction

2 Aim of the Paper

3 Game Model

- Player Actions
- Payoff Functions
- 4 Defense Mechanism 1
 - Preliminaries
 - Mitigating DoS Attack
- 5 Defense Mechanism 2
 - Preliminaries (Contd.)
 - Distributed Attacks
- 6 Hidden Difficulty Puzzle
 - Properties of HDPs
 - More Hidden Difficulty Puzzle
- 7 Conclusions
- 8 References

Proof-of-Work

- A good mechanism to counterbalance computational expenditure during a denial of service (DoS) attack.
- Proposed by Dwork and Naor (1992) to control junk mails.
- On receiving a request, server generates a puzzle and sends it to the client.
- The client solves the puzzle and sends a response.
- The server verifies the solution and provides the service only if the solution is correct.

Puzzle Difficulty

- A challenge in the client-puzzle approach is deciding on the difficulty of the puzzle.
- The puzzle difficulty could be adjusted based on the server load (Feng et al. 2005).
- But this would affect the quality of service to legitimate users.
- Instead, the puzzle difficulty could be varied based on a probability distribution.

- 4 同 6 4 日 6 4 日 6

Game Theory

- A denial of service attack is viewed as a two player game between an attacker and a defending server.
- Bencsath (2003) et al. was the first to model the client-puzzle approach as a strategic game.
- Fallah (2010) extended the work further by using infinitely repeated games.
- Jun-Jie (2008) applied game theory to puzzle auctions.

Outline

Introduction

2 Aim of the Paper

3 Game Model

- Player Actions
- Payoff Functions

4 Defense Mechanism 1

- Preliminaries
- Mitigating DoS Attack
- 5 Defense Mechanism 2
 - Preliminaries (Contd.)
 - Distributed Attacks
- 6 Hidden Difficulty Puzzle
 - Properties of HDPs
 - More Hidden Difficulty Puzzle
- 7 Conclusions
- 8 References

・ 同 ト ・ ヨ ト ・ ヨ ト

Aim of the Paper

- Introduce the notion of 'hidden puzzle difficulty' in client-puzzles.
- Propose new puzzles that satisfy this property.
- Show that a defense mechanism is more effective when it uses a hidden difficulty puzzle.

Hash Reversal Puzzle

- Hash Reversal Puzzle proposed by Juels and Brainard (1999).
- S Server Secret, N_S Server Nonce, M Session Parameter

Client		Defender
	$\xrightarrow{Request}$	$X = H(S, N_s, M)$ $Y = H(X)$
	$(X', Y), N_s$	$X' = X \& (0_1, 0_2,, 0_k, 1_{k+1},, 1_n)$
Find <i>rp</i> such that	rp, N_s	$X = H(S, N_s, M)$
H(rp) = Y	,	$H(rp) \stackrel{?}{=} H(X)$

Harikrishna, Venkatanathan and Pandu Rangan Game Theoretic Resistance to DoS Attacks Using Hidden Difficu

(日)

Hidden Difficulty Puzzle 1 – Modified Hash Reversal Puzzle

Hidden Difficulty Property

"The difficulty of the puzzle should not be determined by the attacker without expending a minimal amount of computational effort."

- Some of the first k bits of X are inverted.
- *k* determines puzzle difficulty, but is **hidden**.

Client		Defender
	Request →	$X = H(S, N_s, M)$ $Y = H(X)$
	$(X',Y), N_s$	$X' = X \oplus (I_1, I_2,, I_{k-1}, 1, 0_{k+1},, 0_n)$
Find rp such that H(rp) = Y	$\xrightarrow{rp, N_s}$	$X = H(S, N_s, M)$ $H(rp) \stackrel{?}{=} H(X)$
H(rp) = Y		$H(rp) \stackrel{?}{=} H(X)$

Harikrishna, Venkatanathan and Pandu Rangan Game Theoretic Resistance to DoS Attacks Using Hidden Difficu

Hidden Difficulty Puzzle 1 – Modified Hash Reversal Puzzle

Hidden Difficulty Property

"The difficulty of the puzzle should not be determined by the attacker without expending a minimal amount of computational effort."

Some of the first k bits of X are inverted.

• *k* determines puzzle difficulty, but is **hidden**.

Client		Defender
	Request →	$X = H(S, N_s, M)$ $Y = H(X)$
	$(X',Y), N_s$	$X' = X \left(\bigoplus (I_1, I_2,, I_{k-1}, 1, 0_{k+1},, 0_n) \right)$
Find <i>rp</i> such that	rp, Ns	$X = H(S, N_s, M)$
H(rp) = Y		$H(rp) \stackrel{?}{=} H(X)$

Harikrishna, Venkatanathan and Pandu Rangan Game Theoretic Resistance to DoS Attacks Using Hidden Difficu

Outline

- Introduction
- 2 Aim of the Paper
- 3 Game Model
 - Player Actions
 - Payoff Functions
- 4 Defense Mechanism 1
 - Preliminaries
 - Mitigating DoS Attack
- 5 Defense Mechanism 2
 - Preliminaries (Contd.)
 - Distributed Attacks
- 6 Hidden Difficulty Puzzle
 - Properties of HDPs
 - More Hidden Difficulty Puzzle
- 7 Conclusions
- 8 References

・ 同 ト ・ ヨ ト ・ ヨ ト

Game Model

- An extension of the model proposed by Fallah (2010).
- Defender and Attacker are players in a strategic game.
- The attacker is rational (strongest attacker).
- Legitimate user is not a player in the game.

Defender Actions

- Defender chooses from n puzzles, P₁, P₂, ..., P_n of varying difficulties.
- It can be shown that two puzzles are sufficient for an effective defense mechanism.
- Defender's choice is between P_1 (**Easy**) and P_2 (**Hard**).

・ロト ・回ト ・ヨト ・ヨト

Attacker Actions

- **CA** Correctly answer the puzzle
- **RA** Randomly answer the puzzle
- **TA** Try to answer the puzzle correctly, *but give up if it is too hard*.
- In the case of TA, the attacker gives a correct answer if the puzzle is solved and a random answer if he gives up.

- 4 同 2 4 回 2 4 U

Introduction	Aim of the Paper	Game Model	Defense Mechanism 1	Defense Mechanism 2	Hidden Difficulty Puzzle	Conclusions
		000000				

Notations

Term	Meaning		
Т	Reference time period.		
α_m	Fraction of T to provide the service.		
α_{PP}	Fraction of T to produce a puzzle.		
α_{VP}	Fraction of T to verify the solution.		
α_{SP_1}	Fraction of T to solve P_1 .		
α_{SP_2}	Fraction of T to solve P_2 .		

• Defender chooses P_1 and P_2 such that $\alpha_{SP_1} < \alpha_m < \alpha_{SP_2}$.

・聞き ・ ほき・ ・ ほき

Attacker Payoff

- Assume attacker receives puzzle *P_i*.
- If his response is CA, his payoff is

$$\alpha_{PP} + \alpha_{VP} + \alpha_m - \alpha_{SP_i}$$

If his response is RA, his payoff is

 $\alpha_{PP} + \alpha_{VP}$

If his response is TA, his payoff depends on when whether he gives up or not.

・ 同 ト ・ ヨ ト ・ ヨ ト

Attacker Payoff (Contd.)

Assume the puzzle difficulty is known.

(日) (同) (三) (三)

э

Attacker Payoff (Contd.)

- Assume the puzzle difficulty is known.
- The attacker's best response to puzzle P_1 is CA as

 $\alpha_{SP_1} < \alpha_m.$

$$u_2(P_1; CA) = \alpha_{PP} + \alpha_{VP} + \alpha_m - \alpha_{SP_1}$$

 $u_2(P_1; RA) = \alpha_{PP} + \alpha_{VP}$

Attacker Payoff (Contd.)

- Assume the puzzle difficulty is known.
- The attacker's best response to puzzle P_1 is CA as

$$\alpha_{SP_1} < \alpha_m.$$

$$u_2(P_1; CA) = \alpha_{PP} + \alpha_{VP} + \alpha_m - \alpha_{SP_1}$$

$$u_2(P_1; RA) = \alpha_{PP} + \alpha_{VP}$$
Positive

・ 同 ト ・ ヨ ト ・ ヨ ト

Attacker Payoff (Contd.)

- Assume the puzzle difficulty is known.
- The attacker's best response to puzzle P₁ is CA as

$$\alpha_{SP_1} < \alpha_m.$$

$$u_2(P_1; CA) = \alpha_{PP} + \alpha_{VP} + \alpha_m - \alpha_{SP_1}$$

$$u_2(P_1; RA) = \alpha_{PP} + \alpha_{VP}$$

- Positive
- The attacker's best response to puzzle P_2 is RA as $\alpha_{SP_2} > \alpha_m$.

$$u_2(P_2; CA) = \alpha_{PP} + \alpha_{VP} + \alpha_m - \alpha_{SP_2}$$

$$u_2(P_2; RA) = \alpha_{PP} + \alpha_{VP}$$

(人間) ト く ヨ ト く ヨ ト

Attacker Payoff (Contd.)

- Assume the puzzle difficulty is known.
- The attacker's best response to puzzle P_1 is CA as

$$\alpha_{SP_1} < \alpha_m.$$

$$u_2(P_1; CA) = \alpha_{PP} + \alpha_{VP} + \alpha_m - \alpha_{SP}$$
$$u_2(P_1; RA) = \alpha_{PP} + \alpha_{VP}$$

- Positive _____
- The attacker's best response to puzzle P_2 is RA as $\alpha_{SP_2} > \alpha_m$.

$$u_{2}(P_{2}; CA) = \alpha_{PP} + \alpha_{VP} + \alpha_{m} - \alpha_{SP_{2}}$$
$$u_{2}(P_{2}; RA) = \alpha_{PP} + \alpha_{VP}$$

Harikrishna, Venkatanathan and Pandu Rangan Game Theoretic Resistance to DoS

Game Theoretic Resistance to DoS Attacks Using Hidden Difficul

・ 同 ト ・ ヨ ト ・ ヨ ト …

Attacker Payoff – Try and Answer

• *TA* is relevant only if the puzzle difficulty is hidden.

▲御▶ ▲理▶ ▲理≯

Attacker Payoff – Try and Answer

- *TA* is relevant only if the puzzle difficulty is hidden.
- The attacker puts in the minimal effort required to solve P₁ and gives up when he realizes the puzzle is P₂.

Attacker Payoff – Try and Answer

- *TA* is relevant only if the puzzle difficulty is hidden.
- The attacker puts in the minimal effort required to solve P₁ and gives up when he realizes the puzzle is P₂.
- If the puzzle sent is P_1 , he would send the correct answer.

 $u_2(P_1; TA) = \alpha_{PP} + \alpha_{VP} + \alpha_m - \alpha_{SP_1}$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

Attacker Payoff – Try and Answer

- *TA* is relevant only if the puzzle difficulty is hidden.
- The attacker puts in the minimal effort required to solve P₁ and gives up when he realizes the puzzle is P₂.
- If the puzzle sent is P_1 , he would send the correct answer.

$$u_2(P_1; TA) = \alpha_{PP} + \alpha_{VP} + \alpha_m - \alpha_{SP_1}$$

• If the puzzle sent is P_2 , he would give up after expending α_{SP_1} amount of effort.

$$u_2(P_2; TA) = \alpha_{PP} + \alpha_{VP} - \alpha_{SP_1}$$

- * 同 * * ヨ * * ヨ * - ヨ

Attacker Payoff – Try and Answer

- *TA* is relevant only if the puzzle difficulty is hidden.
- The attacker puts in the minimal effort required to solve P₁ and gives up when he realizes the puzzle is P₂.
- If the puzzle sent is P_1 , he would send the correct answer.

$$u_2(P_1; TA) = \alpha_{PP} + \alpha_{VP} + \alpha_m - \alpha_{SP_1}$$

If the puzzle sent is P_2 , he would give up after expending α_{SP_1} amount of effort.

$$u_2(P_2; TA) = \alpha_{PP} + \alpha_{VP} - \alpha_{SP_1}$$

Minimal Effort

・ 同 ト ・ ヨ ト ・ ヨ ト

Defender Payoff

- Unlike the attacker, a legitimate user always gives the correct answer.
- The defender seeks to maximize the effectiveness of the defense mechanism and minimize the cost to a legitimate user.
- We introduce a balance factor $0 < \eta < 1$ that allows him to strike a balance between the two.

Payoff:

 $u_1 = (1 - \eta)(-attacker payoff) + \eta(-legitimate user cost).$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

Outline

- 1 Introduction
- 2 Aim of the Paper
- 3 Game Model
 - Player Actions
 - Payoff Functions
- 4 Defense Mechanism 1
 - Preliminaries
 - Mitigating DoS Attack
- 5 Defense Mechanism 2
 - Preliminaries (Contd.)
 - Distributed Attacks
- 6 Hidden Difficulty Puzzle
 - Properties of HDPs
 - More Hidden Difficulty Puzzle
- 7 Conclusions
- 8 References

・ 同 ト ・ ヨ ト ・ ヨ ト

Preliminaries – Mixed Strategy

- A mixed strategy is a probability distribution over a players actions.
- The defender could send P_1 with a probability p and P_2 with probability 1 p.
- We represent such a mixed strategy as $(p \circ P_1 \oplus (1-p) \circ P_2; TA).$
- Similarly, the attacker could choose a lottery over *CA*, *TA* and *RA*.

イロト イポト イヨト イヨト 二日

Nash Equilibrium

- A Nash equilibrium exists if each player has chosen a strategy and no player can benefit by unilaterally changing his strategy.
- Fallah (2010) constructed a defense mechanism by using Nash equilibrium is used here in a prescriptive manner.
- The defender selects and takes part in a specific equilibrium profile and the best thing for the attacker to do is to conform to his equilibrium strategy.

Defense Mechanism 1 - Equilibrium Strategy

- The defender sends P_1 with probability p and P_2 with probability 1 p.
- The attacker tries to solve the puzzle (and gives a correct answer only for P₁)

Theorem

In the strategic game of the client-puzzle approach, for $0 < \eta < \frac{1}{2}$, a Nash equilibrium of the form $(p \circ P_1 \oplus (1-p) \circ P_2; TA)$, exists if

$$\eta = \frac{\alpha_m}{\alpha_m + \alpha_{SP_2} - \alpha_{SP_1}},$$
$$\alpha_{SP_2} - \alpha_{SP_1} > \alpha_m \text{ and}$$
$$p > \frac{\alpha_{SP_1}}{\alpha_m}.$$

Harikrishna, Venkatanathan and Pandu Rangan Game Theoretic Resistance to DoS Attacks Using Hidden Difficu

Mitigating DoS Attack

- A Nash equilibrium does not prevent the flooding attack from being successful.
- Let *N* be the maximum number of requests that an attacker can send in time *T* (reference time).
- The defender is overloaded when

$$Np\alpha_m > 1.$$

So to prevent a DoS attack, we must ensure that

$$Np\alpha_m \leq 1 \text{ or } p \leq \frac{1}{N\alpha_m}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Comparison with Previous Work

- HDM1 Defense mechanism using hidden difficulty puzzles.
- PDM1 Defense mechanism using known difficulty puzzles (Fallah 2010).
- Expected payoff of the attacker in HDM1 is

$$\alpha_{PP} + \alpha_{VP} + p\alpha_m \left(-\alpha_{SP_1}\right)$$

Expected payoff of the attacker in PDM1 is

$$\alpha_{PP} + \alpha_{VP} + p\alpha_m \left(-p\alpha_{SP_1} \right)$$

- The expected payoff of an attacker in HDM1 is lower than in PDM1.
- The payoff of the defender is the same in both defense mechanisms.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Outline

- 1 Introduction
- 2 Aim of the Paper
- 3 Game Model
 - Player Actions
 - Payoff Functions
- 4 Defense Mechanism 1
 - Preliminaries
 - Mitigating DoS Attack
- 5 Defense Mechanism 2
 - Preliminaries (Contd.)
 - Distributed Attacks
- 6 Hidden Difficulty Puzzle
 - Properties of HDPs
 - More Hidden Difficulty Puzzle
- 7 Conclusions
- 8 References

・ 同 ト ・ ヨ ト ・ ヨ ト

Repeated Games

- Two flavors of game theory:
- **Strategic games:** A single-shot game where a decision-maker ignores the decisions in previous plays of the game.
- Repeated games: A multi-period game where a player's decision is influenced by decisions taken in all periods of the game.
- During a denial of service attack, the attacker repeatedly sends requests to the defender.
- The scenario is modeled as an **infinitely repeated game**.

Threat of Punishment

- In a repeated game, a player would be willing to take sub-optimal decisions if it would give him a higher payoff in the long run.
- Deviation of a player from a desired strategy can be prevented if he is threatened with sufficient punishment in the future.
- A Nash equilibrium with high payoff can be achieved if a player is patient enough to see long term benefits over short term gains.

・ロト ・同ト ・ヨト ・ヨト

The Folk Theorem

- The minmax payoff of a player is the minimum payoff that he can guarantee himself in a game, even when the opponents play in the most undesirable manner.
- A player's minmax strategy against an opponent would reduce the opponent's payoff to the minmax payoff.
- A Nash equilibrium where each player receives an average payoff above his minmax payoff is possible through the threat of punishment (Fudenberg and Maskin 1986).

イロト 不得 トイヨト イヨト 二日

Two Phase Equilibrium

Normal Phase (A)

- The defender and attacker choose a strategy profile, where each of them receive a payoff greater than the minmax payoff.
- If either of them deviate, the game switches to the punishment phase (B).

Punishment Phase (B)

- Each player chooses a minmax strategy against the other player for τ periods, after which the game switches to the normal phase.
- Any deviation from this strategy would restart the phase.

イロト 不得 トイヨト イヨト 二日

Minmax Strategies

Defender's Minmax Strategy

Theorem

In the game of the client-puzzle approach, when $\alpha_{SP_2} - \alpha_{SP_1} < \alpha_m$, one of the defender's minmax strategy against the attacker is

$$p_1 \circ P_1 \oplus (1-p_1) \circ P_2$$

where $p_1 = \frac{\alpha_{SP_2} - \alpha_m}{\alpha_{SP_2} - \alpha_{SP_1}}$.

Minmax Strategies (Contd.)

Attacker's Minmax Strategy

Theorem

In the game of the client-puzzle approach, when $\alpha_{SP_2} - \alpha_{SP_1} < \alpha_m$ and $0 < \eta < \frac{1}{2}$, the attacker's minmax strategy against the defender is $p_2 \circ CA \oplus (1 - p_2) \circ RA$, where $p_2 = \frac{\eta}{1 - n}$.

Defense Mechanism

Punishment Phase: The defender chooses the mixed strategy

$$p_1 \circ P_1 \oplus (1-p_1) \circ P_2,$$

while the attacker chooses the mixed strategy

$$p_2 \circ CA \oplus (1-p_2) \circ RA.$$

Normal Phase: The defender chooses the mixed strategy

$$p \circ P_1 \oplus (1-p) \circ P_2,$$

while the attacker chooses the strategy TA.

 The defender receives higher payoff in the Nash equilibrium of the repeated game than in the Nash equilibrium of the single-shot strategic game.

Flow Chart

Harikrishna, Venkatanathan and Pandu Rangan

Game Theoretic Resistance to DoS Attacks Using Hidden Difficu

Comparison with Previous Work

- HDM2 Defense mechanism based on repeated game using hidden difficulty puzzles.
- PDM2 Defense mechanism based on repeated game using known difficulty puzzles (Fallah 2010).
- The minmax payoff of the defender in HDM2 is

$$(1-\eta)(-\alpha_{PP}-\alpha_{VP})-\overline{\eta\alpha_m}.$$

The minmax payoff of the defender in PDM2 is

$$(1-\eta)(-\alpha_{PP}-\alpha_{VP})-(\eta\alpha_{SP_2})$$

The minmax payoff of the defender in HDM2 is higher than that in PDM2.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Comparison with Previous Work (Contd.)

- The minmax payoff of the attacker is the same in both defense mechanisms.
- Since the minmax payoff is a lower bound on the defender's payoff, the defender is better off in HDM2.
- In PDM2, only P_2 puzzles are sent in punishment phase.
- In HDM2, a lottery over P_1 and P_2 is adopted.
- A legitimate user is hurt less in the punishment phase of HDM2.

- 4 同 2 4 日 2 4 日 2 4

Distributed Attacks

- The computational power of the attacker increases proportionally with the size of the attack coalition.
- When *s* machines are used, the attacker can send *sN* requests in time *T*.
- The conditions for the first defense mechanism to handle distributed attacks are

$$\frac{\alpha_{SP_1}}{s} < \frac{1}{N} < \alpha_m < \frac{\alpha_{SP_2}}{s},$$
$$\alpha_{SP_2} - \alpha_{SP_1} > s\alpha_m,$$
$$\eta = \frac{\alpha_m}{\alpha_m + \alpha_{SP_2} - \alpha_{SP_1}} \text{ and }$$
$$\frac{\alpha_{SP_1}}{s\alpha_m}$$

Harikrishna, Venkatanathan and Pandu Rangan Game Theoretic Resistance to DoS Attacks Using Hidden Difficu

・ 同 ト ・ ヨ ト ・ ヨ ト …

Outline

- 1 Introduction
- 2 Aim of the Paper
- 3 Game Model
 - Player Actions
 - Payoff Functions
- 4 Defense Mechanism 1
 - Preliminaries
 - Mitigating DoS Attack
- 5 Defense Mechanism 2
 - Preliminaries (Contd.)
 - Distributed Attacks
- 6 Hidden Difficulty Puzzle
 - Properties of HDPs
 - More Hidden Difficulty Puzzle
- 7 Conclusions
- 8 References

・ 同 ト ・ ヨ ト ・ ヨ ト

Properties of HDPs

- Hidden Difficulty: The difficulty of the puzzle should not be determined without a minimal computations.
- High Puzzle Resolution: The granularity of puzzle difficulty must be high allowing us to fine tune the system parameters.
- **Partial Solution:** Submission of partial solutions should be possible (to differentiate between *RA* and *TA*.)

Hidden Difficulty Puzzle 2

Client		Defender
	Request →	$X = H(S_1, N_s, M)$ Y = H(X) $x = H(S, M, M) \mod D + l$
	$(X^{\prime\prime},Y,Z),N_s$	$ \begin{aligned} & a = H(S_2, N_s, M) \text{ find } D + I \\ & X' = X - a \\ & Z = H(X') \\ & X'' = X' \oplus (I_1,, I_{k-1}, 1, 0_{k+1},, 0_n) \end{aligned} $
Find $rp1$ such that H(rp1) = Z. Find a' such that H(rp2) = Y	<u>.</u>	
where $rp2 = rp1 + a'$.	$\xrightarrow{rp1, rp2, N_s}$	$X = H(S_1, N_s, M)$ $a = H(S_2, N_s, M) \mod D + l$ $H(rp1) \stackrel{?}{=} H(X - a)$
		$H(rp2) \stackrel{\prime}{=} H(X)$

Harikrishna, Venkatanathan and Pandu Rangan Game Theoretic Resistance to DoS Attacks Using Hidden Difficu

<ロ> <同> <同> < 回> < 回>

э

Hidden Difficulty Puzzle 3

Client		Defender
	Request →	$X = H(S_1, N_s, M)$ Y = H(X) $Y = H(S_1, M_1, M_2) \mod D_1 + 1$
		$\begin{aligned} \mathbf{a} &= H(\mathbf{S}_2, \mathbf{N}_s, \mathbf{M}) \text{ mod } \mathbf{D}_a + T \\ \mathbf{X}' &= \mathbf{X} - \mathbf{a} \end{aligned}$
		Z = H(X')
	$(X'', Y, Z), N_s$	$X^{\prime\prime}=X^{\prime}-b$
Find b' such that H(rp1) = Z, where $rp1 = X'' + b'$. Find a' such that H(rp2) = Y,		
where $rp2 = rp1 + a'$.	rp1, rp2, N _s	$X = H(S_1, N_s, M)$
		$a = H(S_2, N_s, M) \bmod D_a + I$
		$H(rp1) \stackrel{?}{=} H(X - a)$
		$H(rp2) \stackrel{?}{=} H(X)$

Harikrishna, Venkatanathan and Pandu Rangan Game Theoretic Resistance to DoS Attacks Using Hidden Difficu

<ロト <部ト < 注ト < 注ト

э

Hash Computations

 We present the number hash computations required for generating, verifying and solving the proposed puzzles.

Puzzle	Generation	Verification (max)	Solving (avg)	Partial Solution
HDP1	2	3	$\frac{(2^k+1)}{2}$	No
HDP2	4	6	$\frac{(2^{k}+1) + (D+1)}{2}$ (I = 1)	Yes
HDP3	4	6	$\frac{(D_a+1) + (D_b+1)}{2}$ (I = 1)	Yes

Term	Meaning		
Н	Hash Function		
S	Server Secret		
Ns	Server Nonce		
М	Session Parameter		
1	Random Binary Number		
k	No. of bits to be inverted		

伺 ト く ヨ ト く ヨ ト

Outline

- 1 Introduction
- 2 Aim of the Paper
- 3 Game Model
 - Player Actions
 - Payoff Functions
- 4 Defense Mechanism 1
 - Preliminaries
 - Mitigating DoS Attack
- 5 Defense Mechanism 2
 - Preliminaries (Contd.)
 - Distributed Attacks
- 6 Hidden Difficulty Puzzle
 - Properties of HDPs
 - More Hidden Difficulty Puzzle
- 7 Conclusions
- 8 References

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusions

- We have given emphasis on hiding the difficulty of client-puzzles from a denial of service attacker.
- Three concrete puzzles that satisfy this requirement have been constructed.
- Using game theory, we have developed defense mechanisms that are more effective than the existing ones.
- Future direction of work would be to incorporate the defense mechanisms in existing protocols and to estimate its effectiveness in real-time.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Outline

- 1 Introduction
- 2 Aim of the Paper
- 3 Game Model
 - Player Actions
 - Payoff Functions
- 4 Defense Mechanism 1
 - Preliminaries
 - Mitigating DoS Attack
- 5 Defense Mechanism 2
 - Preliminaries (Contd.)
 - Distributed Attacks
- 6 Hidden Difficulty Puzzle
 - Properties of HDPs
 - More Hidden Difficulty Puzzle
- 7 Conclusions
- 8 References

Harikrishna, Venkatanathan and Pandu Rangan

Game Theoretic Resistance to DoS Attacks Using Hidden Difficu

References

- Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: *Brickell, E.F. (ed.) CRYPTO 1992. LNCS*, vol. 740, pp. 139–147. Springer, Heidelberg (1993).
- Juels, A., Brainard, J.: Client puzzles: A cryptographic countermeasure against connection depletion attacks. In: *Proceedings of NDSS 1999 (Networks and Distributed Security Systems)*, pp. 151–165 (1999)
- Bencsath, B., Vajda, I., Buttyan, L.: A game based analysis of the client puzzle approach to defend against dos attacks. In: *Proceedings of the 2003 International Conference on Software, Telecommunications and Computer Networks*, pp. 763–767 (2003).

References (Contd.)

- Feng, W., Kaiser, E., Luu, A.: Design and implementation of network puzzles. In: *INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE*, March 2005, vol. 4, pp. 2372–2382 (2005).
- Lv, J.-J.: A game theoretic defending model with puzzle controller for distributed dos attack prevention. In: 2008 International Conference on Machine Learning and Cybernetics, July 2008, vol. 2, pp. 1064–1069 (2008)
- Fallah, M.: A Puzzle-Based Defense Strategy Against Flooding Attacks Using Game Theory. In: *IEEE Trans. Dependable and Secure Computing*, vol. 7, no. 1, pp. 5–19 (2010).

イロト 不得 トイヨト イヨト 二日