
Evaluation of Inter-Process Communication Mechanisms

Aditya Venkataraman
University of Wisconsin-Madison

adityav@cs.wisc.edu

Kishore Kumar Jagadeesha
University of Wisconsin-Madison

kishore@cs.wisc.edu

ABSTRACT
The abstraction of a process enables certain primitive forms
of communication during process creation and destruction
such as wait(). However, the operating system provides more
general mechanisms for flexible inter-process communica-
tion. In this paper, we have studied and evaluated three
commonly-used inter-process communication devices - pipes,
sockets and shared memory. We have identified the vari-
ous factors that could affect their performance such as mes-
sage size, hardware caches and process scheduling, and con-
structed experiments to reliably measure the latency and trans-
fer rate of each device. We identified the most reliable timer
APIs available for our measurements. Our experiments re-
veal that shared memory provides the lowest latency and
highest throughput, followed by kernel pipes and lastly, TCP/IP
sockets. However, the latency trends provide interesting in-
sights into the construction of each mechanism. We also
make certain observations on the pros and cons of each mech-
anism, highlighting its usefulness for different kinds of ap-
plications.

1. INTRODUCTION
Inter-process communication mechanisms are used for

transferring data between processes. These mechanisms
can be broadly classified based on the following criteria
[4, 5]:

• Whether the communication is restricted to related
processes.

• Whether the communication is write-only, read-
only or read/write.

• Whether the communication is between two pro-
cesses or more.

• Whether the communication is synchronous, i.e.
the reading process blocks on a read.

In this paper, we will study and evaluate three popular
and powerful inter-process communication mechanisms -
pipes, sockets and shared memory.

1.1 Pipes
A pipe is a unidirectional communication device that

permits serial transfer of bytes from the writing process
to the reading process [7]. Typically, a pipe is used
for communication between two threads of a process or
between a parent and child process. A pipe is created
using the pipe system call, which creates file-descriptors
for writing and reading from the pipe. A pipe’s data
capacity is limited; if the writer writes faster than a
reader consumes data and if the pipe buffer is full, the
writer will block until more capacity becomes available.
Similarly, if the reader reads when the pipe is empty,
the reader will block. Thus, the pipe provides automatic
synchronization between the processes.

1.2 Sockets
A socket is a bidirectional communication mechanism

that can be used to communicate with another process
on the same machine or on a different machine. Particu-
larly, Internet programs such as World Wide Web and
Telnet employ sockets as their communication device.
Data sent over a socket is split into chunks called pack-
ets. A protocol, such as TCP/IP, specifies how these
packets are transmitted over the socket [6]. A socket is
uniquely addressed using a combination of the machine
IP address as well as a port number. In this paper we
will evaluate local-machine sockets only, as we expect
unpredictable network latencies to distort the latency
for remote-machine sockets.

1.3 Shared Memory
Shared memory allows two or more processes to access

the same memory region, which is mapped onto the
address space of all participating processes. Since this
communication is similar to any other memory reference,
it does not involve any system calls or protocol-induced
overheads. Hence, one can expect shared memory to offer
very low latencies. However, the system does not provide
any synchronization for accesses to shared memory; it
ought to implemented by user programs using primitives
such as semaphores.

In this paper we will construct experiments to eval-

1



uate the performance - latency and throughput - of
these mechanisms. We will also qualitatively reason
about their pros and cons to understand the relative
importance of each mechanism.

The rest of the paper is organized as follows: Sec-
tion 2 describes the evaluation methodology, including
our measurement methods and experiments. Section 3
presents our results and analysis. Section 4 concludes.

2. EVALUATION
To compare the performance of different communica-

tion mechanisms, we used the evaluation environment
given in Table 1.

2.1 Evalution of timers
The goal of the study is to empirically compute the

latency and throughput of popular IPC mechanisms.
This requires a reliable and accurate way of measuring
the communication latency; clearly, an inaccurate timer
will render the entire evaluation suspect. Hence, we
evaluated the accuracy and resolution of three popular
Linux timer APIs - RDTSC, clock gettime() and get-
timeofday(). The accuracy was measured by putting the
program to sleep for a known time-period in-between
two calls to the timer API. The time-period measured
through the timer was then compared against the ex-
pected period. To identify the smallest, reliable resolu-
tion, we successively reduced the number of instructions
in between two calls to the timer API until the timer
could not identify the time interval.

RDTSC is a 64-bit register in x86 processors that
counts the number of cycles since reset [2]. RDTSC used
to be an excellent, high-resolution way of measuring
CPU timing information, however with the introduction
of technologies such as multi-core, hyper-threaded and
dynamic frequency scaling, RDTSC cannot be natively
relied on to provide accurate results [9]. For this eval-
uation, we circumvented these limitations as follows.
Firstly, we ran all CPUs at their peak frequencies. Sec-
ondly, each process was pinned onto a single CPU core
using the taskset API. Thirdly, we constructed our ex-
periments such that all measurements were made on
a single process, avoiding any synchronization-related
issues among TSC counters of different cores.

clock gettime() retrieves the time of the real-time
system clock in the order of nano-seconds. The readings
from this timer are guaranteed to be monotonic. In a
multi-core system, readings from this API on different
cores are expected to have a small offset like RDTSC.
[8]

gettimeofday() can be used to retrieve the time since
Epoch in the order of micro-seconds. However, the time
returned by this API can be affected by discontinuous
jumps in system time, and cannot be assumed to be
monotonically increasing like the previous two APIs. [3]

Table 1: Evaluation Environment
Architecture x86 64
CPU mode 64-bit
Byte Order Little Endian

No. of CPUs 4
Thread(s) per core 1

CPU Frequency 3192.770 MHz
L1d, L1i cache 32KB

L2 cache 256KB
L3 cache 6144KB
Block size 64B

As given in Table 2, our experiments reveal that all
three APIs are quite accurate for measurements in the
order of thousands of micro-seconds. However, we find
that RDTSC and clock gettime() have a higher resolu-
tion than gettimeofday(), as the latter cannot differen-
tiate within a micro-second. We conclude this section
of our study by choosing RDTSC and clock gettime()
as suitable choices for measuring IPC latencies. All our
remaining experiments were performed with RDTSC,
with the results compared against clock gettime(). We
found both timers to corroborate the same trends.

2.2 Experiments
Communication latency is defined as the time between

initiation of transmission at the sender and completion
of reception at the receiver. However, due to aforemen-
tioned offsets in timer readings on different cores, we
compute the communication latency for a round-trip
communication and then halve it. While the latency is
not expected to be exactly symmetrical along each route,
we temper the error over a large number of round-trip
messages. The transfer rate of a communication mech-
anism is the amount of data that can be sent per unit
time. In our experiments, we send a large message to
the receiver, who then acknowledges through a single
Byte message. Provided the initial message is much
larger than the acknowledgement, one can approximate
the measured round-trip latency to be the forward-trip
latency. Synchronization is enforced either implicitly by
the IPC mechanism (for pipes and sockets) or explicitly
using UNIX semaphores for shared memory experiments.

2.2.1 Variables
We ought to be cognizant of the different variables

that could affect our experiments. Some variables are
relatively obvious, such as the message size; while others
are tougher to understand such as cache effects including
block sizes and cache coherence, as well as CPU schedul-
ing decisions. Naively, one would expect the latency to
be linearly related to the size of the message; to confirm
this notion, we consider a wide range of message sizes
from 4B to 512KB.

2



Table 2: Evaluation of timer APIs
API Average Error (us) Std. Dev (us) Resolution (ns)

RDTSC 328 9.41 62
clock gettime() 81 11.74 30
gettimeofday() 74 9.59 1000

Processor caches play a significant role in reducing
memory access latency by fetching an entire block of ad-
dresses for each cache miss. Since each communication
mechanism uses an internal memory buffer for transmis-
sion, these addresses are expected to be cached. In any
IPC paradigm, there is an inherent producer-consumer
scenario, where the sender writes certain addresses which
are expected to be cached in the sender’s private cache.
[1] The receiver will then read these addresses which
will cause the cache block to be transferred from the
sender’s cache to the receiver’s cache. In this way, cache
coherence leads to a ’ping-pong’ of the cache block dur-
ing subsequent transfers. In our experiments, we are
primarily interested in an ’equilibrium’ state, where the
communication buffer is largely present in on-chip caches.
So, we average our measurements over a large number of
iterations to arrive at an equilibrium latency. However,
we have considered the effects of the cache in determin-
ing the maximum latency as well as effect of cache for
very large message sizes.

The effect of the OS scheduler is particularly tricky
to anticipate. We simplified the problem by breaking it
into two cases - first, with sender and receiver process on
separate, fixed cores and second, with sender and receiver
on the same core. All experiments were conducted for
both cases. While one can expect a realistic scheduler
to be more vagrant in its decisions over the course of
an application’s lifetime, we feel these approximations
are reasonable for the lifetime of a single inter-process
communication.

3. RESULTS
Let us consider the variation in latency as a function

of message size, when the sender and receiver processes
are fixed on different cores. As Figure 1 suggests the
latencies for sockets are consistently higher than the
latencies for shared memory and pipes. In each mecha-
nism, the latency is roughly uniform for message sizes
up to 4KB. This goes against our naive expectation of
a linear relationship between message size and latency.
This suggests that each mechanism uses a single-page
transfer buffer for all messages up to 4KB. Beyond 4KB,
the latencies start to rise as a function of message size.
This is more pronounced for pipes and sockets compared
to shared memory. In general, one can note that for
small messages, pipes and shared memory offer simi-
lar latencies; for larger messages shared memory offers
vastly better latencies compared to pipes and sockets.

Figure 1: Latency vs Message Size

 0

 5

 10

 15

 20

 25

 30

4 8

1
6

6
4

2
5
6

1
K

4
K

8
K

1
6
K

3
2
K

6
4
K

L
at

en
cy

 (
u
s)

Message Size (B)

Pipes
Shared Memory

Sockets

We see a similar trend for throughput in Figure 2 -
pipes and shared memory offer roughly similar through-
put for small message sizes, but beyond 16KB, shared
memory offers a significantly higher transfer rate. Sock-
ets offer the lowest average transfer rate relative to the
other two mechanisms. Since TCP/IP limits the maxi-
mum packet size to 64KB, we have not considered higher
message sizes for our single-packet experiments; hence
the curve is shown to saturate beyond 64KB.

Figure 2: Throughput vs Message Size

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

5
1
2

1
k

2
k

4
k

8
k

1
6
k

3
2
k

6
4
k

1
2
8
k

2
5
6
k

5
1
2
k

T
h
ro

u
g
h
p
u
t 

(M
B

/s
)

Message Size (B)

Pipes
Shared Memory

Sockets

Next let us consider the effect of the cache. As ex-
plained in Section 2.2, the initial access to an address
is expected to miss in the cache and is likely to have
high latency. Our experiments confirm this expectation.
Figure 3 gives the maximum latency of access for various
message sizes. The maximum latencies are higher for
larger messages, most likely due to higher number of
cache misses. There does not appear to be a determinis-
tic relationship between maximum latency and message
size. However, the considerably lower average latencies
seen in Figure 1 reveals the advantages of ’hot’ caches.

3



Figure 3: Max Latency vs Message Size

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4 8 16 64 256 1K 4K 8K 16K 32K 64K

M
ax

im
u
m

 L
at

en
cy

 (
u
s)

Message Sizes (B)

Pipes
Shared Memory

Sockets

Figure 4: Pipes - Latency Difference between
Single and Different Cores

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8

1
6

6
4

2
5
6

1
K

4
K

1
6
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

D
el

ta
-L

at
en

cy
 (

u
s)

Message Size (B)

Pipes - delta

Lastly, we consider the effect of the scheduler. All
results presented so far have been obtained from pinning
the sender and receiver to different cores. If we pin them
to the same core, one can expect the cache coherence-
induced ’ping-pong’ overhead to reduce. However, the
IPC will now involve a context switch overhead between
the sender and the receiver. These two effects could
dynamically influence the IPC latency. Our experiments
on pipes reveal that for larger messages, the IPC la-
tency on a single core is significantly lower than that on
different cores as seen in Figure 4.

4. SUMMARY AND CONCLUSIONS
In this work, we have studied and evaluated the per-

formance of three popular inter-process communication
mechanisms. We examined the accuracy and resolu-
tion of various timer APIs, settling on RDTSC and
clock gettime() as the most suitable choices for our study.
We identified the variables that can influence the IPC
latency and systematically constructed experiments to
study their effects.

We have identified shared memory to be the fastest
form of IPC because all processes share the same piece of
memory, hence we avoid copying data between process
memory and kernel memory. Access to this memory
is similar to any memory reference and does not need
special system support like system calls. It also permits

multiple (>2) processes to perform bi-directional commu-
nication. However, the biggest caveat of shared memory
is that the system offers no synchronization guarantees.
The user processes need to coordinate their accesses into
the shared region. This is a potential security threat as
well.

Pipes offer a flexible and fast way for communication
between two processes. Each pipe is uni-directional,
hence we need two pipes for bidirectional communication.
The UNIX implementation of pipes represents them as
a file, which can easily substitute the stdin or stdout
for a process, offering great programming convenience.
However, the maximum number of pipes per process is
limited to 1024, which is the size of the file-descriptor
table. Pipes offer automatic synchronization through a
reserved kernel buffer.

Sockets allow bidirectional communication, but their
performance for IPC on the same machine is quite poor.
Being a packet-based mechanism, sockets may require
breaking down large messages into multiple packets, in-
creasing communication latency. However, sockets offer
some unique advantages for IPC - sockets can be used
for IPC between processes on different machines, allow-
ing scalability for SW growth. Being a standardized
mechanism governed by a recognized protocol, sockets
are very useful for connecting with and testing unknown
or opaque processes (black boxes). Hence, one can recog-
nize that each IPC mechanism offers unique advantages
which render them useful for different use-cases.

Acknowledgements
We would like to thank our instructor, Prof. Michael
Swift for his helpful guidance in class for the completion
of this project. We also acknowledge the contribution
of our many class mates for insightful discussions on
tackling this problem.

5. REFERENCES
[1] Russell M Clapp, Trevor N Mudge, and Donald C

Winsor. Cache coherence requirements for
interprocess rendezvous. International Journal of
Parallel Programming, 19(1):31–51, 1990.

[2] Intel Coorporation. Using the rdtsc instruction for
performance monitoring. Techn. Ber., tech. rep.,
Intel Coorporation, page 22, 1997.

[3] Steven A Finney. Real-time data collection in linux:
A case study. Behavior Research Methods,
Instruments, & Computers, 33(2):167–173, 2001.

[4] William Fornaciari. Inter-process communication.
2002.

[5] Mark Mitchell, Jeffrey Oldham, and Alex Samuel.
Advanced linux programming. New Riders, 2001.

[6] Jon Postel. Transmission control protocol. 1981.
[7] OM Ritchie and Ken Thompson. The unix

time-sharing system. Bell System Technical Journal,

4



The, 57(6):1905–1929, 1978.
[8] Guy Rutenberg. Profiling code using code gettime.

Retrieved from Guy Rutenberg Website:
http://www.guyrutenberg.com/2007/09/22/profiling-
code-using-clock gettime/,

2007.
[9] Chuck Walbourn. Game timing and multicore

processors. XNA Developer Connection (XDC), Dec,
2005.

5


