
Security of Internet-Scale
Services

Thesis Defense — Adam Everspaugh

Committee:
Prof Nigel Boston
Prof Barton Miller
Prof Somesh Jha

Assc Prof Thomas Ristenpart*
Prof Michael Swift*

Software Environment Has
Changed

OS

users: 20-25

machines: 20

Microsoft Word, ~1995

datacenter

Google Docs, 2015

users: 220-230

machines: 210  

revisions

authentication

spellcheck

browser+javascript

collaboration

front-end

Interesting Properties of
Internet-scale Services

• Millions or billions of users

• Geo-replicated applications and storage systems

• Applications built as distributed services: componentized,
communication, failures, concurrency

• Highly available: 1.0 - 𝜀

• Security?
• Carried forward from previous era of application

development

Research Question

• Not-So-Random Numbers [IEEE S&P '14]. Evaluate RNGs
in virtual machine and and cloud compute environments.

• Pythia PRF Service [Usenix Sec '15]. Design and evaluate
a secure password authentication service built around a
new cryptographic primitive.

• Key Rotation for Auth Encryption [Crypto '17]. Examines
updatable encryption for cloud storage. Formal analysis of
security notions and updatable encryption schemes.

Can we improve the security of internet-scale
services?

Outline

Random Number Generators

Outputs
uniformly distributed

RNGInputs
system events

Example uses:
• StackProtector canaries
• TCP/IP sequence numbers
• Cryptographic keys

Random Number Generators

Outputs
uniformly distributed

RNGInputs
system events

Outputs
uniformly distributed

RNGInputs
system events

Random Number Generators

Input
Pool

Random
Pool

URandom
Pool

Interrupt
Pool

/dev/random

/dev/urandom
get_random_bytes()

interrupt events

disk events
keyboard events

mouse events
hardware RNGs

Cryptographic hash

Linux /dev/(u)random:

Random Number Generators

Outputs
uniformly distributed

RNGInputs
system events

1. Do full-memory snapshots cause problems for system RNGs?  
[GR05] [RY10]  

2. Are input sources entropy-poor inside a virtual machine?  
[SBW09]

Folklore concerns regarding security

Virtual Machine Snapshot
and Resumption

Snapshot

Resumption

disk

Does the RNG produce distinct outputs with each resumption?

Boot

Linux RNG Not Reset Secure

One experiments:
• Boot VM in Xen, idle for 5 minutes
• Start measurement process, capture snapshot
• Resume from snapshot,  

read 512-bits from /dev/urandom every 500 us

Repeat for 8 distinct snapshots
Do 20 resumptions/snapshot

RNG
/dev/urandom

7/8 snapshots produce repeated outputs

Why does this happen?

Input
Pool

Random
Pool

URandom
Pool

Interrupt
Pool

/dev/random

/dev/urandom
get_random_bytes()

Linux /dev/(u)random

interrupts

disk events

if (entropy estimate >= 64)

if (entropy estimate >= 192)

if (count > 64 or
elapsed time > 1s)

Buffering and thresholds prevent new inputs
from impacting outputs

Reset Vulnerabilities Effect
Other Platforms

Microsoft Windows 7
Produces repeated outputs indefinitely
rand_s (stdlib)
CryptGenRandom (Win32)
RngCryptoServices (.NET)

FreeBSD
/dev/random produces identical output stream
Up to 100 seconds after resumption

RNG Summary

• Snapshots cause problems?

• Entropy-poor inputs?

• New clean-slate RNG design

→ Yes

→ No

→ Whirlwind

Outline

• Not-So-Random Numbers [IEEE S&P '14]. Evaluate RNGs
in virtual machine and and cloud compute environments.

• Pythia PRF Service [Usenix Sec '15]. Design and evaluate
a secure password authentication service built around a
new cryptographic primitive.

• Key Rotation for Auth Encryption [Crypto '15]. Examines
updatable encryption for cloud storage. Formal analysis of
security notions and updatable encryption schemes.

Password Database Compromises

Password DB breaches are common

Website stores one of:
• pw
• Hash(pw)
• salt, Hash(salt, pw)
• salt, Hash4096(salt, pw)

6.5M hashes leaked

90%
recovered 2 weeks

Facebook’s Password Onion

$cur = ‘password’
$cur = md5($cur)
$salt = randbytes(20)
$cur = hmac_sha1($cur, $salt)
$cur = remote_hmac_sha256($cur, $secret)
$cur = scrypt($cur, $salt)
$cur = hmac_sha256($cur, $salt)

[Moffet RWC15]

Facebook’s Password Onion

$cur = ‘password’ 
$cur = md5($cur) 
$salt = randbytes(20) 
$cur = hmac_sha1($cur, $salt) 
$cur = remote_hmac_sha256($cur, $secret) 
$cur = scrypt($cur, $salt) 
$cur = hmac_sha256($cur, $salt)

[Moffet RWC15]

Remote HMAC Distributes
Trust

Web Server

pw db

$cur

hmac($cur, $secret)

pw
Crypto Server

$secret

pw db

How do we rotate
$secret?

Hard to detect online
attacks

cur1cur2cur3

Advantages of Partially
Oblivious PRF

Web Server

pw db

pw

Pythia PRF Service

Doesn’t learn secret key

Detect online attacks
Doesn’t learn pw

uid, blind(pw)

y = Fk(uid, blind(pw))

unblind(y) = Fk(uid, pw)

Existing Crypto Primitives
are Insufficient

Deterministic

Pseudorandom

Key Rotation

PRFs

Key Updatable
Encryption

Proxy
Re-encryption

(Partial)
Message
Privacy

Oblivious PRFs

Partially-Blind
Signatures

Partially Oblivious
PRF

empty

Fast, Scalable PRF Service

Throughput: 1350 queries/sec (8-core EC2 instance)

Pythia Query
5.2 ms

Within factor of 2 of HTTP GET over TLS

18.6 GB (keytable)100M Web Server:

Storage: O(1) per web server
Supports arbitrary number of users
for each web server

8.9 ms
(SHA25610k)

Iterated Hashing

nginx MongoDB

Outline

• Not-So-Random Numbers [IEEE S&P '14]. Evaluate RNGs
in virtual machine and and cloud compute environments.

• Pythia PRF Service [Usenix Sec '15]. Design and evaluate
a secure password authentication service built around a
new cryptographic primitive.

• Key Rotation for Auth Encryption [Crypto '17]. Examines
updatable encryption for cloud storage. Formal analysis of
security notions and updatable encryption schemes.

Encryption for Cloud
Storage

{file0}k1

k1 — secret key
file0 {file1}k1 {file4}k1

{file3}k1

{file5}k1

{file2}k1How do we rotate k1?

Δ1→2

Rekey token

{file1}k2 {file2}k2

{file3}k2
{file4}k2

{file5}k2

k1  
k2

Δ1→2

Updatable Encryption

D m or ⊥ CEm
$

K

k

$

Symmetric Encryption scheme = (K,E,D)

C2ReEnc

Updatable Encryption scheme =
(Kg, Enc, Dec, RekeyGen, ReEnc)

error

Enc C1

k1

m Dec

k2

m or ⊥

RekeyGen

k1 k2

Δ1→2

Ch

Security Notions
Symmetric Encryption

scheme

Authenticated Encryption:  
AE ⇒ Ind-Cpa ⋀ Int-Ctxt

Updatable Encryption scheme

Integrity: Up-Int

Confidentiality: Ind-Cpa  
(indistinguishable to  

chosen-plaintext attack)

Integrity: Int-Ctxt  
(integrity of ciphertext)

Confidentiality: Up-Ind

Indist. ReEncryption: Up-ReEnc

Security of Updatable
Schemes

Confidentiality 
(Up-Ind)

Integrity 
(Up-Int)

Indist. ReEncryption  
(Up-ReEnc)

AE-hybrid

KSS*

[BLMR13]

ReCrypt*

X X X
✔ ✔ X
X X X
✔ ✔ ✔

* introduced in this work

AE-hybrid is Not Secure

Confidentiality (Up-Ind)Give the attacker:
 k1, all headers, C2 Integrity (Up-Int)

X
X

{x}k1Enck1(m): {m}x

header body

ReEnc(Δ,C1):

= C1

{x}k2 {m}x = C2

Updatable encryption built with symmetric
authenticated encryption (AES-GCM)

AE-hybrid in production use:

AE-hybrid Fixed: KSS
KEM/DEM with  

Secret Sharing (KSS)

Confidentiality (Up-Ind)
Integrity (Up-Int)

✔
✔

Indist. ReEnc (Up-ReEnc)X

AE-Hybrid

Enck1(m) {x⊕y,h(m)}k1 y,{m}x

Key-share hides x in  
header

Hash gives integrity  
— binds header/body

 {x}k1 {m}x

Strongest Security: ReCrypt

Confidentiality (Up-Ind)
Integrity (Up-Int)

✔
✔

Indist. ReEnc (Up-ReEnc)✔

Eb(Ea(m)) = Ea⊙b(m)

{x'+y'+x+y, Ex'(Ex(d))}k2 y'+y, Ex'(Ex(m))ReEnc:

d=h(m); gives integrity

Da⊙b(Ea⊙b(m)) = m

{x+y, Ex(d)}k1

header

y,Ex(m)Enc:
body

Key Homomorphic  
Encryption

Strongest Security Impacts
Performance

ReCrypt 1 KB 1 GB
Encrypt 10.0 ms 2.6 hrs
ReEnc 8.8 ms 2.4 hrs

Decrypt 9.1 ms 2.4 hrs

ReCrypt operations are 1000x
slower than KSS

• Good fit for: small, high-value plaintexts

• E.g. credit card numbers, personally-identifying
information, financial information

Conclusions

• Not-So-Random Numbers [IEEE S&P '14]  
Environment is fine — entropy rich inputs. 
New designs fix VM reset vulnerabilities; easier to analyze.

• Pythia PRF Service [Usenix Sec '15]  
State-of-the-art is broken — new cryptography in service-
oriented setting is a great direction.

• Key Rotation for Auth Encryption [Crypto '17]  
Customers need updatable encryption — proper balance of
security strength and performance is still an open question.

There are significant opportunities for improving
the security of internet-scale services.

