
Not-So-Random Numbers in Virtualized Linux and the Whirlwind RNG

Adam Everspaugh, Yan Zhai, Robert Jellinek, Thomas Ristenpart, Michael Swift
Department of Computer Sciences
University of Wisconsin-Madison

{ace, yanzhai, jellinek, rist, swift}@cs.wisc.edu

Abstract—Virtualized environments are widely thought to
cause problems for software-based random number generators
(RNGs), due to use of virtual machine (VM) snapshots as
well as fewer and believed-to-be lower quality entropy sources.
Despite this, we are unaware of any published analysis of the
security of critical RNGs when running in VMs. We fill this
gap, using measurements of Linux’s RNG systems (without the
aid of hardware RNGs, the most common use case today) on
Xen, VMware, and Amazon EC2. Despite CPU cycle counters
providing a significant source of entropy, various deficiencies in
the design of the Linux RNG makes its first output vulnerable
during VM boots and, more critically, makes it suffer from
catastrophic reset vulnerabilities. We show cases in which the
RNG will output the exact same sequence of bits each time it
is resumed from the same snapshot. This can compromise, for
example, cryptographic secrets generated after resumption. We
explore legacy-compatible countermeasures, as well as a clean-
slate solution. The latter is a new RNG called Whirlwind that
provides a simpler, more-secure solution for providing system
randomness.

Keywords-random number generator; virtualization

I. INTRODUCTION

Linux and other operating systems provide random num-
ber generators (RNGs) that attempt to harvest entropy from
various sources such as interrupt timings, keyboard and
mouse events, and file system activity. From descriptions
of events related to these sources, an RNG attempts to
extract (by way of cryptographic hashing) bit strings that are
indistinguishable from uniform for computationally bounded
attackers. While recent system RNGs can make use of
hardware RNGs such as Intel’s rdrand instruction, security
still relies on software sources either exclusively (e.g., on
older CPUs) or in part (e.g., because of uncertainty about
the efficacy of closed-source hardware RNGs [18]).

There exists significant folklore [14,15,26] that system
RNGs such as Linux’s may provide poor security in vir-
tualized settings, which are increasing in importance due
to adoption of cloud computing services such as Amazon’s
EC2. Stamos, Becherer, and Wilcox [27] hypothesized that
the Linux RNG, when run within the Xen virtualization
platform on EC2, outputs predictable values very late in
the boot process. Garfinkel and Rosenblum [8] first hy-
pothesized vulnerabilities arising from the reuse of random
numbers when using virtual machine snapshots. Ristenpart
and Yilek [25] were the first to show evidence of these
and called them reset vulnerabilities. They demonstrated that

user-level cryptographic processes such as Apache TLS can
suffer a catastrophic loss of security when run in a VM that
is resumed multiple times from the same snapshot. Left as an
open question in that work is whether reset vulnerabilities
also affect system RNGs. Finally, common folklore states
that software entropy sources are inherently worse on virtu-
alized platforms due to frequent lack of keyboard and mouse,
interrupt coalescing by VM managers, and more. Despite
all this, to date there have been no published measurement
studies evaluating the security of Linux (or another common
system RNG) in modern virtualized environments.

Our first contribution is to fill this gap. We analyze a
recent version of Linux and its two RNGs, the kernel-
only RNG (used for stack canaries and address-space layout
randomization) as well as the more well-known RNG under-
lying the /dev/urandom and /dev/random devices. Via careful
instrumentation, we capture all inputs to these RNGs in a
variety of virtualized settings, including on local Xen and
VMware platforms as well as on Amazon EC2 instances.
We then perform various analyses to estimate the security
of the RNGs. Our work reveals that:
• Contrary to folklore, we estimate that software entropy

sources, in particular (virtualized or non-virtualized)
cycle counters provide significant uncertainty from an
adversary’s perspective during normal operation of the
system (i.e., after it has booted).

• However, when booting a VM the first use of the kernel-
only RNG as well as the first use of /dev/urandom are
both vulnerable. There exists a boot-time entropy hole,
where insufficient entropy has been collected before
use of the RNGs. Later outputs of the RNG, however,
appear intractable to predict, suggesting the concerns of
Stamos et al. are unwarranted.

• Finally, the /dev/urandom RNG suffers from catas-
trophic snapshot reset vulnerabilities, which unfortu-
nately answers the open question of [25] in the positive
and obviates a countermeasure suggested for the user-
level vulnerabilities previously discovered [25]. We
show that resets can lead to exposure of secret keys
generated after snapshot resumption.

Our results are qualitatively the same across the different
VM management environments, though note that EC2 does
not currently support snapshots and therefore does not (yet)

Reset Boot Tracking
OS RNG Security Security Security
Linux GRI No No No

/dev/(u)random No No Yes
FreeBSD /dev/random No ? Yes
Windows rand s No ? ?

CryptGenRandom No ? ?
RngCryptoServicesProvider No ? ?

Linux Whirlwind Yes Yes Yes

Figure 1. Security comparison of system RNGs. A question mark (?) indicates “”Unknown”. Reset security refers to safety upon VM snapshot resumption,
boot security means sufficient entropy is generated prior to first use, and tracking security is forward- and backward-security in the face of compromise.
See Section II-C for more details.

suffer from reset vulnerabilities.
We also perform limited experiments with FreeBSD and

Windows, and specifically demonstrate that reset vulnerabil-
ities affect FreeBSD’s /dev/random and Microsoft Windows
rand s as well. This suggests that problems with virtualized
deployments are not confined to the Linux RNGs.

We move on to offer a new RNG design and implementa-
tion (for Linux), called Whirlwind. It directly addresses the
newly uncovered deficiencies, as well as other long-known
problems with the Linux RNG. Here we are motivated by,
and build off of, a long line of prior work: pointing out
the troubling complexity of the /dev/random and /dev/uran-
dom RNG system [6,11,17]; showing theoretical weaknesses
in the entropy accumulation process [6]; designing multi-
pool RNGs without explicit entropy counters [13,20]; and
showcasing the utility of instruction and operation timing to
quickly build entropy [1,22,23].

Whirlwind combines a number of previously suggested
techniques in a new way, along with several new tech-
niques. It serves as a drop-in replacement for both of the
Linux RNGs, and provides better security (see Figure 1).
In addition to security, the design focuses on simplicity,
performance, theoretical soundness, and virtualization safety
(though it will perform well for native settings as well). At
its core is a new cryptographic hashing mode, inspired by
but different from the recent construction of Dodis et al. [6],
plus: a simple two-pool system, simpler interface, stream-
lined mostly-CPU-lock-free entropy addition, a method for
bootstrapping entropy during boot and VM resumption,
direct compatibility with hypervisor-provided randomness,
and support for the rdrand instruction when it is available.
We emphasize that the security of Whirlwind never relies on
any one feature in particular (e.g., using rdrand by itself),
and instead uses multiple inputs sources to ensure the highest
possible uncertainty even in the face of some entropy sources
being compromised.

In terms of performance, Whirlwind matches the current
Linux /dev/urandom, and in some cases performs better.
We also show experimentally that it suffers from none
of the problems for virtualized settings that render the
current Linux RNG vulnerable. We do caution that more
analysis will be needed before widespread deployment, since
the Linux RNGs must work in diverse environments. For

example, future analysis will include low-end embedded
systems, another problematic setting [11,12,22]. Towards
this, we are in the process of making Whirlwind ready for
public, open-source release.

Finally, we explore hypervisor-based countermeasures for
legacy guest VMs with the old RNG. In particular, we
investigate whether the hypervisor can defend against reset
vulnerabilities by injecting entropy into the guest RNG
via (artificially generated) interrupts during resumption. We
show that the host OS can force Linux /dev/random to
refresh itself, but that it takes at least a few seconds
and requires a large number of interrupts. Such limitations
suggest that legacy-compatible approaches are unsatisfying
in the long term, and we instead suggest moving to a new
RNG such as Whirlwind.

II. BACKGROUND

A. The Linux RNGs

The Linux kernel provides three RNG interfaces which are
designed to provide cryptographically strong random values:
/dev/random, /dev/urandom, and get random int (GRI).

The /dev/(u)random RNG. The Linux kernel exposes two
pseudo-devices that implement interfaces to what we call the
/dev/(u)random RNG. The first, /dev/random, may block un-
til enough entropy is available, while the second, /dev/uran-
dom, is non-blocking. On the systems we examined, appli-
cations and the Linux operating system itself use exclusively
/dev/urandom and never read from /dev/random. The RNG
consists of (1) entropy gathering mechanisms that produce
descriptions of system events; (2) several entropy pools to
which these descriptions are mixed with a cryptographically
weak generalized feedback shift register; (3) logic for how
and when entropy flows between pools (described below);
and (4) APIs for consumers to query to obtain randomness.
To retrieve random numbers, an application opens one of the
device files, performs a read, and (presumed-to-be) random
bytes are returned. Additionally, an application may write
to either device, in which case the /dev/(u)random RNG
mixes the contents of the write buffer into both secondary
entropy pools (also described below) but does not update any
entropy estimates. For example, during boot a file containing
output from /dev/urandom during the preceding shutdown is

2

IntP

IP

UP /dev/urandom

RP /dev/random

ints

disk, k/m

+

P + J + CC

HV MD5

S

HV[0..32]

Figure 2. The Linux RNGs. (Left) Data flow through the /dev/(u)random RNG and (Right) the kernel-only RNG GRI.

written back into /dev/(u)random. Read and write requests
are always made in units of bytes. The /dev/urandom RNG
also has a kernel-only interface get random bytes() that
does not use the pseudo-device but is functionally identical
to /dev/urandom.

An entropy pool is a fixed-size buffer of random data
stored in kernel memory along with associated state vari-
ables. These variables include the current mixing location
for new inputs and an entropy count measured in bits. There
are four pools as shown on Figure 2. In the below, we omit
details regarding the non-cryptographic mixing functions.
Detailed descriptions appear in [6,17].

Interrupt pool (IntP): The kernel IRQ handler adds a
description of each interrupt to a 128-bit interrupt pool
(called a “fast pool” in the source code). There is one IntP
per CPU to eliminate contention. Each interrupt delivery
takes a description (cycle counter xor’d with kernel timer,
IRQ number, and the instruction pointer at the time the
interrupt is received) and mixes it into the pool using a
cryptographically weak function. The entire contents of each
IntP are mixed into the input pool IP using another (more
complex generalized feedback register) mixing function ev-
ery 64 interrupts or if a second has passed since the last
mixing into IP. At the same time, the input pool entropy
count denoted IP.ec is incremented (credited) by one (bit),
which represents a conservative estimate .

Input pool (IP): The 4096-bit input pool has the interrupt
pool mixed into it as just mentioned, and as well has device-
specific event descriptions (kernel timer value, cycle counter,
device-specific information) of keyboard, mouse, and disk
events mixed in using the cryptographically weak mixing
function. We will only consider settings with no keyboard
or mouse (e.g., servers), and so only disk events are relevant.
(Network interrupts go to IntP.)

Non-blocking pool (UP): A 1024-bit pool is
used for the non-blocking /dev/urandom interface.
Upon a request for 8n bits of randomness, let
↵
u

= min(min(max(n, 8), 128), bIP.ec/8c � 16). If
UP.ec < 8n and 8  ↵

u

the RNG transfers data from the
input pool IP to UP. Put another way, a transfer occurs only
if UP.ec < 8n and IP.ec � 192. If a transfer is needed,
the RNG extracts ↵

u

bytes from IP and mixing the result
into UP, decrementing IP.ec by 8↵

u

, and incrementing
UP.ec by 8↵

u

. If a transfer is not needed or not possible
(by the restrictions above), then UP is left alone. In the

end, the RNG decrements UP.ec by 8n, extracts 8n bits
from UP, and return those bits to the calling process.

Blocking pool (RP): A 1024-bit pool is used for the block-
ing /dev/random interface. Upon a request for 8n bits of ran-
domness, let ↵

r

= min(min(max(n, 8), 128), bIP.ec/8c).
If RP.ec � 8n then it immediately extracts 8n bits from
RP, decrements RP.ec by 8n, and returns the extracted
bits. Otherwise it checks if ↵

r

� 8 and, if so, transfers
↵
r

bytes from IP to RP, incrementing and decrementing
entropy counters appropriately by 8↵

r

. It then immediately
extracts bRP.ec/8c bytes from RP, decrements RP.ec
appropriately, and returns the extracted bits to the calling
process. If on the other hand ↵

r

< 8, then it blocks until
↵
r

� 8.
Figure 3 summarizes the conditions required for trans-

ferring data from one pool to the next. The design of
/dev/(u)random intimately relies on ad-hoc entropy esti-
mates, which may be poor. We will also see, looking ahead,
that the entropy counters cause trouble due to their use
in deciding when to add entropy to the secondary pools.
For example, we observe that there exists a simple entropy
starvation attack against /dev/urandom by a malicious user
process that continuously consumes from /dev/random (e.g.,
using the command dd if=/dev/random). In this case,
reads from /dev/urandom will never trigger a transfer from
IP.

Output extraction: We give an overview of the crypto-
graphic extraction routine for IP, UP, and RP. To begin,
the contents of the pool are first hashed with SHA-1 and
then mixed into the same pool using the non-cryptographic
mixing function. Then 64 bytes of the pool are hashed with
a modified SHA-1 algorithm that uses the first 5 bytes of the
previous hash as the IV. This 20-byte digest d is then reduced
to a 10-byte output block d0 = d[0..3]�d[12..15] || d[4..7]�
d[16..19] || d[8..9] � d[10..11] where || is concatenation.
This entire routine is repeated until the ouput is at least
as long as the requested number of bytes. The final output
block is truncated as needed. The entropy count for the
pool is decremented by the number of output bits that were
generated (excluding any truncated bits). When extracting
from IP, the output value is mixed into either UP or RP
(whichever generated the request). When extracting from UP
or RP the output value becomes the output of /dev/urandom
or /dev/random respectively.

3

Transfer When Condition
IntP ! IP Interrupt arrival 64 interrupts or 1 second

IP ! UP n bytes requested UP.ec < 8n
from /dev/urandom IP.ec � 192

IP ! RP n bytes requested RP.ec  8n
from /dev/random IP.ec � 64

Figure 3. Conditions for transfers between entropy pools.

get random int: the kernel-only RNG. GRI is a simple
RNG that provides 32-bit values exclusively to callers inside
the kernel. GRI is primarily used for Address Space Layout
Randomization (ASLR) and StackProtector “canary” values
used to thwart stack-smashing attacks. The GRI RNG is
designed to be very fast and does not consume entropy from
the pools in /dev/(u)random.

The GRI RNG uses two values stored in kernel memory:
a per-CPU 512-bit hash value HV and a global 512-bit
secret value S, which is initially set to all zeros. During
the late_init phase of boot, the kernel sets the secret
value S to 512-bits obtained from /dev/urandom.

Each time it is called, GRI adds the process ID (PID)
P of the current process, the current kernel timer value J
(called jiffies), and the lower-32 bits of the timestamp cycle
counter CC into the first 32-bit word of the hash value HV ,
and then sets HV to the MD5 hash of HV and the secret
value S. That is, it computes HV = H((HV [1 .. 32] +
P + J + CC) || HV [33 .. 512] || S) where “+” is integer
addition modulo 2

32, and H(·) is the MD5 hash. The first
32 bits of HV are returned to the caller, and the new HV
value becomes the stored hash value for the next call.

Use of hardware RNGs. If available, the /dev/(u)random
RNG uses architecture-specific hardware RNGs dur-
ing initialization and output generation. During boot,
/dev/(u)random reads enough bytes from the hardware RNG
to fill each pool and uses the weak mixing function to mix
in these values. This is done for the input, nonblocking,
and blocking pools, but not for the interrupt pool. During
output generation, /dev/(u)random XORs 10-bytes from the
hardward RNG into each 10-byte block of output that is
produced. GRI returns a 32-bit value from the hardware
RNG in place of the software implementation described
above.

B. Virtualization
In this work, we focus on the efficacy of the Linux RNGs

when operating in virtualized environments without the aid
of a hardware RNG. In a virtualized environment, one or
more guest virtual machines (VMs) run on a single physical
host, and the hypervisor mediates access to some hardware
components (e.g., the network interface, disks, etc.). There
is a management component for starting, stopping, and
configuring virtual machines. In Xen, this is called Dom0,

while in hosted virtual machines (e.g., VMware Workstation)
this is the host operating system.

A VM can be started in one of three ways. First, it can
execute like a normal physical system by booting from a
virtual disk. As it executes, it can update the state on the
disk, and its next boot reflects those changes. Second, a VM
can be repeatedly executed from a fixed image, which is a
file that contains the persistent state of the guest OS. In this
case, changes made to the OS state are discarded when the
VM shuts down, so the OS always boots from the same state.
This is the default case, for example, in infrastructure-as-a-
service cloud computing systems including Amazon EC2.
Third, a VM can start from a snapshot, which is a file that
contains the entire state of a running VM at some point
in its execution. This includes not only the file system but
also memory contents and CPU registers. Both Xen and
VMware support pausing a running VM at an arbitrary point
in its execution and generating a snapshot. The VM can be
resumed from that snapshot, which means it will continue
executing at the next instruction after being paused. If a
VM continues running after the snapshot, restarting from a
snapshot effectively rolls back execution to the time when
the snapshot was taken.

It has long been the subject of folklore that RNGs,
and in particular, /dev/(u)random, may not perform as well
when run within a VM [14,15,26,27]. First, hypervisors
often coalesce interrupts into batches before forwarding
them to a given guest domain to improve performance.
Second, memory pages are typically zeroed (set to all zeroes
to erase any “dirty” data) by the hypervisor when new
physical memory pages are allocated to a guest VM. Zeroing
memory pages is required to ensure that dirty memory
does not leak information between different guests on the
same host machine. Third, several system events used for
entropy by /dev/(u)random are not relevant in popular uses
of virtualization, in particular keyboard and mouse events
do not occur in virtualized servers.

C. RNG Threat Models

The Linux RNGs are used by a variety of security-
critical applications, including cryptographic algorithms and
for system security mechanisms. Should RNG values be
predictable to an adversary or the same (unknown) value
repeatedly used, the RNG-using applications become vul-
nerable to attack. As just a few examples, /dev/urandom
is used to seed initial TCP/IP sequence numbers and by
cryptographic libraries such as OpenSSL to generate secret
keys, while GRI is used as mentioned above for ASLR and
stack canaries.

RNGs are therefore designed to face a variety of threats
from attackers both off-system and (unprivileged) local
attackers. We assume that the attacker always knows the
software and hardware stack in use (i.e., kernel versions,

4

distribution, and underlying hypervisor). The threats to RNG
systems are:
(1) State predictability: Should the entropy sources used

by the RNG not be sufficiently unpredictable from the
point of view of the attacker, then the RNG state (and
so its output) may be predictable. For example, a low-
granularity time stamp (e.g., seconds since the epoch)
is a bad entropy source because it is easily guessed
[10].

(2) State compromise: The attacker gets access to the inter-
nal state of the RNG at some point in time and uses it to
learn future states or prior states (forward-tracking and
back-tracking attacks respectively). Forward-tracking
attacks may use RNG outputs somehow obtained by
the attacker as checkpoints, which can help narrow a
search by allowing the attacker to check if guessed
internal states of the RNG are correct. VM snapshots
available to an attacker, for example, represent a state
compromise.

(3) State reuse: With full-memory VM snapshots, the same
RNG state may be reused multiple times and produce
identical RNG outputs. Since the security of a random
number is its unpredictability, this can eliminate the
security of the operation using a repeated RNG output.

(4) Denial-of-service: One process attempts to block an-
other process from using the RNG properly.

Our focus will be on the design of the RNGs, and so we
will not attempt to exploit cryptanalytic weaknesses in the
underlying cryptographic primitives MD5 and SHA-1.

III. MEASUREMENT STUDY OVERVIEW

In the following sections we report on measurements in
order to answer several questions about the security of the
Linux RNGs when used on virtual platforms. In particular:
• When booting from a VM image, how quickly is the

RNG state rendered unpredictable? (Section IV)
• Does VM snapshot reuse lead to reset vulnerabilities?

(Section V)
Along the way we build a methodology for estimating
uncertainty about the RNG state, and, as a result, assessing
the suitability of various sources of entropy. Of course, one
cannot hope to fully characterize software entropy sources in
complex, modern systems, and instead we will use empirical
estimates as also done by prior RNG analyses [9,22]. When
estimating complexity of attacking an RNG, we will be
conservative whenever possible (letting the adversary know
more than realism would dictate). Where vulnerabilities
appear to arise, however, we will evidence the issues with
real attacks.

To accomplish this, we perform detailed measurements of
the Linux RNGs when rebooting a virtual machine and when
resuming from a snapshot. We produced an instrumented
version of the Linux kernel v3.2.35, which we refer to

as the instrumented kernel. The instrumentation records
all inputs submitted to the RNGs, all calls made to the
RNGs to produce outputs, changes to the entropy counts
for each of /dev/(u)random’s pools, and any transfers of bits
between entropy pools. To avoid significant overheads, the
resulting logs are stored in a static buffer in memory, and
are written to disk at the end of an experiment. Our changes
are restricted to the file: /drivers/char/random.c.

There were surprisingly non-trivial engineering challenges
in instrumenting the RNGs, as the breadth of entropy
sources, inherent non-determinism (e.g., event races), and
the potential for instrumentation to modify timing (recall that
time stamps are used as entropy sources) make instrumenta-
tion delicate. For brevity we omit the details. However, we
did validate the correctness of our instrumentation by build-
ing a user-level simulator of the RNGs. It accepts as input
log files as produced by the instrumented kernel, and uses
these to step through the evolution of the state of the RNGs.
This allowed us to verify that we had correctly accounted
for all sources of non-determinism in the RNG system, and,
looking ahead, we use this simulator as a tool for mounting
attacks against the RNGs. For any computationally tractable
attacks, we also verify their efficacy in an unmodified Linux
kernel.

We will publicly release open-source versions of the
instrumented kernel as well as simulator so others can
reproduce our results and/or perform their own analyses in
other settings. Links to open-source code for this project can
be found on the author’s website.

We use the following experimental platforms. For local
experiments, we use a 4-core Intel Xeon E5430 2.67 GHz
CPU (64-bit ISA) with 13 GB of main memory. We use
Ubuntu Linux v12.10 in the Native setup, and we use the
same OS for host and guest VMs. The Xen setup uses Xen
v4.2.1, and the single Xen guest (domU) is configured with
a single CPU and 1 GB of main memory. The cycle counter
is not virtualized on Xen experiments (the default setting).
The VMware setup uses VMware Workstation 9.0.0 with
guest given a single CPU and 2 GB of main memory. On
VMware the cycle counter is virtualized (the default).

Although we performed experiments with Ubuntu, our
results should apply when other Linux distributions are
used in either the host and/or guest. Finally in our EC2
setup, we built an Amazon Machine Image (AMI) with our
instrumented kernel running on Ubuntu Linux v12.04 (64-bit
ISA). All experiments launched the same AMI on a fresh
EBS-backed m1.small instance in the US East region. In
our experimental setups, there exist no keyboard or mouse
inputs, which is consistent with VM deployments in data
centers.

IV. BOOT-TIME RNG SECURITY

We examine the behavior of the two Linux RNGs (GRI
and /dev/(u)random) during boot, in particular seeking to

5

50 100 150 200 250 300

10

0

10

1

10

2

10

3

10

4

Time since boot (seconds)

Ev
en

ts

Disk
Device
Network
Timer

0 50 100 150 200 250 300

0

100

200

300

400

Time since boot (seconds)

In
pu

tP
oo

lE
nt

ro
py

C
ou

nt

Figure 4. (Left) The number of event descriptions input to /dev/(u)random RNG by type of system event for the first 5 minutes of boot captured on
VMware. The y-axis contains number of events (logscale) that occurred during each 3-second bin. (Right) The value of the input pool’s entropy counter
IP.ec during boot.

understand the extent to which there exist boot-time entropy
holes (insufficient entropy collection before the first uses of
the RNGs). As mentioned, in the past concerns have been
raised that the Linux RNGs, when running on Amazon EC2,
are so entropy starved that cryptographic key generation
towards the end of boot could be compromised [27]. Our
results refute this, showing that uncertainty in the RNGs
is collected rather rapidly during boot across a variety of
settings. We do, however, expose a boot-time entropy hole
for the very first uses of both GRI and /dev/(u)random. In
both cases the result is that stack canaries generated early
in the boot process do not provide the targeted uncertainty:
they are limited to 27 bits of uncertainty (instead of 64 bits)
due to weak RNG outputs.

We perform analyses using the instrumented kernel in the
Native, Xen, VMware, and Amazon EC2 setups (described
in Section III). We perform 200 boots in each environment,
and analyze the resulting log files to assess the security of
the RNGs. After boot, the VM is left idle. We break down
our discussion by RNG, starting with /dev/(u)random.

A. /dev/(u)random boot-time analysis
The left graph in Figure 4 displays the quantity and types

of inputs to the RNG for a single boot in the VMware setup
(the other VMware traces are similar). The x-axis is divided
into 100 equal-sized buckets (3 seconds each) and the y-
axis represents the number of occurrences of each input to
the RNG state observed during a single time bucket (on a
logarithmic scale). The majority of RNG inputs during boot
are from disk events and other device interrupts while timer
events are rare. The other platforms (Native, Xen, and EC2)
were qualitatively similar.

The right chart in Figure 4 plots the entropy counter IP.ec
for the input pool over time. This is the RNG’s estimate
of how much entropy that pool has gathered. Sharp drops
indicate a transfer of data from the input pool to one of the

secondary pools. We observe that the blocking /dev/random
interface is never used in these systems, all calls are to
/dev/(u)random. The estimates of entropy by the RNG may
or may not be accurate, and so we seek to use the data from
these runs to assess the actual unpredictability of the RNG
state (and, hence, its outputs) from an attacker’s point of
view.

Estimating attack complexity. In order to estimate the
security of /dev/(u)random outputs, we seek a lower bound
on the complexity of predicting the state of the RNG
by examining its inputs. Given that we target only lower
bounds, we are conservative and assume the attacker has a
significant amount of information about inputs and outputs
to the RNG. When these conservative estimates show a
possible vulnerability, we check for attacks by a more
realistic attacker.

To establish a lower bound, we define the following con-
servative attack model. The attacker is assumed to know the
initial state of the RNG (this is trivially true when booting
VM images, due to zeroed memory) and the absolute cycle
counter at boot time (the exact value is not typically known).
To estimate the security of output i of /dev/(u)random, we
assume the attacker has access to all preceding RNG outputs
and the exact cycle counter for each output generation,
including the ith output. This means we are assessing a kind
of checkpointing or tracking attack in which the attacker
can utilize knowledge of previous RNG outputs generated
by typical requests to reduce her search space.

We will additionally assume that the exact sequence of
RNG input types and the values of all event descriptions
except the cycle counter are known to the attacker. This
makes the cycle counter the only source of unpredictability
for the attacker. The reason we do this is that, in fact,
the other inputs included in event descriptions such as IRQ
appear to provide relatively little entropy. (Of course a real

6

attacker would need to predict these values as well, but again
we will be generous to the attacker.)

Input and output events. For a given platform (Xen,
VMware, EC2, or native) we analyze traces of inputs
and outputs of /dev/(u)random collected using our in-
strumented kernel. We call a single boot of the instru-
mented kernel a trial. Each trial produces a trace, a se-
quence of recorded input and output events of the form
Tr

k

= (y1, ctr1, CC1), (y2, ctr2, CC2), (y3, ctr3, CC3), . . .
where 0  k < 200 is the index for a given trial,
y 2 {keyboard,mouse, disk, IRQ-0, . . . , IRQ-n, output} is
the type of event recorded, ctr is the counter for events
of this type that appear in trace Tr

k

, and CC is the 64-bit
cycle counter at the time the event is recorded. The output

type represents any output from /dev/(u)random and the
remaining values indicate different sources of input events.
In the context of our analysis, we often use the terms trial
and trace interchangeably.

Across all 200 traces, we group input events with match-
ing type y and counter ctr into a vector ~p. For example,
for y = IRQ-16 and ctr = 20, we take the cycle counter
from the 20

th occurrence of an interrupt on IRQ 16 from
each trace and produce a vector ~p. Let ~p [k] designate the
kth entry in this vector, and so ~p [k] is the cycle counter
associated with an input from trial k.

Similarly, we identify /dev/(u)random output events by
their position in the list of output events in a given trace.
To analyze the security of output i in trial k we need to
determine which input events occurred after the previous
output, i � 1, but before output i. We define this set of
events as S

i

= {~p | CC
i�1 < ~p [k] < CC

i

} where CC
i

is the cycle counter associated with output i in trial k. Let
`
i

= |S
i

| be the length of S
i

in a given trial.
Grouping input events into these sets is critical to the

analysis: an attacker must correctly predict all inputs in S
i

in order to to guess the internal state of the RNG when
output i is generated. The complexity of this attack then
grows exponentially with the length of S

i

assuming each
input presents some uncertainty to the attacker.

We define ↵ � 0 as the number of lower bits of a
group of input cycle counters ~p that appear to be uniformly
distributed. For any ~p, it is likely the case that some number
of upper bits are biased (not uniformly distributed) but still
provide some amount of uncertainty to the adversary. For
simplicity we ignore these and focus only on the lowest ↵
bits for any ~p.

Statistical test for uniformity. To determine how many
low bits appear to provide uncertainty, we use the
Kolmogorov-Smirnov (KS) 1-sample test [28]. The KS test
examines the maximum difference between the cumulative
distribution function of a set of samples compared to a
reference distribution (in our case, the uniform distribution).
When the maximum difference is above some threshold for

Algorithm 1 findAlpha(~p)
max

↵

 0

for ↵ = 1 to 64 do
if ksUniformTest(~p,↵) then

max
↵

 max(max
↵

,↵)
end if

end for
return max

↵

Computes the maximum number of lower bits ↵ that pass the KS test for
uniformity. The input ~p is a vector of 64-bit cycle counter values.

Algorithm 2 minAlpha(~p,E)
min

↵

 uniformAlpha(~p)
for ~e 2 E do

~� ~p� ~e
↵ uniformAlpha(~�)
min

↵

 min(min
↵

,↵)
end for
return min

↵

Computes the minimum number of lower bits ↵ that appear uniformly
distributed for any given input event considering all possible offsets with
previous input and output events. Here E is the set of input and output
vectors that strictly precede ~p.

a given significance level, the KS test rejects this set of
samples. For a candidate value ↵ and a given ~p, we begin
by masking the upper (64 � ↵) bits of each cycle counter
in ~p. We then compare this set of t values to the uniform
distribution over [0, 2↵ � 1] using the KS test. We find the
largest ↵ that passes the KS test. See Algorithm 1.

Typical significance levels for the KS test are 0.1, 0.05,
0.025, and 0.001 [28]; we chose 0.1 which is most conser-
vative (it favors smaller values for ↵). For this use of the
KS test, the significance level can be thought of as the false-
negative rate of the test; that is, how likely is the KS test to
reject some collection of values that are randomly sampled
from a uniform distribution. So our choice of a significance
level of 0.1 indicates that there is a 10% chance that a given
↵ value is rejected even if the lower ↵ bits are sampled from
a uniform distribution. This is the reason that a significance
level of 0.1 produces the most conservative results compared
to smaller values.

Any given input may be highly correlated with some
previous input or output event and an attacker can use this
correlation to her advantage when guessing cycle counters.
To account for this, we also apply the above tests to relative
cycle counter values. That is, for any vector of input cycle
counters ~p, we collect the set E of all vectors of cycle
counters for input and output events that strictly precede
~p. For any ~e 2 E, we compute the relative cycle counters
between each component: ~� = ~p�~e, where � is component-
wise (vector) subtraction. Then we compute the maximum
↵ that passes the KS test for uniformity among the relative
cycle counter values in ~�. We repeat this for every vector in
E and keep only the minimum ↵ value computed. This is
shown in Algorithm 2.

7

Note that Algorithm 1 considers all candidates 0  ↵ 
64. In limited trials, we always observed ↵  24, so for
efficiency of the analysis, we use this limit on the maximum
↵ tested.

We also experimented with using a �2 test in place of the
KS test in the procedures just described. The results were
nearly identical for the same significance levels, with the
KS test being slightly more conservative (it chose smaller ↵
values). We therefore use the KS test and only report on it.

Computing complexity. The number of inputs preceding
any given output varies from trial to trial on the same
platform due to slight timing differences during the boot
sequence. Recall that `

i

is the number of inputs that precede
output i in a given trial. This value is a key component
to the complexity of predicting the RNG’s state since each
input increases the attacker’s search space by a multiplicative
factor (assuming each input carries some uncertainty). So we
compute the complexity of predicting a given set of inputs
individually for each trial.

We compute the complexity of predicting the cy-
cle counters in the input set S

i

for trial k as:
s
i

=

P
~p2Si

minAlpha(~p). This is the same as computing
the logarithm of the size of the search tree for cycle counters
when the attacker must only predict the lower ↵

~p

bits for
each ~p [k] 2 S

i

and these bits are each chosen independently
and uniformly at random.

To determine the complexity of predicting output i in trial
k we compute 

i

= max{s1, s2, . . . , si}. We use maximum
instead of a sum for simplicity, since in general the cumu-
lative complexity is dominated by the most complex input
set. Again, we compute 

i

individually for each trial k and
then examine the minimum value across all trials.

To summarize, 2i represents a lower bound on an ad-
versary’s ability to predict the ith output of the RNG during
boot assuming that the low ↵

~p

bits of the cycle counter for
each input ~p are set uniformly at random. Unless specified
otherwise, this will be the standard method for computing
lower-bounds on attack complexity, and although it is a
heuristic, we believe it to be a good one.

Figure 5 shows the complexities for the platforms we
tested during the first few seconds of boot. These values
were computed using t = 200 boots on each platform
using our instrumented kernel. In all cases the first output is
vulnerable; see discussion below. Beyond that, our analysis
shows that the lower-bounds on attacks increase very rapidly,
with Xen and the native platform exhibiting the smallest
complexity for the second output, an attack complexity of
at least 2129. The native platform reaches a min

i

= 1024

(the minimum 
i

taken over all trials) at output i = 140

which is generated 4.0 seconds after boot (not shown). After
5 seconds on all platforms the attack complexity reaches the
maximal value for this RNG: 1024 bits. Note that the times
of outputs reported in this table are relative to the time the

Linux kernel is initialized, which does not include the time
in the VM manager’s startup and guest boot loader (e.g.,
this is about 3.5 seconds in VMware).

We observe that very large input sets dominate the cumu-
lative attack complexity 

i

, which is not surprising. In all
trials on all platforms, we observed max `

i

� 395 in the first
5 seconds after boot, that is, all boots have at least one set of
395 or more inputs. This means that each input cycle counter
needs to carry only 2.6 bits of uncertainty on average for 

i

to reach its maximum value of 1024. On a platform with a
1.8 GHz clock (the slowest platform we tested, EC2), this
represents an average jitter for input events of 2.9 ns.

Note that this analysis assumes that the cycle counters of
input events are not under the control of an attacker and that
cycle counter values are not leaked to an attacker through a
side channel. Although such attacks may be possible, they
require an attacker to control or influence nearly all inputs
to the RNG or gain knowledge of nearly all bits of each of
the tens of thousands of inputs that occur during boot.

First output entropy hole. Note that Figure 5 shows that
the complexity of predicting the first output is zero. The first
output of /dev/(u)random always occurs before any inputs
are added to the RNG. Because the VM is supplied with
zeroed memory pages, the Linux RNGs always start in a
predictable state and so this output is deterministic. We
observe this behavior on both VMware and Xen. The first
output, always the 64-bit hexadecimal value 0x22DAE2A8
862AAA4E, is used by boot init stack protector. The cur-
rent cycle counter is added to this RNG output (the canary
equals CC + (CC ⌧ 32) where CC is cycle counter) to
initialize the stack canary of the init process. Fortunately, the
cycle counter adds some unpredictability, but our analysis of
the first GRI output (see Section IV-C) indicates that cycle
counters early in boot carry about 27 bits of uncertainty,
which is significantly weaker than the ideal security of 64-
bits for a uniformly random stack canary.

B. Minimum Entropy Analysis

We also perform analysis similar to the method used
in [22] where the authors examine inputs to /dev/(u)random
during boot on embedded platforms. In that method, the au-
thors compute Pearson correlation coefficients (�1  ⇢  1)
between all pairs of inputs, exclude any input with |⇢| > 0.4,
and then compute a lower bound estimate of the security of
/dev/(u)random by summing the empirical minimum entropy
(H1) for each input during boot. The authors ignore security
of individual outputs and instead produce a final lower bound
for the RNG once boot has completed.

We perform a similar analysis on our datasets. We group
our inputs according to input type and construct input sets
as we do the in the KS analysis. We then mask the cycle
counters using the minimum ↵ value computed using the
KS method and compute Pearson correlation coefficient ⇢

8

Native Xen VMware EC2
i T

i

`
i

s
i


i

T
i

`
i

s
i


i

T
i

`
i

s
i


i

T
i

`
i

s
i


i

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0.9 48 129 129 0.1 9 129 129 1.0 66 794 784 1.1 15 216 134
5 1.0 0 0 129 0.2 0 0 700 1.0 0 0 784 1.1 0 0 785

10 1.2 0 0 129 2.1 3 24 1024 5.2 75 1024 784 1.4 0 0 1024
15 3.6 0 0 129 2.1 1 0 1024 5.2 0 0 1024 2.6 1 0 1024

VMware GRI
i T

i


i

⌧
i

1 0.3 22 27
2 0.3 33 44
5 0.4 76 94

10 0.4 109 171
15 0.5 172 248

Figure 5. (Left) Complexity estimates for predicting the first /dev/(u)random outputs generated during boot. T
i

is the maximum time in seconds (relative
to boot start) that output i was requested; `

i

is median number of inputs preceding output i; s
i

is the median complexity for predicting inputs preceding
output i; and 

i

is the minimum cumulative complexity across all trials on a given platform. (Right) Complexity estimates for GRI outputs. Here ⌧
i

is
the actual attack complexity (in bits) of the attack we implemented.

for every pair of inputs and exclude any with |⇢| > 0.4 (no
such pairs were found). We use 0.4 as our threshold simply
because this is the same value used in prior work [22]. This
is a somewhat arbitrary threshold, but generally speaking
|⇢|  0.4 implies little or no correlation among the values
being compared.

We compute the empirical min-entropy H1 for each input
by counting the number of unique values that appear after
masking away all but the lower ↵ bits of each cycle counter
and taking the log2. We then compute a lower bound on the
security of each output i by summing the empirical min-
entropy of each input in the set. Again, we compute two
values, the first is the complexity of predicting all the inputs
in a given set for output i. Recall that for a given trial k,
S
i

is the set of inputs that precede output i (but occur after
output i�1). We define the lower-bound for the complexity
of predicting this set as �

i

=

P
~p2Si

H1(~p). For a given
trial, the cumulative complexity �

i

for output i is again
the maximum input set complexity �

i

= max{�1, . . . ,�i

}.
Since the size of input sets vary from trial to trial, we
compute � and � individually for each trial and then report
on the median � values and minimum � values among all
trials in our dataset.

Figure 6 shows the results of this analysis. In all cases
these results are more conservative than the method using
just the KS test, but we note that with t = 200 trials, each
input is limited to contributing at most log2 200 = 7.6 bits
of entropy whereas the KS test often estimates ↵ > 7.6.
We note that many inputs show H1(~p) = 7.6, and so
the estimate appears restricted by the number of trials in
our dataset. Still, after masking for only the lower ↵ bits,
we find no pairs of inputs with correlations larger than 0.4
on any platform which provides further evidence that these
lower bits are uniformly distributed and thus difficult for an
attacker to predict.

C. GRI boot-time analysis
To predict the 32-bit output of the GRI RNG, an attacker

needs to know the state of the GRI before the call (HV and
S, 128-bits and 512-bits, respectively) as well as the inputs
used (J , CC, and P). When booting on a VM, the initial
state of HV and S are all zeroes. S remains zero until it
is initialized from /dev/(u)random (after approximately 100
calls to GRI in our observations). If the correlation between

Native Xen VMware EC2
i �

i

�
i

�
i

�
i

�
i

�
i

�
i

�
i

1 0 0 0 0 0 0 0 0
2 77 77 68 68 452 445 114 69
5 0 77 0 485 0 452 0 390

10 0 77 0 809 515 445 0 668
15 0 77 0 809 0 515 0 668

Figure 6. Complexity lower bounds for predicting inputs during boot using
the min-entropy analysis method after masking away all but the lower ↵
bits of each cycle counter. �

i

is the median input complexity (among all
trials) for output i and �

i

is the minimum cumulative complexity (among
all trials).

the jiffies counter J and the cycle counter CC is known
(they are based on the same underlying clock), then the
only unknown to an attacker is CC at the time each output
is generated. The worst case scenario occurs on VMware
where the cycle counter is virtualized by default, and so
begins at 0 each time a VM is booted. In our experiments
with VMware, we observed only 2 unique values of J at
the time the first call to GRI is made. So if an attacker
correctly guesses the CC and its associated J value, then
future values of J can be computed using the ratio of cycles
to timer ticks. We therefore focus only on the cycle counter.

We use a complexity estimate similar to that in the last
section, except that when bounding the complexity for output
i of the GRI RNG we do not assume the attacker knows the
prior outputs. If we did, then each output would only have as
much uncertainty as a single cycle counter carries — the GRI
RNG does not attempt to deal with checkpointing attacks
and never adds entropy except during output generation.
For GRI, we define s

i

to be the minimum number of
lower bits ↵ that appear uniformly distributed across the
cycle counters used when output i is generated across all
t trials. We use the same algorithm for computing ↵ as
we use for /dev/(u)random. Our computation of 

i

for GRI
differs, we define 

i

as the sum of all preceding s
j

values:

i

=

P
j2[i] sj . Again, this is because we are excluding

checkpointing attacks.
Figure 5 (right table) shows the resulting complexity

estimates 
i

for the first few outputs i of GRI from 200
boots on VMware (results on Xen and EC2 were similar).
If we exclude the secret value S from GRI, which is a known
value at the start of boot, then GRI has a maximal security
state of 128-bits (the size of its hash chaining variable). GRI

9

reaches this state after 10 calls, well before the secret value S
is initialized at approximately the 100

th call. For the second
output and beyond, predicting the internal state by guessing
inputs is no easier than guessing any single 32-bit output
value. The first value, however, shows less than ideal security
for 1. We explore this next.

Predicting early GRI outputs. To confirm that, in fact,
there is a vulnerability, we build an attack that works as
follows. First, we collect a dataset of multiple boots using
our instrumented kernel. From each of t traces, we group all
the cycle counters from the first call to GRI, all the cycle
counters from the second, and so on as we did with previous
complexity estimates. Now, however, we select a range of
cycle counters at each depth to include in the attack. To make
the attack more efficient, we search the smallest contiguous
range that covers a fraction (we use 80%) of the observed
cycle counters in the dataset. This excludes some outliers
and provides a moderate speedup of the attack time. We let
⌧
i

denote the logarithm of the search space resulting from
this process. Figure 5 shows the values of ⌧

i

for the first few
outputs using our dataset of 200 boots on VMware with the
instrumented kernel. Again, only the first output is weaker
than the desired 32-bits of security.

To evaluate this interpolated attack model we analyzed
the first call to GRI experimentally. We constructed a kernel
with minimal instrumentation to capture only the calls to
GRI and performed 100 boots on VMware. We remove one
trace from this dataset (the victim) and train an attack on the
remaining traces to identify a range of possible values for
the cycle counter CC. The remaining values (HV , J , P and
S) are trivially known for the first call on this platform. We
use a GRI simulator and iterate over the identified range
of values for CC. The attack is successful and we verify
that we can produce the full internal state HV , not just the
output value. This is useful for validation since collisions
are very likely when one tests up to 2

27 guesses for a 32-bit
number; the probability of a collision is 1 in 32.

A successful attack indicates that security is less than it
should be for the first output. However, we note that taking
advantage of this would require the ability to test which of
the 2

27 values are correct. This value is the stack canary for
the kthreadd (kernel thread daemon) process. It is not
clear that this weakness can be exploited, but this represents
a failure of the RNG.

V. SNAPSHOT RESUMPTION RNG SECURITY

Modern VM managers allow users to pause a running
VM, make a copy of the entire state (called a snapshot)
of the VM including CPU registers, memory, and disk, and
later use that copy to restart the VM in the exact state at
which it was paused. Both Xen and VMware support this,
though Amazon EC2 does not, nor do any other clouds
to our knowledge. Nevertheless, snapshots are often used

Situation Snapshot state Repeats until # bits
(1) Cached entropy UP.ec 2 [8, 56] UP.ec = 0 UP.ec
(2) Racing fast pool Any IntP overflow 1
(3) Transfer threshold IP.ec < 192 IP.ec � 192 1

Figure 7. Three situations leading to reset vulnerabilities with /dev/uran-
dom. The symbol 1 represents no limit on the number of repeated output
bits before the condition in the third column is met.

in other settings such as backups, security against browser
compromise, and elsewhere [8,25].

We consider two threats related to VM snapshots. First,
we consider VM reset vulnerabilities [8,25], where resuming
from a snapshot multiple times may lead to the RNG
outputting the same values over and over again. Second, we
consider an attacker that obtains a copy of the VM snapshot
(e.g., if it is distributed publicly), meaning the attacker has
effectively compromised the state of the RNG at the time
of the snapshot. Here the question is whether the attacker
can predict outputs from the RNG or if, instead, the RNG
is able to build up sufficient fresh entropy to recover from
the compromise.

A. Reset vulnerabilities (/dev/(u)random)

We show that /dev/(u)random suffers from VM reset
vulnerabilities: the RNG will return the same output in two
different VM resumptions from the same snapshot. There are
several different situations that give rise to this vulnerability,
all related to the values of the relative entropy counters
and other state at the time the snapshot is taken. Figure 7
summarizes three situations that we have observed lead to
reset vulnerabilities with regards to /dev/urandom. Note that
these situations are not mutually exclusive, though we will
exercise them individually in our experiments. As discussed
below, these situations can also cause repeated outputs from
/dev/random.

We use the following method to exhibit reset vulnerabili-
ties. A guest VM boots under its default, unmodified kernel
and runs for 5 minutes to reach an idle state and starts a
userland measurement process designed to: detect a VM
reset, capture the input pool entropy count (using /proc/fs)
upon resumption, and perform a series of 512-bit reads from
/dev/urandom every 500µs until the experiment completes.
To perform VM reset detection, the userland measurement
process runs a loop that samples the (non-virtualized) cycle
counter using the rdtsc instruction and then sleeps briefly
(100µs). When a sufficiently large discrepancy between
subsequent cycle counters is detected (we use 6.6 billion
cycles, which is about 2 seconds), the detection process exits
the loop and begins reading values from /dev/urandom. Thus
we begin capturing outputs from /dev/urandom immediately
after snapshot resumption. For each experiment, we captured
10 snapshots while the system is idle, performed 10 resets
from each snapshot and examined the resulting RNG out-
puts.

10

We performed experiments on both Xen and VMware.
However, we experienced occasional errors when resuming
from a snapshot on Xen: the guest would occasionally
declare the filesystem readonly (presumably because of an
error upon resumption) and so below we only report on
resumptions that succeed. We experienced no such errors
using VMware.

For each 512-bit output produced by /dev/urandom, we
declare an output a repeat if a full match of all 512 bits
occurs in any output from a different reset of the same
snapshot. Note that at 512 bits, a repeat can only occur if
the same RNG state was used (otherwise SHA-1 collisions
would have occurred).

(1) Cached entropy. Recall that if the entropy estimate of
a secondary pool (UP or RP) has an entropy count greater
or equal to the number of output bits requested, then the
output is generated directly from the secondary pool without
pulling fresh bits from the input pool IP. We also note that
no cycle counter (or other time stamp value) is added into
the hash at this point in time, which means that the output
of such calls after a reset are fully determined by the state
of the secondary pool at the time of the snapshot.

If the /dev/urandom entropy count has a value of UP.ec =

8n for n > 0 at the time of snapshot, then the bits in the
non-blocking UP pool will be used to satisfy any request
of size  8n bits without transferring bits from the input
pool. Since the output generation algorithm is deterministic,
this results in repeated output of size  8n bits under these
conditions. UP.ec has a maximum value of 56 bits because
of the internal mechanics of the RNG and so the maximum
repeated output length is n bytes where n  UP.ec  7.
The conditions are the same for /dev/random.

(2) Racing the fast pool. Even if a transfer from the input
pool occurs after reset, this alone is does not prevent repeat
outputs. To generate unique outputs, the RNG requires at
least one new input to the input pool and a transfer from
the input pool to the secondary pool (UP or RP). After
a reset, the most likely addition to the input pool is from
the function add interrupt randomness() as these account
for an overwhelming majority of /dev/(u)random inputs. As
described earlier, these inputs are buffered in the interrupt
pool (also called the fast pool) until an overflow event occurs
and the contents of the interrupt pool are mixed into the input
pool. This creates a race condition between interrupt pool
overflow events and reads from /dev/(u)random. An overflow
event occurs every 64 interrupts or if 1 second has passed
since the last overflow when an interrupt input is received.
During this window, reads to /dev/urandom of arbitrary size
will produce repeated outputs.

For /dev/random, repeated outputs will occur during the
same window until /dev/random blocks for new entropy.
Thus the maximum number of repeated bits from /dev/ran-
dom is 4088. To exercise this situation for /dev/urandom

we used the experimental procedure above. Because we are
comparing 512-bit output values, we can rule out repeats
caused by situation (1), discussed above. To exclude situa-
tion (3) discussed below (which doesn’t involve the input or
fast pool), we want the input pool entropy count to be much
higher than 192. We achieve this by downloading a large file
(1GB) prior to capturing the snapshot. The inbound packets
from the download drive interrupts in the guest kernel which
increases the input pool entropy count. All resumption had
an initial input pool entropy count of at least 1,283 on both
Xen and VMware.

On Xen, one snapshot produced no repeated outputs
(we didn’t win the race), and the remaining 7 snapshots
exhibited at least one repeated 512-bit output (the first output
requested) after resumption. Of these the maximum duration
for repeats was 1.7s after resumption. This demonstrates
that the RNG does a poor job of updating its state after
resumption, due to the (overly) complicated pool structure
and pool-transfer rules.

On VMware, in 20 snapshots with 10 resets from each
snapshot, we were not able to exhibit this vulnerability using
an unmodified kernel.

(3) Input pool entropy count below threshold. The input
pool entropy count IP.ec must reach the transfer threshold
of 192 bits before fresh inputs are transferred from the input
pool to the non-blocking pool UP. While the RNG is in this
state, an unlimited quantity of repeatable output values can
be generated from /dev/urandom. For /dev/random of course,
this is not true, as repeat values will only be provided until
the entropy estimate for the blocking RP pool is exhausted
(as per situation (1) above).

To arrange this situation, immediately before capturing the
snapshot, we execute a 10 second read from /dev/random to
reduce the input pool entropy count below 192 and trigger
this condition.

On both VMware and Xen, the maximum value for IP.ec
upon resumption was 48 — sufficient to put the RNG into
situation (3). On both VMware and Xen, we observed that
all snapshots produced repeat outputs for the duration of the
experiment (30 seconds). This indicates that if IP.ec is very
low when a snapshot is captured, it may take more than 30
seconds for the /dev/random RNG to reach a secure state.

Entropy starvation attack for situation (3). In Section II
we observed that there exists a simple entropy starvation
attack against /dev/urandom, where a (malicious) user-level
process simply performs continuous reads from /dev/ran-
dom. The internal logic of the RNG is such that in this
case the input pool will always transfer to the blocking
RP pool, and never the UP pool. This can be used to
extend the amount of time that /dev/urandom produces
repeated outputs in situation (3) where the input pool entropy
count is below the threshold to transfer bits from IP to
UP. An adversary with the ability to run an unprivileged

11

process on the system can easily engage this condition
by reading from /dev/random. If a remote attacker makes
(legitimate) requests to a public interface that triggers large
or frequent reads from /dev/random, then the same effect
may be possible without requiring a local account.

The experimental procedure above was used with the
following deviations. We execute a continuous read from
/dev/random (dd if=/dev/random) for the duration of
the experiment. After reset, the measurement process per-
forms 512-bit reads from /dev/urandom every 1 second for
a duration of 120 seconds. Upon resumption, all snapshots
exhibited repeated 512-bit outputs for the duration of the
experiment on both VMware and Xen.

Impact on OpenSSL. The experiments above show that
reset vulnerabilities exist in /dev/(u)random, and give appli-
cations stale random values after resumption. We now briefly
investigate the potential for this to lead to exploitable vul-
nerabilities against applications relying on /dev/urandom for
randomness after a VM resumption. We focus on OpenSSL
v1.0.1e and RSA key generation. When calling openssl
genrsa from the command line, OpenSSL seeds its internal
RNG with 32 bytes read from /dev/urandom as well as the
current system time, process ID, and dirty memory buffers.
We instrument this version of OpenSSL in order to observe
internal values of the key generation process. We then set up
a VM running an unmodified Linux kernel on VMware that
will, immediately after being reset, execute the command
openssl genrsa from the shell. We observe that just
connecting to the VM via SSH to prepare it for a snapshot
typically drives the input pool entropy count below 192
before we take a snapshot. This is caused because a number
of processes are created during login and each new process
consumes many bytes from /dev/urandom to initialize stack
canaries and perform ASLR.

We captured 27 snapshots, performed 2 resets from each
snapshot and then analyzed the resulting outputs from the
OpenSSL instrumentation and OpenSSL’s normal output.
A single snapshot produced an identical prime p in the
private key in both resets, but other values in the private
key differed. Presumably, after the prime p was generated,
differing dirty memory buffers caused the OpenSSL RNGs
to diverge. (Knowing one prime value of a private key
is sufficient to derive the other and destroys the security
of an RSA private key.) Of the remaining 26 snapshots,
many had identical /dev/urandom output, but typically the
dirty memory buffers differed early enough in execution
to produce unique outputs. These dirty memory buffers
are likely different between resets because Address Space
Layout Randomization (ASLR) (determined in part by GRI)
shifts around the OpenSSL memory layout.

To validate this hypothesis, we then disabled ASLR on
the guest VM prior to taking a snapshot by executing echo
0 > /proc/sys/kernel/randomize_va_space

as root and repeat our experiment for 30 snapshots with 2
resets from each snapshot. Of these, 23 snapshots produced
repeated output from /dev/urandom and identical RSA
private keys. The other 7 snapshots had input at least 1
differing value into the OpenSSL RNG after reset —
variously this differing value was one of /dev/urandom
output, PID, or system time.

We note that unlike prior reset vulnerabilities [25], these
are the first to be shown in which the system RNG is invoked
after VM resumption. In [25], the authors ask whether
consuming fresh random bytes from the system RNG after a
reset is sufficient to eliminate reset vulnerabilities in applica-
tions. These results answer that question in the negative, and
highlights clear problems with the /dev/(u)random design for
settings where snapshots are employed.

B. Reset vulnerabilities (GRI)

As described in Section II, the output of the GRI RNG
depends only on the state values HV and secret S and the
inputs cycle counter, jiffies and PID (CC, J , P). Across
multiple resets from the same snapshot, it’s very plausible
for the same process (with same PID P) to be the first to
request an output. So the only new information after a snap-
shot resumption is the cycle counter value. For a virtualized
cycle counter, in which the cycle counter value will always
start from the same value (stored in the snapshot), we might
expect reset vulnerabilities. In fact we observe no repeated
values output by GRI across any of its invocations in any of
the 50 resets on VMware that we performed. This can likely
be attributed to small variations in timing between snapshot
resumption and the first call to GRI. For 10,000 Xen resets,
with the non-virtualized RDTSC, we did not see any repeats
as well.

C. Reset vulnerabilities (other RNGs)

FreeBSD. To see if reset vulnerabilities affect other RNG
designs, we also perform a limited set of experiments with
snapshot resumptions using an (uninstrumented) version
of FreeBSD within VMware. A description of FreeBSD’s
design is given in [13]. We used a similar userland tool to
detect resets and sample from FreeBSD’s /dev/random inter-
face (same as /dev/urandom on FreeBSD). Repeat outputs on
reset were common on FreeBSD but the duration of repeats
depended on the internal state of the RNG and parameters
of each experiment. The maximum length of time that we
observed repeats in our experiments was 100 seconds (taking
1 byte samples every 1 second) and the maximum number
of repeated output bytes we observed was 7.5 KB (taking
512-bit samples every 1 ms for 120 ms).

Windows 7. We perform similar experiments on Microsoft
Windows 7 running in VMware using multiple different
random number generator interfaces. We tested: the rand s

12

interface (for C-programs using stdlib); the CryptGenRan-
dom interface (for Win32 applications); and the RngCryp-
toServiceProvider interface (for .NET applications).

In experiments with rand s, all resets produced repeated
outputs when reset from the same snapshot more than once,
though the quantity of repeats varied. In one experiment, we
performed 10 resets from the same snapshot and collected
32-bit outputs every 1 second for a total of 2000 samples
(collected over more than 30 minutes). We found more than
500 (25%) repeated outputs shared between each pair of
resets, and some pairs have 1000 (50%) repeated outputs.
We also observe that all 2000 outputs generated in the first
reset are found in some combination of the following nine
resets.

Experiments with the CryptGenRandom and RngCryp-
toServiceProvider interfaces produced repeats as well. In all
experiments we observed identical output sequences from all
resets of the same snapshot. In particular, we collected 256-
bit outputs every 30 seconds for a duration of 30 minutes.
In our experiments, there is no evidence of a time limit after
which the Windows RNGs stop producing repeated outputs
(unlike the Linux and FreeBSD implementations). These
security vulnerabilities have been reported to Microsoft.

These experiments on FreeBSD and Windows demon-
strate that RNG reset vulnerabilities are not limited to the
Linux RNGs.

D. Snapshot Compromise Vulnerabilities
If a snapshot is disclosed to an attacker, then one must

assume that all of the memory contents are available to them.
Not only is there likely to be data in memory of immediate
damage to an unwitting future user of the snapshot (e.g., se-
cret keys cached in memory), but the RNG state is exposed.
While we can’t hope to prevent cached secret keys from
leaking, we might hope that the RNG recovers from this state
compromise when later run from the snapshot. As we saw
above, predicting future /dev/(u)random in various situations
is trivial since the attacker can often just run the snapshot (on
similar hardware). When not in these situations, however,
and for GRI, we would like to estimate the complexity of
using the compromised state to predict outputs generated
after a snapshot resumption.

We use the same methodology as used above with Xen,
with the workload that reads from /dev/urandom repeatedly
after snapshot resumption. We then use our methodology
from Section IV to give lower-bound estimates on the com-
plexity of predicting the very first few outputs to /dev/uran-
dom or GRI.

Figure 8 shows our estimated attack complexity after
reset. The complexity estimates for the /dev/urandom outputs
are much smaller than for their boot time counterparts
(Figure 5 in Section IV). The security of the GRI outputs
is similar to boot because GRI security under our model
is driven only by the cumulative uncertainty of the cycle

/dev/(u)random GRI
i T

i

`
i


i

T
i


i

1 0.7 ms 2 0 21 s 22
2 1.4 ms 2 20 21 s 33
5 4.1 ms 2 27 21 s 66
10 7.1 ms 2 27 21 s 105

Figure 8. The minimum estimated complexity 
i

to predict the first
few outputs of /dev/(u)random and GRI after a Xen guest is reset from
a snapshot. T

i

is the minimum time that output i is generated (relative to
resumption); `

i

is the median sequence length.

counters from each output request. However, /dev/urandom
outputs have security dominated by the input sequence
length `

i

. There are far fewer inputs during a resump-
tion than at boot. This suggests possible vulnerability to
prediction attacks, but for brevity we do not pursue them
further having already shown above that repeats give rise to
predictable outputs.

VI. THE WHIRLWIND RNG
In this section we detail the Whirlwind RNG, which

provides a simpler, faster, and more secure randomness
service. While our measurement study focused primarily
on virtual environments, the design of Whirlwind seeks to
provide security for a variety of settings and in general be
a drop-in replacement for both /dev/(u)random and GRI. As
such, we must handle a variety of goals:
• Simplicity: The current /dev/(u)random design is com-

plex, requiring significant effort to understand and audit
its design and implementation (with 1041 lines of
code) [11]. In contrast, Whirlwind targets simplicity and
requires 676 lines of code.

• Virtualization security: Unlike all prior RNG designs
we are aware of, Whirlwind is explicitly designed to
provide security even in virtualized environments that
might entail VM snapshot and image reuse.

• Fast entropy addition: Whirlwind uses a simple en-
tropy gathering function designed to be fast, usually
it requires only 0.5µs on our 2.67 GHz platform,
though for 1/8 of the invocations it applies the SHA-
512 compression function [24]. Despite using a slower
hash function (SHA-512), we show it to be about as
fast as entropy addition in the current /dev/(u)random.
Whirlwind uses per-CPU input buffers to reduce lock
contention and permit the amount of buffered inputs to
scale with the number of CPUs.

• Cryptographically sound: We propose a new design for
the cryptographic core of Whirlwind, inspired by the
recent work of [6]. Whirlwind dispenses with the linear
feedback shift registers of Linux /dev/(u)random, and
achieves the robustness security goal detailed in [6].

• Immediately deployable: The basic Whirlwind design
is a drop-in replacement for Linux /dev/(u)random, and
requires no hypervisor support.

13

S
fast

I
fast

I
slow

S0
slow

d

h

h p S
slow

Input

Figure 9. Block diagram of the Whirlwind RNG. Every dth input is
directed to the slow pool, and after p updates it is for use in output
generation. Here h is the SHA-512 compression function.

A. Whirlwind design
Figure 9 depicts the main components of Whirlwind. It

uses two entropy pools, a fast pool and a slow pool, as done
in FreeBSD’s Yarrow RNG [13]. The fast pool consists of a
per-CPU input buffer I

fast

and a single (global) seed value
S
fast

for the fast pool. The slow pool consists of a per-
CPU input buffer I

slow

, a private (internal) seed S0
slow

, and
a public seed S

slow

. In our implementation all input buffers
are 1024 bits in size which corresponds to one full message
block for SHA-512. All three seeds in our implementation
are 512 bits, which represents a chaining value for SHA-512.
We denote the SHA-512 compression function by h and the
SHA-512 hash function by H . Let n be the number of bits
of output for both h and H . We initialize the seeds values
as: S

fast

 h(IV, 1) and S
fast

 h(IV, 2) where IV is
the SHA-512 initialization vector and 1 and 2 are encoded
in some unambiguous manner.

Inputs are written to the fast pool I
fast

by default and
every dth input is diverted to the slow pool I

slow

. In our
implementation d = 10 which ensures that the fast pool
receives the majority of inputs and thus changes rapidly
even in low-entropy conditions. Each input is 128-bits and
consists of the input source’s unique identifier (created by
the GCC macro __COUNTER__ and encoded using 32 bits),
the lower 32 bits of the cycle counter (or jiffies on platforms
without a valid cycle counter), and 64 bits of optional,
source-provided information. Input buffers are per-CPU,
obviating the need for locking to process most inputs. We
denote the macro used for adding inputs by ww add input().

When an input pool is full (after 8 inputs are written
to a pool), a SHA-512 compression function application
is performed, with the chaining variable equal to the pool
seed value S

fast

or S0
slow

and the message block equal to
the input pool. The result becomes the new seed for that
pool. Locks are used to ensure that the compression function
is computed atomically. Thus, Whirlwind is computing a
hash over the sequence of inputs in an online fashion. This
ensures the robustness security property introduced by Dodis
et al. [6] and which they showed Linux’s /dev/(u)random
fails to achieve. Robustness requires (informally speaking)

Algorithm 3 ww generate bytes(b)
s1 S

fast

s2 S
slow

t d8b/ne
ctr atomic inc(Ctr, t)� t
hw read hw random()
ww add input()
for i = 0 to t do

CC get cycle counter()
output[i] H(3 || s1 || s2 || (ctr + i) || CC || P || hw)

end for
ww add input()
S
fast

 h(S
fast

, 01024)
return first b bytes of output

Routine for generating b bytes of output from the Whirlwind RNG. The
variable Ctr is a global output counter.

that no matter where entropy resides in the sequence of
inputs to the RNG, the RNG outputs always benefit from
the added entropy.

In the case of the slow pool, the internal seed S0
slow

is
used as the hash chaining value and upon every pth hash the
internal seed S0

slow

is copied to the public seed S
slow

. This
ensures that the slow pool represents a multiple of p times as
many inputs as the fast pool. In our implementation p = 50,
which, combined with d = 10, means the public slow seed
is updated every 500 inputs.

Consumers within the kernel request random values from
Whirlwind using get random int() or get random bytes().
From user mode, processes read random values via the exist-
ing /dev/random or /dev/urandom read interfaces. Whirlwind
handles all such requests in the same manner and, in par-
ticular, we have completely removed the GRI RNG and we
do not differentiate between /dev/random and /dev/urandom.
The current implementation does not support writing to the
RNG from user-level processes, though it would be easy to
add.

Algorithm 3 describes output generation in pseudocode.
When Whirlwind receives an output request for b bytes,
the RNG first copies the slow and fast pool seeds from
static (global) memory into local memory on the stack.
Whirlwind then prepares a response by computing a SHA-
512 hash over the concatenation of: (1) the local copy of
the slow pool seed; (2) the local copy of the fast pool
seed; (3) a 64-bit request counter Ctr; (4) the current cycle
counter CC; and (5) 64-bits read from a CPU hardware
RNG (e.g., RDRAND), if available. The request counter
Ctr is atomically pre-incremented for the number of blocks
requested (to reserve counter values for output generation)
and is incremented locally for each block of output. This
ensures that even if concurrent requests have identical values
(seeds, P,CC) the outputs are guaranteed to be unique. Two
inputs are fed back into the RNG for each output requested.
Finally, a single application of h is used to ensure forward
security.

14

Algorithm 4 ww bootstrap()
for i 0 to ` do

CC get cycle counter()
ww add input()
k CC mod `

max

for j 0 to k do
a (j/(CC + 1))� (a ⇤ i)

end for
end for

The Whirlwind entropy bootstrapping mechanism used during boot and
snapshot resumption. The values ` and `

max

are configured parameters
(default 100, 1024).

Initializing Whirlwind. We also include one special mech-
anism for quickly initializing (or refreshing) the entropy of
Whirlwind, which is needed to prevent a boot-time entropy
hole (like the ones in the legacy RNG, see Section IV) and
to recover from a VM reset. For boot time, we would have
liked to use the recent suggestion of Mowery et al. [22]
to quickly generate entropy in the initial stages of boot via
timing of functions in the kernel init function. Unfortunately,
this is not fast enough for us, since we observe reads to the
RNG early in init. We therefore use an approach based on
timing of instructions that may take a variable number of
cycles, which has been suggested and used previously [1,23].
This provides nondeterminism (by way of contention and
races within the CPU state), as shown in prior studies [19].
Pseudocode is shown in Algorithm 4. In our implementation
we have ` = 100 and `

max

= 1024.
Whirlwind calls this entropy timing loop before the first

use of the RNG during boot, and at the start of resumption
from a snapshot. The latter takes advantage of Xen’s resume
callback, which is a virtual interrupt delivered to the guest
OS when it first starts following a snapshot resumption.
Similar facilities exist in other hypervisors.

Entropy sources. It is easy to add entropy sources to
Whirlwind, by simply inserting ww add input() in appropri-
ate places. This requires no understanding of RNG internals
(such as the role of entropy estimates), unlike in the existing
Linux /dev/(u)random. In terms of performance, submitting
an input to the RNG is fast, but may still require a single
SHA-512 compression function call on the critical path.
While we expect that, in deployment, Whirlwind might use
a wider set of entropy sources, for comparison purposes, we
restrict our experiments here to use only the same set of en-
tropy sources as used by the current /dev/(u)random imple-
mentation in Linux as well as those called in ww bootstrap()
and ww generate bytes().

Hypervisor-provided entropy. As we show below, the
already-mentioned software-based sources are already suffi-
cient to provide security during boots and resets. Some users
may nevertheless desire (for defense-in-depth) support for
the Xen management Dom0 VM (also running Whirlwind)

to provide an additional entropy source for a guest VM’s
Whirlwind RNG. In current practice, host-to-guest entropy
injection is facilitated via virtual hardware RNGs, that then
are fed into the Linux /dev/(u)random by way of a user-level
daemon (rngd). Unlike these systems, we will ensure host-
provided entropy is inserted into Whirlwind immediately
after a VM resumption, before any outputs are generated.

To do so, we pass additional entropy with the Xenstore
facility in Xen, which uses shared memory pages between
Dom0 (the management VM) and the guest VM to provide a
hierarchical key-value store. We modified Dom0 to read 128
bytes from /dev/urandom and write the value to Xenstore.
During a resume callback, Whirlwind detects that a reset
occurred, reads the value from Xenstore and adds the value
to the RNG via repeated input events. All this requires less
than 30 lines of modification to Xen’s operation library
libxl. The entire operation requires 75 ms on average, and
the rareness of the operation (once per resumption) makes
this tolerable.

Other instantiations. For concreteness, we chose several
suggested values of (sometimes implicit) parameters, but it
is easy to modify the Whirlwind implementation to support
different choices. For instance, instead of letting h be the
SHA-512 compression function, one could use the full
SHA-512 (or some other secure hash, such as SHA-3),
which leads to the RNG computing a hash chain. The
approach detailed is faster because it reduces the number of
compression function calls. One might also use SHA-256,
smaller or larger seed values (to trigger hashing more or less
frequently), and the like. Additionally, we choose the output
generation hash H as the full SHA-512. Again, this can be
replaced with any suitable hash function or even AES in a
one-way mode such as Davies-Meyer mode [30].

B. Security evaluation

We evaluate the boot-time and reset security of Whirl-
wind. We perform 50 reboots in Xen using an instrumented
version of the Linux kernel using Whirlwind. We also
perform 50 resets from a single Xen snapshot captured
while idling (5 minutes after boot); a user level process
requests 512-bit outputs from the RNG every 500µs after
resumption. As before, the instrumentation records all inputs
and outputs to the Whirlwind RNG. We then perform com-
plexity analysis as done for the legacy /dev/(u)random (see
Section IV), which again ignores all input sources except
the cycle counter. This provides a conservative estimate of
unpredictability from the attacker’s perspective. As intended,
the adversarial uncertainty regarding the Whirlwind internal
state hits 1024 (the maximal amount) before the first use of
the RNG either during boot or after a reset. An immediate
implication is that reset vulnerabilities are avoided: the
probability of repeated output arising from reuse of the same
snapshot is negligible.

15

Throughput (/dev/urandom)
Block size Whirlwind (MB/s) Legacy (MB/s)

4 bytes 0.6 1.6
16 bytes 2.3 4.9
64 bytes 9.3 9.0

256 bytes 21.8 12.0
(Larger is better)

Latency (/dev/urandom)
Block Size Whirlwind (µs) Legacy (µs)

4 bytes 6.9 2.5
16 bytes 6.9 3.3
64 bytes 6.9 7.0
256 bytes 11.7 21.3

(Smaller is better)

Figure 10. Comparing performance of the Whirlwind and legacy /dev/u-
random implementations using dd to read 10,000 blocks of various sizes.
The latency values are derived from the throughput measurements.

We have not yet evaluated Whirlwind’s entropy accumula-
tion on low-end systems, such as embedded systems [12,22].
In particular, here the cycle timing loop may provide less
uncertainty because embedded system CPUs themselves
have less non-determinism. In these settings, however, we
do not expect to be using VM snapshots (making this use
moot) and for generating entropy at boot we can use the
techniques of [22].

C. Performance evaluation
We turn to evaluating the performance of Whirlwind,

particularly in comparison to the existing /dev/(u)random
and GRI RNGs. Our Whirlwind implementation uses SHA-
512 as opposed to SHA-1 (resp. MD5 for GRI), so we
expect to see a performance penalty from the use of stronger
cryptography. To compare, we evaluated the throughput of
reading from /dev/urandom and GRI for both Whirlwind
and the legacy RNGs. While the system is otherwise idle,
we execute reads of 10,000 blocks on the /dev/urandom
interface for various block sizes using dd. We repeat this 100
times for each block size and report the average throughput
in Figure 10. As expected, the legacy RNG performs slightly
better at smaller block sizes ( 16 byte), but is outperformed
by Whirlwind at 64 and 256 byte block sizes.

We also compare measured performance of adding inputs
to the new and legacy RNGs. We add minimal instrumen-
tation to time these operations and measure performance
during VM boots, resets, and during idle time. We also use
these runs to measure performance of reading from GRI. The
resulting performance data (shown in Figure 11) indicate the
various functions were timed more than 100,000 times for
each RNG. The results are that while input processing for
/dev/(u)random is as fast in Whirlwind as in the legacy RNG,
the GRI output interface requires 10.3µs (one standard de-
viation is ±1.8) for Whirlwind but the legacy RNG requires
only 1.0µs (±0.5). The standard deviation is higher for
Whirlwind, as this implementation more frequently performs

Execution Time Whirlwind (µs) Legacy (µs)
GRI 10.3 (±1.8) 1.0 (±0.5)

/dev/(u)random Input 0.5 (±0.4) 0.5 (±0.1)

Figure 11. Performance results for the kernel-only RNG GRI and input
processing for /dev/(u)random inputs over 100,000 invocations of each
operation. One standard deviation is shown for each in parenthesis.

hash operations than the legacy RNG.
Note that GRI is only used during process creation. In

order to understand whether the GRI slowdown will cause
problems in applications, we run the fork benchmark from
LMbench [21] 100 times. The average latency of fork
is 414µs (with standard deviation ±5µs) for the legacy
RNG, and 418µs (±5µs) for kernel with Whirlwind. Thus
Whirlwind incurs only 1% overhead in this (worst-case)
benchmark, and so we believe this is not a problem for
practical use.

Lastly, we evaluate the overhead of ww bootstrap()
(Algorithm 4) used at boot and snapshot resumption. The
time to execute the timing loops has a mean of 0.7 ms over
50 runs. Boot and snapshot resumption are rare operations,
suggesting this level of overhead will not impact deploy-
ments.

Overall we conclude that Whirlwind has performance
closely matching the existing RNGs, and in some cases
even better despite using more expensive (and more secure!)
cryptographic primitives. For this, we get a significantly
simplified design and improved security.

VII. PREVENTING RESET VULNERABILITIES IN LEGACY
GUESTS

While Whirlwind prevents VM snapshot reset vulnerabil-
ities, it requires updating (at least) the kernel. We therefore
consider in this section how one might try to prevent,
particularly, reset vulnerabilities in legacy guests. We first
consider a setting in which we can add user-level daemons
to the guest, but cannot modify the kernel. We then consider
a setting in which we cannot modify the guest VM at all.

Legacy hypervisor. We first consider a setting with a
legacy hypervisor and management VM, but where we are
able to install a user level daemon or kernel module into the
guest VM. The goal of the daemon is to heuristically detect
when a snapshot occurs. For VMs with non-virtualized time,
the cycle counter (rdtsc instruction) returns the cycles
since physical system boot. Following a resumption, the
cycle counter is likely to show a large discontinuity, either
a positive or negative jump. (A negative jump is possible
when the machine has been rebooted or when a snapshot is
reset on a different machine.) Thus, a reset can be detected
by periodically polling the cycle counter, detecting large
jumps (forward or backward), and assuming the cause is
a reset. The overhead of such an approach is small. If the
daemon sleeps 1 ms between two detection attempts, then the
overhead for such daemon process uses less than 0.5% of

16

the total CPU time. A kernel implementation that only polls
when the CPU is active can avoid some potential adverse
affects, e.g., preventing a CPU from going into power-saving
mode.

When a reset occurs, we use the cycle timing loop
discussed in the last section to generate entropy. These
cycles can then be directly written to the (legacy) /dev/u-
random interface to inject entropy. As we have evaluated
the uncertainty generated by cycle timing (Section VI), for
brevity we omit measurements here. Even so, there exists a
tension between performance (how long the daemon sleeps
for) and the window of opportunity for reset vulnerabilities.

Legacy guest VM. The prior approach requires installing
code on the guest VM, which may not always be possible
(e.g., for already-deployed VM images). We therefore inves-
tigate whether the hypervisor or a management Dom0 can
be used to inject additional entropy into a guest following a
snapshot resumption. The goal is to ensure that the state of
the guest’s legacy /dev/(u)random RNG becomes sufficiently
refreshed so as to prevent reset vulnerabilities. Unfortu-
nately, this is a very constrained setting, since we must work
with the existing deficiencies of the /dev/(u)random RNG.

Our observation is that because the /dev/(u)random RNG
uses interrupts as the primary source of entropy, the manage-
ment Dom0 (or possibly even a remote host) can intention-
ally inject a flood of random interrupts after a reset by way
of network packets. As described in Section II, interrupts
go first into the interrupt pool IntP, eventually flow to the
input pool IP, and when the input pool entropy counter
IP.ec exceeds 192 bits, these inputs will be pulled into the
/dev/urandom pool UP where they affect the /dev/urandom
outputs. (We focus on /dev/urandom since we observe no
consumers of /dev/random in the default installations we
tested.) Furthermore, interrupts only flow from IntP to IP at
most every 1 second or after 64 interrupts, and then only add
1 count to the input pool entropy counter IP.ec. This means,
in the worst case, we need approximately 10,000 interrupts
delivered to the guest in order to guarantee /dev/urandom
will produce no repeated outputs (assuming, of course, that
no reads to /dev/random occur).

To test this, we capture a snapshot of the legacy system
while it idles. Upon resumption, a user process in Dom0
sends packets at various frequencies to the guest. We repeat
VM resets 50 times for the frequencies shown in Figure 12.
This table shows that with no intervention, it takes on
average more than 50 seconds for the /dev/urandom pool
UP to receive a single transfer from the input pool, and
injecting interrupts from Dom0 significantly speed this up.
However, we are unable to refresh the input pool in less
than 3.6 s, due in part to the fact that during resumption
there is a time window during which interrupts are delivered
slowly (presumably because the hypervisor is busy doing
resumption-related work).

Inter-send time (µs) Transition Time
100 3.6s
250 6.8s
500 11.2s

1,000 16.6s
2,000 24.6s
10,000 38.0s

no interrupts > 50s

Figure 12. Average time after VM resumption for /dev/urandom entropy
pool to be refreshed when injecting interrupts from Dom0 at various
frequencies (shown as inter-send time in microseconds).

Discussion. While both of our legacy-compatible counter-
measures in this section provide some protections against the
reset vulnerabilities in /dev/(u)random, we feel that they are
at best stop-gap measures. The difficulty of dealing with this
from Dom0 underscores the need to move to an improved
RNG (namely, Whirlwind).

VIII. RELATED WORK

Many high profile RNG failures have been reported over
the years, including ones leading to: attacks against the
Secure Socket Layer (SSL) implementation of an early
Netscape web browser [10]; the ability to cheat at on-
line poker [2]; insecure random values in Microsoft Win-
dows [7]; predictable host keys in Debian OpenSSL [31];
jailbreaks against the Sony’s PlayStation 3 [4]; factorizable
RSA private keys generated on embedded systems [12];
predictable outputs in the OpenSSL RNG on Android [16];
and factoring RSA private keys that protect digital IDs on
government-issued smart cards in Taiwan [5].

Several previous papers analyzed the Linux
/dev/(u)random RNG. Gutterman et al. [11] provided
the first: they reverse-engineer the design of the RNG from
the source code (attesting to its complexity!); highlight
problems in the hashing steps (that were subsequently
fixed and the version we analyze includes these fixes);
and point out that in some constrained environments such
as embedded systems or network routers there might be
insufficient entropy provided to the RNG.

Heninger et al. [12] show that embedded Linux systems
suffer from a boot-time entropy hole which leads to exposure
of cryptographic secret keys generated on affected devices.
Mowery et al. [22] look to fill this boot-time entropy hole
by way of timing functions in kernel initialization. Vuillemin
et al. [9] perform an in-depth, empirical analysis of entropy
transfers in Linux /dev/(u)random, and show that most
consumers are in the kernel.

Dodis et al. [6], building off earlier work by Barak
and Halevi [3], suggest that the cryptographic extraction
component of RNGs should be robust, meaning an RNG
should guarantee entropy is collected no matter the rate of
entropy in the input stream. They show that /dev/(u)random
is not robust, but do not show attacks that would affect

17

practice. Part of the Whirlwind design is inspired by their
online hashing based extractor, though they use universal
hash functions and we use cryptographic ones.

None of the above consider RNG performance in modern
virtualized environments. We also do not know of any
analyses of the GRI RNG before our work.

Turning to virtualized settings, Garfinkel and Rosen-
blum [8] hypothesized that VM reset vulnerabilities may ex-
ist when reusing VM snapshots, and analyses by Ristenpart
and Yilek [25], uncovered actual vulnerabilities in user-level
processes such as Apache mod ssl that cache randomness in
memory before use. In these settings, the user-level process
never invoked /dev/urandom (or /dev/random) after VM
resumption, and in particular they left as an open question
whether system RNGs suffer from reset vulnerabilities as
well. We answer this question, unfortunately, in the positive,
suggesting that using /dev/urandom right before randomness
use is not a valid countermeasure with the existing design,
though it will be with Whirlwind.

In [27], the authors hypothesize that booting multiple
times from the same VM image in an infrastructure-as-a-
service (IaaS) setting such as Amazon’s EC2 may enable
attackers to predict /dev/(u)random RNG outputs that can
lead to SSH host key compromises. Our analyses suggest
that such an attack is infeasible for all uses of the Linux
RNGs beyond the first during boot.

Thompson et al. [29] point out the potential for a mali-
cious hypervisor to snoop on the entropy pools of a guest
VM. Kerrigan et al. [14] investigate entropy pool poisoning
attacks, where one guest VM in a cloud setting attempts
to interfere with another’s entropy pool by (say) sending
interrupts at a known frequency to the guest. Theirs is
a negative result, with their experiments showing that the
attack fails. Our measurements corroborate this: even just
a few bits of uncertainty about cycle counters leads to an
unpredictable RNG state even in the current /dev/(u)random
implementation. We also investigate using such interrupt
injection as a defense.

Finally, we use CPU timing jitter as an entropy source as
used in other systems, such as the haveged entropy daemon
and the CPU jitter RNG [1,23].

IX. CONCLUSIONS

In this work, we performed the first analysis of the secu-
rity of the Linux system random number generators (RNGs)
when operating in virtualized environments including Xen,
VMware, and Amazon EC2. While our empirical measure-
ments estimate that cycle counters in these settings (whether
virtualized or not) provide a ready source of uncertainty from
an attacker’s point of view, deficiencies in the design of
the /dev/(u)random RNG make it vulnerable to VM reset
vulnerabilities which cause catastrophic reuse of internal
state values when generating supposedly “random” outputs.

Both the /dev/(u)random and kernel-only GRI RNGs also
suffer from a small boot-time entropy hole in which the very
first output from either is more predictable than it should be.

Our second main contribution is a new design for system
RNGs called Whirlwind. It rectifies the problems of the
existing Linux RNGs, while being simpler, faster, and using
a sound cryptographic extraction process. We have imple-
mented and tested Whirlwind in virtualized environments.
Our results showed that Whirlwind enjoys performance
equal (and sometimes even better) than the previous RNG.

ACKNOWLEDGEMENTS

This work was supported in part by NSF grants 1065134,
1253870, and 1330308 as well as a generous gift from
Microsoft.

REFERENCES

[1] Haveged entropy gatherer. http://www.issihosts.com/
haveged/.

[2] B. Arkin, F. Hill, S. Marks, M. Schmid, T. J. Walls, and
G. Mc-Graw. How we learned to cheat at online poker: A
study in software security. The developer.com Journal, 1999.

[3] B. Barak and S. Halevi. A model and architecture for pseudo-
random generation with applications to /dev/random. In
Computer and Communications Security — CCS, pages 203–
212. ACM, 2005.

[4] M. Bendel. Hackers describe PS3 security as epic fail,
gain unrestricted access. http://www.exophase.com/20540/
hackers-describe-ps3-security-as-epic-fail-gain-unrestricted-
access/.

[5] D. J. Bernstein, Y.-A. Chang, C.-M. Cheng, L.-P. Chou,
N. Heninger, T. Lange, and N. van Someren. Factoring rsa
keys from certified smart cards: Coppersmith in the wild. In
Advances in Cryptology — ASIACRYPT 2013, pages 341–
360. Springer, 2013.

[6] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergnaud, and
D. Wichs. Security analysis of pseudo-random number
generators with input: /dev/random is not robust. In Computer
and Communications Security — CCS, pages 647–658. ACM,
2013.

[7] L. Dorrendorf, Z. Gutterman, and B. Pinkas. Cryptanalysis
of the random number generator of the Windows operating
system. ACM Transactions on Information and System
Security (TISSEC), 13(1):10, 2009.

[8] T. Garfinkel and M. Rosenblum. When virtual is harder than
real: Security challenges in virtual machine based computing
environments. In Workshop on Hot Topics in Operating
Systems — HotOS-X, May 2005.

[9] F. Goichon, C. Lauradoux, G. Salagnac, and T. Vuillemin.
Entropy transfers in the Linux random number generator.
Research Report RR-8060, INRIA, Sept. 2012.

18

http://www.issihosts.com/haveged/
http://www.issihosts.com/haveged/

[10] I. Goldberg and D. Wagner. Randomness and the Netscape
browser. Dr Dobb’s Journal, pages 66–71, 1996.

[11] Z. Gutterman, B. Pinkas, and T. Reinman. Analysis of the
Linux random number generator. In IEEE Symposium on
Security and Privacy, pages 371–385. IEEE, 2006.

[12] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman.
Mining your Ps and Qs: Detection of widespread weak keys
in network devices. In USENIX Security, pages 205–220.
USENIX, 2012.

[13] J. Kelsey, B. Schneier, and N. Ferguson. Yarrow-160: Notes
on the design and analysis of the Yarrow cryptographic
pseudorandom number generator. In Selected Areas in Cryp-
tography, pages 13–33. Springer, 2000.

[14] B. Kerrigan and Y. Chen. A study of entropy sources in cloud
computers: Random number generation on cloud hosts. In
Computer Network Security, pages 286–298. Springer, 2012.

[15] M. Kerrisk. LCE: Don’t play dice with random numbers,
2012. https://lwn.net/Articles/525459/.

[16] S. H. Kim, D. Han, and D. H. Lee. Predictability of Android
OpenSSL’s pseudo random number generator. In Computer
and Communications Security — CCS, pages 659–668. ACM,
2013.

[17] P. Lacharme, A. Rck, V. Strubel, and M. Videau. The Linux
pseudorandom number generator revisited. Cryptology ePrint
Archive, Report 2012/251, 2012. http://eprint.iacr.org/.

[18] E. Leitl. Intel in bed with NSA. Cryptome mail list, 2013.
http://cryptome.org/2013/07/intel-bed-nsa.htm.

[19] N. Mc Guire, P. O. Okech, and Q. Zhou. Analysis of
inherent randomness of the Linux kernel. In Real Time Linux
Workshop, 2009.

[20] R. McEvoy, J. Curran, P. Cotter, and C. Murphy. Fortuna:
Cryptographically secure pseudo-random number generation
in software and hardware. In Irish Signals and Systems
Conference, pages 457–462. IET, 2006.

[21] L. W. McVoy and C. Staelin. lmbench: Portable tools
for performance analysis. In USENIX Annual Technical
Conference, pages 279–294. San Diego, CA, USA, 1996.

[22] K. Mowery, M. Wei, D. Kohlbrenner, H. Shacham, and
S. Swanson. Welcome to the Entropics: Boot-time entropy
in embedded devices. pages 589–603. IEEE, 2013.

[23] S. Müller. CPU time jitter based non-physical true random
number generator, 2013.

[24] National Institute of Standards and Technology. Federal infor-
mation processing standards publication 180-2: Secure hash
standard, 2002. http://csrc.nist.gov/publications/fips/fips180-
2/fips180-2withchangenotice.pdf.

[25] T. Ristenpart and S. Yilek. When good randomness goes bad:
Virtual machine reset vulnerabilities and hedging deployed
cryptography. In Network and Distributed Systems Security
— NDSS. ISOC, 2010.

[26] A. Shah. About random numbers and virtual ma-
chines, 2013. http://log.amitshah.net/2013/01/about-random-
numbers-and-virtual-machines/.

[27] A. Stamos, A. Becherer, and N. Wilcox. Cloud computing
models and vulnerabilities: Raining on the trendy new parade.
BlackHat USA, 2009.

[28] M. A. Stephens. Use of the Kolmogorov-Smirnov, Cramér-
Von Mises and related statistics without extensive tables.
Journal of the Royal Statistical Society. Series B (Method-
ological), pages 115–122, 1970.

[29] C. J. Thompson, I. J. De Silva, M. D. Manner, M. T. Foley,
and P. E. Baxter. Randomness exposed — an attack on hosted
virtual machines, 2011.

[30] R. S. Winternitz. A secure one-way hash function built from
DES. In IEEE Symposium on Security and Privacy, pages
88–90, 1984.

[31] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage.
When private keys are public: Results from the 2008 Debian
OpenSSL vulnerability. In SIGCOMM Conference on Internet
Measurement, pages 15–27. ACM, 2009.

19

https://lwn.net/Articles/525459/
http://eprint.iacr.org/
http://cryptome.org/2013/07/intel-bed-nsa.htm
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://log.amitshah.net/2013/01/about-random-numbers-and-virtual-machines/
http://log.amitshah.net/2013/01/about-random-numbers-and-virtual-machines/

