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Lemma 1. No face in the power diagram can arise between two cells in the octree that only shared a vertex.

Proof. Consider the points p1 and p2 at the centers of two power cells C1 and C2. From the definition of the
power diagram, the plane P between them satisfies the equation,

d21 − r21 = d22 − r22 (1)

where d1 = |p − p1| and d2 = |p − p2| are the distances of an arbitrary point p, and r1, r2 are the radii
of the circumspheres S1, S2 for the power cells C1, C2. P is the secant plane that passes through the
intersection circle of S1 and S2. The primal-dual orthogonality property of power diagrams ensures that p1p2
is perpendicular to P, let p0 be the intersection point. It follows that when a face exists between C1 and C2

in the power diagram, then |p0 − p1| < r1 and |p0 − p2| < r2.
Now assume that the octree cells O1, O2 centered at the points p1, p2 only shared a vertex q. When the

radius of each power cell is ∆x/
√

3 (or ∆x/
√

2 in 2D), then q lies on both S1 and S2. However, |p1− q| = r1
and |p2 − q| = r2, so q also satisfies equation (1), implying that it lies on the plane P. It follows that the
plane P is tangent to both S1 and S2. Thus, there is no face between C1 and C2 in the power diagram.

Figure 1: Computational domain for the two dimensional Poisson problem.

Note that the proof for Lemma 1 does not assume any grading restrictions on the octree, suggesting that
this property holds in general.

Numerical validation

We now show the numerical convergence of our discretization on some analytic problems. Consider an
analytic pressure field satisfying p = x2 + y2 − r2 and a level set field φ =

√
x2 + y2 − r in the domain

[−0.5, 0.5]× [−0.5, 0.5], where r = 0.25. Regions inside the level set contain pressure degree of freedom, while
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Effective resolution 322 642 1282 2562 5122

L∞ error 0.000753682 0.000207968 5.58272e−5 1.44169e−5 3.68431e−6

Order of accuracy − 1.86 1.90 1.95 1.97

Table 1: Convergence results for the two dimensional Poisson problem.

Effective resolution 323 643 1283 2563

L∞ error 0.00115148 0.00030693 8.1405e−5 2.15657e−5

Order of accuracy − 1.91 1.91 1.92

Table 2: Convergence results for the three dimensional Poisson problem.

Effective resolution 322 642 1282 2562 5122

L∞ error 0.0159432 0.0100688 0.00494522 0.0024499 0.00121924
Order of accuracy − 0.58 1.02 1.01 1.01

Table 3: Convergence results for our fast marching scheme in two dimensions.

Effective resolution 323 643 1283 2563 5123

L∞ error 0.0227256 0.0138875 0.00731823 0.00342631 0.00187874
Order of accuracy − 0.71 0.92 1.09 0.87

Table 4: Convergence results for our fast marching scheme in three dimensions.

those outside serve as Dirichlet boundary conditions. Our quadtree has two levels of adaptivity, with fine
resolution on one side and coarse on the other (see Figure 1). Table 1 shows the convergence results from
our discretization. We similarly consider an analytic pressure field p = x2 + y2 + z2 − r2 and a level set
field φ =

√
x2 + y2 + z2 − r in three dimensions. Table 2 shows the convergence results. As can be seen,

our discretization achieves second order accuracy. We also evaluated the order of accuracy of our hybrid fast
marching scheme. Table 3 shows the convergence behavior of our method in the two dimensional setting of
Figure 1, while Table 4 shows the corresponding behavior in three dimensions.
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