
M-TAGs: Multi-Threaded Access Groups Analysis

Aditya Venkataraman
adityav@cs.wisc.edu

University of Wisconsin-Madison

Naveen Neelakandan
neelakandan@cs.wisc.edu

University of Wisconsin-Madison

Abstract

Emerging parallel-programming frameworks sim-
plify multi-core programming, but require the pro-
grammer to provide hints about program behavior
such as per-thread memory access regions, producer-
consumer relationships etc. In this work, we present
M-TAGs: a static analyzer that can identify per-
thread memory read-/write-sets for multi-threaded
C++ programs.

M-TAGs recognizes the usage of standard APIs
in the new parallel-programming models for spawn-
ing new threads as well as identifying and synchro-
nizing threads. It assumes statically determinable
per-thread identifers and exploits this knowledge
for important operations such as address computa-
tions, CFG pruning, etc. It evaluates the program
in a Strided Interval Abstract Domain, which emu-
lates popular stencil-/chunking-based work distribu-
tion paradigms. Lastly, M-TAGs keeps track of each
thread’s read-/write-set and enumerates write-write
and write-read conflicts across all threads.

We demonstrate our approach’s efficacy using a
prototype implementation and highlight its advan-
tages over routine thread-insensitive approaches us-
ing dedicated microbenchmarks as well as a bench-
mark from the PARSEC suite.

1. Introduction

Multi-core computing systems are ubiquitous today.
From minute Internet-of-Things to high-end servers,
processors equipped with multiple cores have ex-
posed an enormous potential for improving perfor-
mance, concurrency and scalabilty of applications.
These systems typically support a shared memory
abstraction and are commonly programmed using
multi-threaded programs. However, multi-threaded
programming is considered to be very challeng-
ing [8], due to data races, deadlocks, unpredictable
thread interleavings, etc. Hence, such programs are
highly vulnerable to hidden and non-reproducible
bugs. Static analysis of multi-threaded programs can
be highly effective at detecting potential data races,
however it is difficult to realize for a broad range

of multi-threaded programs [11]. A few common
difficulties include:

• A single memory access instruction can access
different locations in memory depending on the
thread executing the instruction.
• Performing a flow-sensitive analysis of multi-

threaded programs is computationally infeasible
due to an unbounded number of possible thread
interleavings.
• A flow-insensitive approach is computationally

tractable, but rapidly loses precision

An emerging trend in parallel programming is the
growing popularity of frameworks that assist par-
allel programming and execution, for e.g., Cilk [4],
Cilk++ [1], Intel Thread Building Blocks [10], Java’s
Fork-Join Framework [7], Microsoft Task Parallel
Library [9], StackThreads/MP [14] and Parakram [5].
These frameworks shield the programmer from the
complexities of parallel execution such as synchro-
nization. Instead, the programmer writes a simpler
program and annotates it with hints about program
behavior, such as per-thread/per-task memory access
regions, producer-consumer relationships, etc. The
hints are utilized by a runtime-engine to execute the
program in a performant manner. The resulting per-
formance is highly dependent on the quality of the
hints provided; for e.g. highly conservative estimates
on shared memory regions across threads could lead
to excessive and unnecessary synchronization. Man-
ual inputs for such performance-critical hints are
likely to be conservative and potentially inaccurate
in highly complex parallel programs. In this work we
recognize the potential for static analysis to replace
manual hints to parallel programming frameworks,
particularly the estimation of per-thread memory ac-
cess regions in multi-threaded programs. To over-
come the challenges of traditional flow-insensitive
techniques, we recognize that parallel programming
frameworks allow only a few standard APIs for com-
mon operations such as thread spawn, thread kill,
thread synchronization and thread identification. By
recognizing these APIs and gleaning information
from them, our analysis hopes to achieve thread-
sensitive multi-threaded analysis. We hypothesize

1

that thread-sensitivity will simplify the analysis and
improve the precision of the results.

Contributions The main contributions of this pa-
per are:
• We propose a thread-sensitive analysis of multi-

threaded programs that exploits thread identifi-
cation information to compute over-approximate
memory access regions of each thread.
• We interpret the parallel program in a Strided

Interval Abstract Domain that elegantly emu-
lates stencil-/chunking-based work distribution
paradigms.
• We implement a prototype of our analyzer on

llvm.v.3.8 and demonstrate its efficacy for a range
of microbenchmarks and a benchmark from the
PARSEC parallel programming suite.

Paper Organization We first give an overview of
our approach and motivate it using simple examples
(§2) . Subsequently, we describe our abstract domain
and present a subset of its transformers (§3). We then
present the analyzer’s algorithm in three phases (§4)
and describe its working using two case studies (§5).
We present a few results for comparing M-TAGs
against a non-thread sensitive technique (§6). Lastly,
we summarize the related works (§7) and conclude
(§8).

2. M-TAGs: Overview

Consider the example in Figure 1. Let us assume that
two threads, T1 and T2, are concurrently manipulat-
ing two globally defined arrays A and B. The regions
of the arrays accessed by T1 and T2 are shown in
green and red respectively. As evident from the code,
the arrays are being chunked into discrete blocks and
assigned to different threads using the tid variable.
However, a thread-insensitive static analyzer would
report that the pointer p could point to any part of
array A and B. If a static analyzer could be sensitive
to the tid variable and the restricted values it could
contain, then the analysis would be more precise.
Similarly consider the example in Figure 2. Let us
assume that the pictured code snippet is part of a
function being concurrently executed by multiple
threads. However, based on tid, Code A will be
executed by a single thread only. This presents an
opportunity to perform single-threaded analysis on
Code A and avoid polluting the analysis of Code B.
As evident from these motivating examples, there is
potential for a thread-sensitive analysis to simplify
and improve the memory access analysis of multi-

threaded programs. M-TAGs has the following key
attributes:

2.1. Thread-sensitive Analysis

M-TAGs assumes a statically determinable thread-
identifier for each thread. This could be realized
by annotating the tid variable in the source code or
exploiting existing APIs of parallel programming
frameworks whose arguments necessarily include
a tid variable. M-TAGs will assign unique values
to this variable for different threads to, hopefully,
simplify address calculations, CFG pruning for each
thread, etc. M-TAGs also assumes that the work-
functions for each thread are statically determinable.
This is reasonable as thread spawns are done using
standard APIs that require a work-function pointer
as an argument.

2.2. Abstract Interpretation

M-TAGs computes the per-thread read-/write-sets by
statically evaluating the program in a novel Strided
Interval Abstract Domain. This domain will be de-
fined in section (§3). This domain was desirable
since it emulates strided array/matrix accesses.

2.3. Conflict Detection

Through abstract interpretation, M-TAGs computes
an over-approximate set of read-/write-addresses for
each thread. A memory location is said to be con-
flicted if it is accessed by the same or different in-
struction executed by different threads, and one of
the accesses is a write. By post-processing the read-
/write-sets of all threads, M-TAGs detects and enu-
merates conflicting memory locations.

3. Strided Interval Abstract Domain

The Strided Interval Abstract Domain represents a
set of named regions of the address space. It is a
4-tuple, dom : ρ(Name×N×N×N) consisting of
the following:
Name - A unique string to identify the region
Start - An inclusive lower bound
End - An exclusive upper bound
Stride - A step interval
If n denotes the number of threads in the program,
then each virtual register in the LLVM IR is rep-
resented in the abstract domain as reg : id→ domn.
Similarly, abstract memory is represented by mem :
addr→ dom. As the virtual registers are private to
each thread, we shall always perform strong updates
on them. However, system memory is shared by all

2

Figure 1: Multi-threaded array-manipulation with
no-conflicting accesses

Figure 2: Differentiated worker threads based on
thread id

threads. Hence, we shall perform weak updates in
parallel regions of code and strong updates in single-
threaded regions.

Below are two examples of elements in the con-
crete domain being represented in the abstract do-
main. The first example is that of a constant value
while the second example denotes a set of values in
the concrete domain.

x = 25 abs−−→ (x, 25, 26, 1)

x = [2, 4, 6] abs−−→ (x, 2, 7, 2)

Elements in the Strided Interval Abstract Domain
are composable for a wide range of operations. As an

example, consider the Addition and LShift as defined
on the abstract domain as shown below. X(l1, u1, s1)
and Y (12, u2, s2) are elements of the abstract do-
main.

X ADD# Y = (l1 + l2, u1 +u2, GCD(s1 + s2))

X LSHIFT # Y = (l1 << l2, u1 << u2, GCD(l1+
s1)<< u2)

A complete list of the transformations can be
found at Sen and Srikant [13].

4. M-TAGs: Algorithm

The M-TAGs analyzer takes as input a multi-
threaded C++ program which uses standard APIs (for
eg. pthreads) for thread operations such as spawn-
ing. At the end of the analysis, it outputs a set of
over-approximate representations of the read-/write-
regions of each thread in the application. It also
computes any read-write and write-write conflicts
across all threads.
The analyzer operates in three phases, as described
below:

4.1. Pre-Processing Phase

The pre-processing phase takes a multi-threaded C++
program as input and prepares the program for con-
venient analysis. This phase has three passes:
• First we compile the C++ program into LLVM’s

SSA-based intermediate representation (IR) using
LLVM assembler. LLVM IR is a strongly typed
language with a simple type-system. It abstracts
away underlying machine details such as the call-
ing convention of the ISA. The SSA-based IR of-
fers an infinite set of virtual registers, where each
register will be assigned to exactly once. This sim-
plifies our analysis as each arithmetic instruction
can be associated with a single virtual register.
• Next, we apply LLVM’s in-built mem2reg opti-

mization on the IR. This optimization promotes
references to thread local memory to virtual reg-
ister references, pruning the IR. The remaining
load, store instructions in the IR will pertain to
global memory and pass-by-reference parameters.
• Lastly, we apply a self-written Inliner pass on

the pruned IR. The Inliner pass will inline all
functions calls made by the main() function into
main() itself, except the pthread_create func-
tion call. Similarly, we will inline all calls made by
each thread’s start function into the start function
itself. The various thread start functions can be de-
tected from the arguments to pthread_create

3

call. As a result of inlining, M-TAGs need not
consider inter-procedural data-flows during the
analysis.

4.2. Analysis

First we describe the important data-structures used
by the algorithm and then describe the algorithm
itself.

4.2.1. Data Structures M-TAGs uses the following
conceptual data-structures for its analysis:

Constraint Maps M-TAGs operates on the
Control-Flow Graph (CFG) of the program. As
shown in Figure 3, at each incoming edge of the CFG,
we maintain an input constraints map that captures
all constraints incoming from predecessor nodes in
the CFG. Constraints are represented as a mapping
from abstract instruction identifiers to a set of feasi-
ble abstract values for that instruction’s destination
operand. Similarly, at each outgoing edge of the
CFG, we maintain an output constraints map, which
might be different from the input constraints map if
new constraints are being generated within the CFG
node.

TID bitmaps Apart from the constraint maps, at
each incoming and outcoming edge of the CFG, we
also maintain thread-identification (TID) bitmaps.
These bitmaps contain a single bit for each thread
in the application. If the bit is 1, then we infer that
the corresponding CFG node will be executed by
that thread. The TID bitmaps allow us to prune CFG
nodes that will not be executed by any thread or some
threads. Since the TID bitmaps are propagated from
parent to child nodes, we effectively propagate the
information to all concerned nodes.

Abstract Memory Map For the main memory,
we maintain an Abstract Memory Map which is a
mapping from an abstract address to a set of abstract
values potentially found in that memory location. In
multi-threaded regions of the application, we will
perform weak updates on Abstract Memory Map.

Instruction Operation Information For each in-
struction in the application, we conceptually main-
tain a vector of abstract domain values. The vector
has one entry for each thread executing that instruc-
tion and captures the abstract representation of the
instruction’s operands and operation. We perform
our abstract evaluation using this information.

4.3. Algorithm

An overview of the algorithm is presented below:
prog← [main(), thread_worker_ f unc1()...]
f unc← next(prog)
repeat

for all BasicBlock BB in f unc do
for Instr i in BB do Evaluate(i)
end for

end for
until fixpoint

At the end of Inlining phase, the multi-threaded pro-
gram has been decomposed into a list of high-level
functions, including main(). For each function, the
analyzer will visit each basic block in its CFG. At
each basic block, the analysis will check for any
incoming constraints from predecessor nodes, and
propagate the constraints if any. Within each basic
block, the analyzer will examine each instruction and
evaluate the instruction in the abstract domain, as
represented by the Evaluate function. This function
conceptually performs the following actions:
• Convert each operand into its abstract equivalent.
• Check if any operand has any constraints in the

incoming constraints map for the current basic
block. Apply the constraints if any.
• Evaluate the instruction in the abstract domain by

expressing the instruction’s operation as a function
of the abstract domain’s transformers. For exam-
ple, an ADD opcode is expressed as a addition
operation in the abstract domain.
• If any new constraints are generated by the instruc-

tion, add them to the outgoing constraints map.
• If the instruction is a load/store, then add the load-

/store address to each thread’s read-/write-set.
This process is repeated till we reach a fix-point on
all instructions in all basic blocks of each function.
4.3.1. Propagating constraints Constraints on val-
ues of variables need to be propagated through the
CFG. At each incoming edge of a CFG node, the
incoming constraints will be the union of all con-
straints from all predecessor nodes in the CFG. At
each outgoing edge of a CFG node, the outgoing con-
straints will be the intersection of all incoming con-
straints with any newly generated constraints within
the CFG node.

4.4. Post-Processing

At the end of the Analysis phase, we have sets of
abstract read-/write-addresses for each thread. In the
post-processing phase, we enumerate these addresses

4

Figure 3: I/p and O/p Constraint Maps on CFG nodes

and check for intersections between read-write and
write-write sets of different threads. The computed
conflicts and collected read-/write-sets are provided
as output to the programmer. We envision that this
information could be consumed by a parallel runtime
engine to identify data races and automatically insert
locks around conflicting accesses.

5. Case-Studies

We now look at a couple of simple programs as case-
studies and describe the behavior of our algorithm
on these programs.

5.1. Case-Study 1: Disjoint Access Patterns

The following C++ code shows a toy worker func-
tion.

Listing 1: Disjoint Access Patterns

d e f i n e NUMTHREADS 2
i n t A[NUMTHREADS]
vo id ∗ worker (i n t t i d)
{

f o r (i n t i =0 ; i < 1 ; ++ i)
A[t i d] = 0 ;

}

Each thread assigns the value 0 to the index of
A corresponding to its tid value. For simplicity we
assume that the tid variable is directly passed as an
argument to the worker function, even though in
an actual program, the semantics of this operation
would be different. Figure 4 shows the translation
of the C++ source into the LLVM IR after our pre-
processing passes. Note that, we have annotated
each instruction with an instruction number. Fig-
ure 5 shows the output of our analysis for each in-
struction in the IR after the first iteration. No explicit
result is calculated for branch instructions, instead

the constraints are propagated as shown. At the store
instruction, the additions to the write set of each
thread are also shown.

There are 3 main points to note in Figure 5.
• At instruction 3, the conditional br instruction

computes constraints on the value of the %i1 vir-
tual register. Specifically, on the true path, %i1 < 1
and on the false path, %i1 >= 1. The true and false
constraints computed are passed to the respective
successor basic blocks, for.body and for.end
• At instruction 4, we detect the tid variable in the

sext instruction and assign a unique value to it in
each thread. Thus, both threads access different
regions of memory at the gep instruction that fol-
lows. Subsequently, the write sets of thread 0 and
thread 1 are also correctly identified to be distinct.
• At instruction 8, the add instruction causes a

strong update to the value of %i virtual register
as this represents a variable that is private to each
thread.

5.2. Case-Study 2: Weak Updates on Memory

The above example showed a case where our ana-
lyzer was able to precisely determine the write-/read-
sets of each thread. However, we have come across
certain cases where the over-approximations com-
puted by our analyzer are too imprecise to be useful.
The following C++ program shows an example of
such a case where a thread initially writes the value
0 to the index of the global array A corresponding to
its tid value. The thread then increments the value at
that index.

Listing 2: Weak Updates on Memory

d e f i n e NUMTHREADS 2
i n t A[NUMTHREADS]
vo id ∗ worker (i n t t i d)
{

A[t i d] = 0 ;
A[t i d] + + ;

}

The corresponding LLVM IR is shown in Figure 6.
Figure 5 shows the output, during the first and second
iterations of our analysis at each instruction in the IR.
The values read from memory at the load instruction
are highlighted in red.

From the C++ source code, it is evident that at the
end of the program, the value at A[tid] is 1. How-
ever, as we perform weak updates in multi-threaded
regions, the value read at the load instruction in iter-

5

Figure 4: LLVM IR for case-study 1

Figure 5: Output of M-TAGS at each instruction in IR
of case-study 1

ation 2 is seen to be either 0 or 1. The following inc
thus determines a value of either 1 or 2 as the result
of the operation. As this is different from the result
of the corresponding inc operation in iteration 0, we
do not hit a fixed point and the analyzer proceeds
to the next iteration of the analysis. The number
of iterations of the analyzer is thus potentially un-
bounded and so the value loaded/stored into A[tid]
is eventually determined to be the TOP of our ab-
stract domain. In the future, we could implement
some form of loop recognition as part of our LLVM
pre-processing phase and avoid this problem.

6. Results

We evaluated the utility of our analyzer across 6 dif-
ferent workloads. These include 5 microbenchmarks
and 1 benchmark from the PARSEC benchmark suite
[2].

Figure 6: LLVM IR for case-study 2

Figure 7: Output of M-TAGS at each instruction in IR
of case-study 2

Figure 8 shows the memory access pattern of our
first benchmark - Array manipulation with no over-
lap. Multiple threads access a global array without
any overlap in their memory access regions. Our
second workload is Array manipulation with partial
overlap where multiple threads access a global ar-
ray, but with partial overlap in the read-/write-sets of
threads accessing adjacent chunks as shown in Fig-
ure 9. Workloads 3 and 4 are similar to workloads 1
and 2 respectively, but the global data structure is a
2-dimensional matrix instead of an array, as shown
in Figure 10 and Figure 11.

The final microbenchmark is an example of differ-
entiated worker-threads where there is a single reader
and multiple writers to a global array. All threads
execute the same worker function, but depending on
the tid variable, the reader and the writers execute
different portions of the worker function. A thread-
sensitive analysis can detect this behavior and restrict
the analysis for the reader thread.

In addition, we also considered Black-Scholes
from the PARSEC benchmark suite. The Black-
Scholes application computes prices for a set of op-
tions by solving a partial differentiation equation
for each option. Typically, each thread operates on
some subset of the options. But there is no overlap
in the work performed by each thread and so there
are no memory access conflicts between the different

6

Figure 8: Array manipulation with no overlap

Figure 9: Array manipulation with partial overlap

threads.
The workloads mentioned above were analyzed

using a prototype implementation of M-TAGs on
LLVM v3.8 [6]. The read-/write-sets calcuated by
M-TAGs were verified to be over-approximate rep-
resentations of each benchmarks. The number of
read-write and write-write conflicts detected across
all threads by M-TAGs and a thread-insensitive ap-
proach is shown in Table 1. We can see that for each
benchmark, the thread-insensitive approach consid-
ers the entire data-structure to be operated on by all
threads in the system. On the other hand, M-TAGs
correctly detects cases where there is no overlap
across threads; and where there is some partial over-
lap, M-TAGs computes an over-approximate set of
conflicts. For Black-Scholes, the thread-insensitive
approach does not complete within a maximum time-
bound, while M-TAGs arrives at the correct result
that there are no conflicts across different worker
threads. Hence, if the results from M-TAGs are con-
sumed by a parallel execution runtime engine, it can
avoid unnecessary synchronization, potentially im-
proving the performance of the parallel program.

7. Related Works

Extensive research has been carried out in utilizing
static analysis for the purpose of detecting bugs in
multi-threaded programs or extracting useful infor-
mation on the runtime behavior of a parallel com-
putation. RacerX [3] uses flow-sensitive, interpro-
cedural analysis to infer a wide range of informa-
tion on the execution of a multithreaded program
such as which operations are carried out in mutu-
ally exclusive regions and which code contexts are

Figure 10: Matrix manipulation with no overlap

Figure 11: Matrix manipulation with partial overlap

multithreaded. von Praun and Gross [15] consider
the problem of tracking thread memory accesses in
an object-oriented domain. They introduce an ab-
straction called the Object Use Graph (OUG), which
statically captures accesses from different threads
to objects. This is used to define a partial order of
access events relevant to each runtime object. The
success of these works show the potential of static
analysis in helping programmers reason about the
behavior of multi-threaded programs. However, the
aforementioned analyses compute more detailed in-
formation about the runtime behavior of a program
that what we are interested. The hints provided to
a parallel programming framework need not be as
comprehensive as the runtime-engine ensures the
correctness of program execution. Thus, our work
has focused on producing simpler hints, such as the
per-thread read-/write sets which are less compute-
intensive to determine. Eraser [12] is one of the most
influential works in the literature for techniques to en-
sure the correctness of program. Eraser uses binary
rewriting to instrument the executable to monitor
shared-memory references and detect data races dy-
namically. As a result, this causes a huge slowdown
in applications by a factor of 10x to 30x. However,
the authors note that static analysis could greatly
reduce this overhead by detecting potentially danger-
ous shared accesses and only instrumenting these.

8. Conclusion

Parallel programming has long been confined to only
expert programmers. With the rise in multi-core
processors, it is becoming increasingly important to
help average programmers bridge the skill gap so as
to better exploit the parallel computing power of to-
day’s machines. Parallel programming frameworks
that hide some of the complexity of parallel pro-
gramming are a step in this direction. In this work,
we have built a thread-sensitive static analysis tool
which further assists programmers who utilize such
frameworks. For each thread in the program, our tool
computes an over-approximation of the thread’s read
and write sets in an abstract domain. It also iden-
tifies conflicts in the memory access regions of the
different threads. The output of our tool can be fed
as hints to a parallel programming framework. Fur-
thermore, using dedicated micro-benchmarks, and a
real-world benchmark from the PARSEC suite, we
have shown the utility of our tool in comparison to
a thread-insensitive analyzer. In future, we hope to

7

Benchmark Thread-Insensitive Analysis M-TAGs
Array Manipulation (no overlap) 256 (length of array) 0

Array Manipulation (partial overlap) 256 (length of array) 3
Differentiated Worker Threads 256 (length of array) Wr-Wr = 0, Wr-Rd = Wr-set of each writer

Matrix Manipulation (no overlap) 32 (Whole matrix) 0
Matrix Manipulation (partial overlap) 32 (Whole matrix) 24

Black-Scholes Does not complete 0
Table 1: Number of read-write and write-write conflicts detected

take into account other parallel programming con-
structs such as thread barriers to further refine the
precision of our analysis. We hope this work paves
the way for more tools that cater to emerging parallel
programming frameworks.

9. Acknowledgements

We would like to thank Prof. Thomas Reps of the
University of Wisconsin-Madison for his guidance
and feedback throughout the project. We also thank
Rathijit Sen and Gagan Gupta for providing the ab-
stract domain library and related infrastructure.

References
[1] C. Arts, “Cilk++.”
[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The par-

sec benchmark suite: Characterization and architectural
implications,” in Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’08. New York, NY, USA: ACM,
2008, pp. 72–81.

[3] D. Engler and K. Ashcraft, “Racerx: Effective, static de-
tection of race conditions and deadlocks,” in Proceedings
of the Nineteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’03. New York, NY, USA: ACM,
2003, pp. 237–252.

[4] M. Frigo, C. E. Leiserson, and K. H. Randall, “The im-
plementation of the cilk-5 multithreaded language,” in
ACM Sigplan Notices, vol. 33, no. 5. ACM, 1998, pp.
212–223.

[5] G. Gupta and G. S. Sohi, “Semantically ordered, parallel
execution of multiprocessor programs,” Reason, vol. 3,
no. F4, p. F5.

[6] C. Lattner and V. Adve, “Llvm: A compilation frame-
work for lifelong program analysis & transformation,” in
Code Generation and Optimization, 2004. CGO 2004.
International Symposium on. IEEE, 2004, pp. 75–86.

[7] D. Lea, “A java fork/join framework,” in Proceedings of
the ACM 2000 conference on Java Grande. ACM, 2000,
pp. 36–43.

[8] E. A. Lee, “The problem with threads,” Computer, vol. 39,
no. 5, pp. 33–42, 2006.

[9] D. Leijen, W. Schulte, and S. Burckhardt, “The design of
a task parallel library,” in Acm Sigplan Notices, vol. 44,
no. 10. ACM, 2009, pp. 227–242.

[10] C. Pheatt, “Intel R© threading building blocks,” Journal
of Computing Sciences in Colleges, vol. 23, no. 4, pp.
298–298, 2008.

[11] R. Rugina and M. C. Rinard, “Pointer analysis for struc-
tured parallel programs,” ACM Transactions on Program-
ming Languages and Systems (TOPLAS), vol. 25, no. 1,
pp. 70–116, 2003.

[12] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson, “Eraser: A dynamic data race detector for

multithreaded programs,” ACM Trans. Comput. Syst.,
vol. 15, no. 4, pp. 391–411, Nov. 1997.

[13] R. Sen and Y. Srikant, “Executable analysis using ab-
stract interpretation with circular linear progressions,” in
Formal Methods and Models for Codesign, 2007. MEM-
OCODE 2007. 5th IEEE/ACM International Conference
on, May 2007, pp. 39–48.

[14] K. Taura, K. Tabata, and A. Yonezawa, Stackthreads/mp:
integrating futures into calling standards. ACM, 1999,
vol. 34, no. 8.

[15] C. von Praun and T. R. Gross, “Static conflict analysis for
multi-threaded object-oriented programs,” in Proceedings
of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, ser. PLDI ’03.
New York, NY, USA: ACM, 2003, pp. 115–128.

8

	Introduction
	M-TAGs: Overview
	Thread-sensitive Analysis
	Abstract Interpretation
	Conflict Detection

	Strided Interval Abstract Domain
	M-TAGs: Algorithm
	Pre-Processing Phase
	Analysis
	Data Structures

	Algorithm
	Propagating constraints

	Post-Processing

	Case-Studies
	Case-Study 1: Disjoint Access Patterns
	Case-Study 2: Weak Updates on Memory

	Results
	Related Works
	Conclusion
	Acknowledgements

