-

_

Exploiting Ordered Parallelism in Fine-Grained Task-Parallel Programs
Aditya Venkataraman, Gagan Gupta, and Gurindar S. Sohi

~

/

" Graphs exhibit dynamic, irreqular parallelism
" Fine-grained tasks ~ 1000 cycles
" Sparse data-dependences
" Dynamic task creation
* Partial/total ordering among tasks
= State of the art: Runtime-engine orchestrates
parallel execution, featuring
" Unordered algorithms [Hassan et al, PPoPP’11]

" Deterministic scheduling [Nguyen et al,
ASPLOS’14]

" Fully HW implementation [Jeffrey et al,
MICRO’15]

* What is the ideal HW/SW co-design to

minimize runtime overheads?

2. Parallelization Runtime

= Parakram [Gupta, UW Madison PhD Thesis’15]

" Program-ordered parallel execution

= Fach core conceptually performs:
Prelude Postlude

Dataset

———)[Task queue]
y[64b tokens]
Data -
dependences

> Successor
lists

w| Randomized
work stealing

Release
Tokens

Dispatch
SUCCeSsSOors

3. Runtime Overheads

Following overheads reduce performance:

" Wait-free synchronization using Atomics
" Global serialization (~80 cycles per MFENCE)
= Needed for token acquire/release

" Work-stealing loses locality

" ‘Pollution” of runtime data-structures
= Accessed by any/all threads

" Linear successor lists to track dependences y

4. New Architecture

Master Core

Main Retirer JJ
Program Thread [Per-core done Q <
Threa

-«
Task/spawn V W r
Worker
Retire Token release Core
& dependents
dispatch

Static task to core
assignment

»{Per-core dispatch Q}J/

Dataset

Task Queue

Token acquire Task

dispatch

" Master-Slave approach
" Communication through per-slave queues

= No atomics or MFENCEs.

" Task-distribution to :
enhance locality

" Token bitmaps that
encode data-flow
edges and owners

" Reduce runtime state roenw|o o1 olo|1

Token(A)| 0

1600

1400 -

1200 -

1000 -

™ Retire Task

M Dispatch Successors

Release Tokens

™ Acquire Tokens

prelude _initial prelude_redesign

M Task Queue Insert

\
\
\
\ -79%
“\

10

Maximum Speedup over Sequential*
o = N w I u (@) ~N (0] (o)

| 0.491199

2000 cycles

BFS Task Size

5000 cycles

W Initial

& Re-design

I 5. Resuts |

" Prelude overheads reduced by ~72%

" Postlude overheads reduced by ~79%

" Unable to scale for irregular graphs with task
sizes of 1000 cycles

" 69x improvement over initial design
" Speedups scale with increasing task-sizes

~
" Explore micro-architectural support for:
" Generic master-slave communication
" Token bitmap manipulation
" Supporting globally ordered priority queues
" Port more applications to the new runtime
Y

