
Exploi'ng	Ordered	Parallelism	in	Fine-Grained	Task-Parallel	Programs	
Aditya	Venkataraman,	Gagan	Gupta,	and	Gurindar	S.	Sohi	

Evalua'on::Pbzip2	
§  Graphs	exhibit	dynamic,	irregular	parallelism	

§  Fine-grained	tasks	~	1000	cycles	
§  Sparse	data-dependences	
§  Dynamic	task	crea<on	
§  Par<al/total	ordering	among	tasks	

§  State	of	the	art:	Run<me-engine	orchestrates	
parallel	execu<on,	featuring	
§  Unordered	algorithms	[Hassan	et	al,	PPoPP’11]	
§  Determinis<c	scheduling	[Nguyen	et	al,	

ASPLOS’14]	
§  Fully	HW	implementa<on	[Jeffrey	et	al,	

MICRO’15]	
§  What	is	the	ideal	HW/SW	co-design	to	

minimize	run<me	overheads?		
	

1.	Mo'va'on	

§  Parakram	[	Gupta,	UW	Madison	PhD	Thesis’15]	

§  Program-ordered	parallel	execu<on	
§  Each	core	conceptually	performs:		
	
	

		

	
						
Following	overheads	reduce	performance:	
§  Wait-free	synchroniza<on	using	Atomics	

§  Global	serializa<on	(~80	cycles	per	MFENCE)	
§  Needed	for	token	acquire/release		

§  Work-stealing	loses	locality	
§  ‘Pollu<on’	of	run<me	data-structures	

§  Accessed	by	any/all	threads	
§  Linear	successor	lists	to	track	dependences	

	
	

	

	
	
	
	
§  Master-Slave	approach	

§  Communica<on	through	per-slave	queues	
§  No	atomics	or	MFENCEs.		
§  Task-distribu<on	to		
					enhance	locality	
§  Token	bitmaps	that	
					encode	data-flow		
					edges	and	owners		
§  Reduce	run<me	state		

	

§  Prelude	overheads	reduced	by	~72%	
§  Postlude	overheads	reduced	by	~79%	
§  Unable	to	scale	for	irregular	graphs	with	task	

sizes	of	1000	cycles	
§  69x	improvement	over	ini<al	design	
§  Speedups	scale	with	increasing	task-sizes	

	
	

§  Explore	micro-architectural	support	for:	
§  Generic	master-slave	communica<on	
§  Token	bitmap	manipula<on	

§  Suppor<ng	globally	ordered	priority	queues	
§  Port	more	applica<ons	to	the	new	run<me	

2.	Paralleliza'on	Run'me	

3.	Run'me	Overheads	

	4.	New	Architecture	

5.	Results	

6.	Future	Work	

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

prelude_ini<al	 prelude_redesign	 postlude_ini<al	postlude_redesign	

Cy
cl
es
	

Re<re	Task	

Dispatch	Successors	

Release	Tokens	

Acquire	Tokens	

Task	Queue	Insert	
-72%	

-79%	

0.
01
03
2	

0.
49
11
99
	

2.
94
52
1	

0.
71
65
8	

2.
77
58
	

8.
83
27
6	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

1000	cycles	 2000	cycles	 5000	cycles	

M
ax
im

um
	S
pe

ed
up

	o
ve
r	S

eq
ue

n'
al
*	

BFS	Task	Size	

Ini<al	

Re-design	

69x	

5.6x	

	3x	

*	on	20-context	system	
	


