
Triangulating the Real Projective Plane

Mridul Aanjaneya and Monique Teillaud

Abstract. We consider the problem of computing a triangulation of the real
projective plane P2, given a finite point set P = {p1, p2, . . . , pn} as input.
We prove that a triangulation of P2 always exists if at least six points in P
are in general position, i.e., no three of them are collinear. We also design an
algorithm for triangulating P2 if this necessary condition holds. As far as we
know, this is the first computational result on the real projective plane.

Keywords. Computational geometry, triangulation, simplicial complex, pro-
jective geometry.

1. Introduction

The real projective plane P2 is in one-to-one correspondence with the set of lines
of the vector space R3. Formally, P2 is the quotient P2 = R3−{0} / ∼ where the
equivalence relation ∼ is defined as follows: for two points p and p′ of P2, p ∼ p′

if p = λp′ for some λ ∈ R−{0}.
Triangulations of the real projective plane P2 have been studied quite well

in the past, though mainly from a graph-theoretic perspective. A contraction of
and edge e in a map M removes e and identifies its two endpoints, if the graph
obtained by this operation is simple. M is irreducible if none of its edges can be
contracted. Barnette [1] proved that the real projective plane admits exactly two
irreducible triangulations, which are the complete graph K6 with six vertices and
K4 + K3 (i.e., the quadrangulation by K4 with each face subdivided by a single
vertex), which are shown in Figure 1. Note that these figures are just graphs, i.e.
the horizontal and vertical lines do not imply collinearity of the points.

A diagonal flip is an operation which replaces an edge e in the quadrilateral
D formed by two faces sharing e with another diagonal of D (see Figure 2). If
the resulting graph is not simple, then we do not apply it. Wagner [18] proved
that any two triangulations on the plane with the same number of vertices can be
transformed into each other by a sequence of diagonal flips, up to isotopy. This
result has been extended to the torus [5], the real projective plane and the Klein
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Figure 1. The two irreducible triangulations of P2.

bottle [16]. Moreover, Negami has proved that for any closed surface F 2, there
exists a positive integer N(F 2) such that any two triangulations G and G′ on F 2

with |V (G)| = |V (G′)| ≥ N(F 2) can be transformed into each other by a sequence
of diagonal flips, up to homeomorphism [14]. Mori and Nakamoto [11] gave a linear
upper bound of (8n−26) on the number of diagonal flips needed to transform one
triangulation of P2 into another, up to isotopy. There are many papers concerning
with diagonal flips in triangulations, see [15, 7] for more references.

Figure 2. A diagonal flip.

In this paper, we address a different problem, which consists in comput-
ing a triangulation of the real projective plane, given a finite point set P =
{p1, p2, . . . , pn} as input.

Definition 1.1. Let us recall background definitions here. More extensive definitions
are given for instance in [19, 9].

• An (abstract) simplicial complex is a set K together with a collection S of
subsets of K called (abstract) simplices such that:

1. For all v ∈ K, {v} ∈ S. The sets {v} are called the vertices of K.
2. If τ ⊆ σ ∈ S, then τ ∈ S.

Note that the property that σ, σ′ ∈ K ⇒ σ ∩ σ′ ≤ σ, σ′ can be deduced from
this.
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• σ is a k-simplex if the number of its vertices is k + 1. If τ ⊂ σ, τ is called a
face of σ.

• A triangulation of a topological space X is a simplicial complex K such that
the union of its simplices is homeomorphic to X.

All algorithms known to compute a triangulation of a set of points in the
Euclidean plane use the orientation of the space as a fundamental prerequisite.
The projective plane is not orientable, thus none of these known algorithm can
extend to P2.

We will always represent P2 by the sphere model where a point p is same as
its diametrically opposite “copy” (as shown in Figure 3(a)). We will refer to this
sphere as the projective sphere. A triangulation of the real projective plane P2 is a
simplicial complex such that each face is bounded by a 3-cycle, and each edge can
be seen as a greater arc on the projective sphere. We will also sometimes refer to
a triangulation of the projective plane as a projective triangulation.

Figure 3. (a) The sphere model of P2. (b) 4pqr separated from
its “copy” by a distinguishing plane in R3.

Stolfi [17] had described a computational model for geometric computations:
the oriented projective plane, where a point p and its diametrically opposite “copy”
on the projective sphere are treated as two different points. In this model, two
diametrically opposite triangles are considered as different, so, the computed tri-
angulations of the oriented projective plane are actually not triangulations of P2.
Identifying in practice a triangle and its opposite in some data-structure is not
straightforward. Let us also mention that the oriented projective model can be
pretty costly because it involves the duplication of every point, which can be a
serious bottleneck on available memory in practice.

The reader should also note that obvious approaches like triangulating the
convex hull of the points in P and their diametrically opposite “copies” (on the
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projective sphere) separately will not work: it may happen that the resulting struc-
ture is not a simplicial complex (see Figure 4 for the most obvious example), so,
it is just not a triangulation (see definition 1.1).

p

q

r

pr

q

V(p)

V(q)

V(r)

Figure 4. The convex hull of duplicated points is not a triangu-
lation.

1.1. Terminology and Notation

We assume that the positions of points and lines are stored as homogeneous co-
ordinates in the real projective plane. Positions of points will be represented by
triples (x, y, z) (with z 6= 0) and their coordinate vectors will be denoted by small
letters like p, q, r, . . .. Positions of lines will also be represented by triples [x, y, z]
but their coordinate vectors will be represented by capital letters like L,M,N, . . ..
We shall also state beforehand whether a given coordinate vector is that of a line
or a point to avoid ambiguity. Point p and line M are incident if and only if the
dot product of their coordinate vectors p ·M = 0. If p and q are two points then
the line L = pq can be computed as the cross product p × q of their coordinate
vectors. Similarly the intersections of two lines M and N can be computed as the
cross product M ×N of their coordinate vectors.

We denote the line in R3 corresponding to a point p in P2 by V (p). A plane
in R3 which separates 4abc from its diametrically opposite “duplicate copy” on
the projective sphere will be referred to as a distinguishing plane for the given
triangle (see Figure 3(b)). Note that a distinguishing plane is not unique for a
given triangle. Also note that such a plane is defined only for non-degenerate
triangles on the real projective plane.

1.2. Contents of the Paper

We first prove a necessary condition for the existence of a triangulation of the
set P = {p1, p2, . . . , pn} of P2. More precisely, we show that such a triangulation
always exists if at least six points in P are in general position, i.e., no three of them
are collinear. So if the number of points n in P is very large, the probability of
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such a set of six points to exist is high, implying that it is almost always possible
to triangulate P2 from a point set.

We design an algorithm for computing a projective triangulation of P if the
above condition holds. The efficiency of the algorithm is not our main concern in
this paper. The existence of an algorithm for computing a triangulation directly
in P2 is our main goal. As far as we know, this is the first computational result on
the real projective plane.

The paper is organized as follows. In section 2, we devise an “in-triangle” test
for checking whether a point p lies inside a given 4abc. In section 3, we first prove
that a triangulation of P2 always exists if at least six points in the given point
set P are in general position. We then describe our algorithm for triangulating P2

from points in P. Finally, in section 4, we present some open problems and future
directions of research in this area.

2. The Notion of “Interior” in the Real Projective Plane

It is well-known that the real projective plane is a non-orientable surface. However,
the notion of “interior” of a closed curve exists because the projective plane with a
cell (any figure topologically equivalent to a disk) cut out is topologically equivalent
to a Möbius band [9]. For a given triangle on the projective plane, we observe that
its interior can be defined unambiguously if we associate a distinguishing plane
with it. The procedure for associating such a plane with any given triangle will
be described in Section 3. For now we will assume that we have been given 4pqr
along with its distinguishing plane in R3. We further assume for simplicity that
this plane is z = 0 for the given 4pqr (as shown in Figure 3(b)). Consider the
three lines V (p), V (q) and V (r) in R3. These lines give rise to four double cones,
three of which are cut by the distinguishing plane. We define the interior of 4pqr
as the double cone in R3 which is not cut by its distinguishing plane. Based on
the above definition, we define a many-one mapping s : P2 → R3 from points in
P2 to points in R3 as follows:

s(p) = s(x, y, z) =

 (1, x
z , y

z ) z 6= 0;
(0, 1, y

x ) z = 0, x 6= 0;
(0, 0, 1) z = 0, x = 0.

Given three points a = (x0, y0, z0), b = (x1, y1, z1), c = (x2, y2, z2) and a point
p = (x, y, z), p lies inside 4abc if

sign

∣∣∣∣∣∣
s0

s1

s

∣∣∣∣∣∣ + sign

∣∣∣∣∣∣
s1

s2

s

∣∣∣∣∣∣ + sign

∣∣∣∣∣∣
s2

s0

s

∣∣∣∣∣∣ = ±3 (1)

and it lies on the perimeter of 4abc if
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sign

∣∣∣∣∣∣
s0

s1

s

∣∣∣∣∣∣ + sign

∣∣∣∣∣∣
s1

s2

s

∣∣∣∣∣∣ + sign

∣∣∣∣∣∣
s2

s0

s

∣∣∣∣∣∣ = ±2 (2)

Here si = s(xi, yi, zi) for i = 0, 1, 2, and s = s(x, y, z). The function sign(m)
returns 1 if m is positive, 0 if m is zero, and −1 if m is negative. The reader
should note that similar to the oriented projective model [17], there is no notion
of interior when all a, b, c and p are at infinity. We now consider the case when
the distinguishing plane in R3 is αx + βy + γz = 0, where α, β, γ are arbitrary
constants. We use a linear transformation matrix M for transforming the given
plane into the plane z = 0 according to the equation M· p′ = p, where orientation
is preserved. This transformation takes the coordinate vector p of a point to the
vector p′. Now the s-mapping of equation (1) can be used for the “in-triangle” test
with the new coordinate vectors, as described above. For the case when γ 6= 0, we
have

M =


0 −(β2+γ2)√

(β2+γ2)(α2+β2+γ2)

α√
(α2+β2+γ2)

γ√
β2+γ2

αβ√
(β2+γ2)(α2+β2+γ2)

β√
(α2+β2+γ2)

−β√
β2+γ2

αγ√
(β2+γ2)(α2+β2+γ2)

γ√
(α2+β2+γ2)

 (3)

For the case when γ = 0, β 6= 0, we have

M =


β√

α2+β2
0 α√

α2+β2

−α√
α2+β2

0 β√
α2+β2

0 −1 0

 (4)

Finally, we have the case when γ = β = 0. In this case, we simply make the X-axis
the new Y ′-axis, the Y -axis the new Z ′-axis, and the Z axis the new X ′-axis. So
our tranformation matrix M is as follows:

M =

 0 0 1
1 0 0
0 1 0

 (5)

Note that all the transformation matrices given by equations (2), (3) and (4)
are orthogonal matrices, i.e., M−1 = MT .

3. Computing the Projective Triangulation of a Point Set

We now proceed to discuss our algorithm for triangulating the real projective plane
given a point set P = {p1, p2, ..., pn} as input. We number the points in this section
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for diagramatic clarity. We first prove the following simple result for point sets in
P2:

Figure 5. (a) Every point set P has a K4-quadrangulation, un-
less (n−1) points are collinear. (b) and (c) A K4-quadrangulation
is sufficient for triangulating the real projective plane.

Lemma 3.1. If among every set of four points in the point set P at least three
points are collinear, then at least (n− 1) points in P are collinear.

Proof. It is easy to see that the lemma holds if all points in P are collinear. So
we may safely assume that this is not the case. We prove the above lemma by
the method of contradiction. Assuming that no set of (n− 1) points are collinear.
Consider a set of four points {1, 2, 3, 4} as shown in Figure 5(a). Since among every
set of four points, at least three are collinear, so we assume that 1, 2 and 3 are
collinear. Now consider a fifth point 5 instead of 3, and assume that it does not lie
on the line L = 12. From the given condition, it must lie on the line M = 14. But
now no three points among the set {2, 3, 4, 5} are collinear, a contradiction! �

Corollary 3.2. If (n − 1) points are not collinear in the given point set P, then
there exists a set of four points in P, no three of which are collinear.

We call such a set of four points a K4-quadrangulation. Corollary 3.2 states
that every point set P in which no (n − 1) points are collinear contains a K4-
quadrangulation. We now make the following important observation that such a
point set can be used to construct a triangulation of the projective plane (see
Figure 5(b,c)). We have the following lemma:

Lemma 3.3. A K4-quadrangulation can be used to construct a projective triangu-
lation.

Proof. Consider the points of the K4-quadrangulation on the projective sphere
and construct the lines (great circles) {12, 13, 14, 24, 23, 34} (see Figure 5(b,c)).
The intersection of these six lines define three more points {p, q, r}. We call these
points pseudo-points because these may or may not be points in P. It is now easy
to see that the resulting triangulation is a simplicial complex and is isomorphic to
the projective triangulation shown in Figure 1(a). �
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The reader should observe that every triangle in the above triangulation has
precisely two copies on the projective sphere which are diametrically opposite (see
Figure 5(b,c)). So it now becomes possible to associate a distinguishing plane
with each triangle in the above triangulation unambiguously. For every 4abc in
the projective triangulation, we can take the plane through the center O of the
projective sphere and parallel to the plane passing through the end-points a, b, c
of one copy of 4abc. Given a query point u, we can now determine the triangle
inside which it lies. We will use this fact quite extensively in our algorithm. The
procedure described above is incomplete in the sense that we triangulate the real
projective plane with the help of some pseudo-points. We now give a necessary
condition for computing a projective triangulation from a point set P. The reader
should observe that every triangle in Figure 5(b,c) is incident with exactly one
pseudo-point. We will refer to the set of triangles incident to one pseudo-point as
a region. Note that any two regions have the same set of vertices. For constructing
a projective triangulation from P we will initially take help of pseudo-points, but
we will go on deleting them as their use is over. We now present the following
lemma:

Lemma 3.4. If there exists a set of six points (say, {1, 2, 3, 4, 5, 6}) in a given point
set P such that four of them (say, S = {1, 2, 3, 4}) form a K4-quadrangulation and
the other two (say, {5, 6}) are in different regions of the projective triangulation
formed by S, then it is possible to triangulate the projective plane using these six
points, unless (n− 2) points in P are collinear.

Proof. We give a constructive proof of the above statement. We first construct
a projective triangulation with the set {1, 2, 3, 4} (as described above). Suppose
points 5 and 6 lie in the regions associated with the pseudo-points p and q re-
spectively (see Figure 6(a,b)). We now add point 5 and make it adjacent to the
vertices of its bounding region, deleting the pseudo-point p and the edges it was in-
cident with. The newly added edges are shown by dashed lines. The pseudo-points
have also been kept for better understanding. We now add point 6 and delete the
corresponding pseudo-point q and the edges it was incident with. Now we intend
to delete the pseudo-point r and construct a valid projective triangulation using
only points in P. Here we make the important observation that either the edge
12 or 34 can be flipped. To see this, note that if flipping of neither of these edges
was possible, then 6 must lie to the “left” (as shown in Figure 6(a)) or “right”
(as shown in Figure 6(b)) of both the lines 52 and 54, in which case flipping of
edges would induce crossings. (Note that we refer to a point being on the “left”
or “right” of a line only locally with respect to front half of the projective sphere.)
However, the edge 24 lies in between these two lines and 6 cannot lie to its left
(resp. right). Thus, our claim holds.

Suppose the edge 12 can be flipped. We then construct a valid projective
triangulation by flipping 12, deleting the pseudo-point r and adding the edge 12
in that region. Observe that the projective triangulation constructed is isomorphic
to that shown in Figure 1(b). In the event that flipping of neither 12 nor 34 is
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Figure 6. (a) and (b) Symmetric cases for constructing a pro-
jective triangulation. (c) A canonical set always exists when six
points in P are in general position.

possible, all four points 5, 2, 4, 6 must be collinear. Since such a flip is also not
possible with any other point in P, they must all lie on the line 524, implying that
(n− 2) of the points in P are collinear. �

We will refer to such a K4-quadrangulation which has two points of P in
different regions as a canonical set. We now have almost all the basic tools required
for triangulating the real projective plane from a point set P. All that we need to
characterize is the existence of a canonical set. So far we have not used anywhere
the assumption that at least six points in P are in general position. It turns out
that there always exists a canonical set in P in this case. We have the following
lemma:
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Lemma 3.5. If at least six points in P are in general position, then there exists a
canonical set.

Proof. We prove this lemma by the method of contradiction. We assume that the
lemma does not hold, so for every K4-quadrangulation in P, all other points of P
are in the same region. Consider a K4-quadrangulation {1, 2, 3, 4} in P. Suppose
we add two more points 5 and 6, and they lie in the same region (as shown in
Figure 6(c)). Now consider the K4-quadrangulation formed by {4, 6, 3, 5}. If this
is to satisfy the property that all points in P lie in exactly one of its regions, then
it is easy to see that 2 must lie on or to the right of the line 54. But now 2 and 6
lie in different regions of the K4-quadrangulation {4, 5, 1, 3}, a contradiction! �

So we now have a procedure for triangulating the real projective plane given
a point set P with at least six points in general position. We summarize our results
in the following theorem:

Theorem 3.6. Given a point set P = {p1, p2, . . . , pn} with at least six points in
general position, it is always possible to construct a projective triangulation.

We now present our algorithm which outputs a triangulation of the real
projective plane given a point set P = {p1, p2, . . . , pn} with at least six points in
general position.

1. Find a set S = {1, 2, 3, 4, 5, 6} of six points such that no three points in S are
collinear.

2. Construct a projective triangulation with the set S. Associate distinguishing
planes with every triangle of the triangulation.

3. for all points p ∈ P\S do
4. Identify the triangle 4abc in which p lies.
5. Make p adjacent to the vertices a, b and c. Make the distinguishing

plane of 4apb,4bpc, and 4cpa the same as that for 4abc.
6. end for
7. return(triangulation of P2).

There are two possible approaches for finding the set S in step 1. In the first
approach, we arbitrarily choose a starting point q and initialize our set S = {q}.
For any point p ∈ P\S, we add p in S if p is not collinear with any two points
in S. We stop when S contains six points. It may happen that we are not able to
find such a set S of six points if we start with any random starting point q. So we
iterate over all points in P for choosing the starting point. This approach has a
worst-case time complexity of O(n2). A slightly better approach can be adopted
for performing step 1, which works in O(n) time if we assume that the minimum
line cover of the point set P is greater than 4. In this approach, we first choose any
two points 1 and 2. Let the line defined by them be L. We delete all other points
in P on L. We now choose two more points 3 and 4. Let the line defined by them
be M . We delete all other points in P on M . We also delete all other points on
N (the line defined by 1 and 3) and T (the line defined by 2 and 4). Now choose



Triangulating the Real Projective Plane 11

two more points 5 and 6. We now have the required set S = {1, 2, 3, 4, 5, 6}. It is
easy to see that this approach takes O(n) time if the minimum line cover of P
is greater than 4. The above two approaches work reasonably well for most point
sets. However, for certain point sets, it may happen that both these approaches fail
to find such a set S. We are currently unaware of an optimal method for finding
such a set which works in all cases. We believe that some approach similar to that
used for solving the “ordinary line” problem can be adopted for finding the same
(see for instance [10, 12, 3]). After having found such a set S, we find a canonical
set within S by a procedure similar to that described in Lemma 3.5.

Once we have a canonical set, constructing the projective triangulation in
step 2 takes O(1) time. We store the triangulation in a DCEL so that addition and
deletion of edges and vertices takes O(1) time. The loop in steps 3-6 runs once for
every point p ∈ P\S. Inside the loop, we use our “in-triangle” test (as described
in Section 2) for testing whether a point lies inside a given triangle. We use a
procedure similar to that described by Devillers et al. in [4] for identifying 4abc
inside which p lies. We first choose any arbitrary vertex t of the current projective
triangulation. We then identify the triangle whose interior is intersected by the line
L = tp. This test is performed by checking for all edges E of all triangles sharing
vertex t whether the intersection of L and the line described by E lies inside the
given triangle (see Figure 7(a)). After having identified the starting triangle, we
move to its neighbor sharing the edge E. In this way, we “walk” in the triangulation
along the line L. We stop when p lies inside the current triangle. Although this
method of “walking” in a triangulation has a worst-case time complexity of O(n),
it is reasonably fast for most practical purposes. So the loop takes a total of O(n2)
steps. Thus, our algorithm computes a projective triangulation from a given point
set P in O(n2) steps.

As mentioned in the introduction, the complexity of the algorithm is not
our main concern in the present paper. Still, note that our algorithm is incremen-
tal, which is an important property in practice. O(n2) is a standard worst-case
complexity for incremental algorithms computing triangulations in the Euclidean
plane. After step 2, instead of inserting the points incrementally, we could do
the following1: for each point, find the triangular face of the initial triangulation
containing it. Then, in each of these faces, triangulate the set of points using
the usual affine method. This can be done since the convex hulls of subsets of
points in a triangular face of the initial triangulation can be defined with the
help of distinguishing planes. This yields an optimal O(n log n) worst-case time
(non-incremental) algorithm.

1as suggested by an anonymous reviewer
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Figure 7. (a) “Walking” in a projective triangulation. (b) Two
copies of the edge pq, only one is cut by the distinguishing plane.

4. Conclusion and Open Problems

It woud be interesting to check whether the metric on P2 allows to define a tri-
angulation of the projective plane that would extend the notion of Delaunay tri-
angulation, which is well-known in the Euclidean setting. Then, extending the
randomized incremental insertion with a hierarchical data-structure such as [2] to
the projective case, if possible, would lead to an incremental algorithm with better
theoretical (and practical, too) complexity.

Also, problems like the Minimum Weight Triangulation [13], Minmax Length
Triangulation [6], etc., may have meaning even on the real projective plane. The
Minimum Weight Triangulation problem was neither known to be NP-Hard nor
solvable in polynomial time for a long time [8]. This open problem was recently
solved and was shown to be NP-Hard by Mulzer and Rote [13]. The Minmax
Length Triangulation problem asks about minimizing the maximum edge length
in a triangulation of a point set P. This problem was shown to be solvable in
time O(n2) by Edelsbrunner and Tan [6]. It would be interesting to analyze the
complexity of these problems on the real projective plane P2.
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