Splendid Isolation: A Slice Abstraction
for Software-Defined Networks

Stephen Gutz
Cornell

Alec Story
Cornell

ABSTRACT

The correct operation of many networks depends on keep-
ing certain kinds of traffic isolated from others, but achiev-
ing isolation in networks today is far from straightforward.
To achieve isolation, programmers typically resort to low-
level mechanisms such as Virtual LANs, or they interpose
complicated hypervisors into the control plane. This paper
presents a better alternative: an abstraction that supports
programming isolated slices of the network. The semantics
of slices ensures that the processing of packets on a slice is
independent of all other slices. We define our slice abstrac-
tion precisely, develop algorithms for compiling slices, and
illustrate their use on examples. In addition, we describe a
prototype implementation and a tool for automatically ver-
ifying formal isolation properties.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks|: Network
Operations— Network management; D.4.6 [Operating Sys-
tems]: Security and Protection—Information flow controls

Keywords

Isolation, software-defined networking, OpenFlow, network
programming languages, Frenetic.

1. INTRODUCTION

Networks are designed to be shared—after all, having some
shared infrastructure is a necessary prerequisite for commu-
nication. But the correct operation of many networks de-
pends on keeping certain kinds of traffic isolated from oth-
ers. For example, universities must restrict access to the
servers that manage student records to comply with data
protection laws; intelligence organizations often maintain a
physical “airgap” between the devices that process packets
classified at different levels of confidentiality; and datacen-
ter operators typically ensure that traffic generated by one
tenant cannot flow to the machines leased by another tenant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HotSDN’12, August 13, 2012, Helsinki, Finland.

Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

Cole Schlesinger

79

Nate Foster

Princeton Cornell

In networks today, isolation is usually achieved through a
variety of mechanisms, many of them ad hoc: virtual LANs
(VLANS) provide a way to separate the processing of differ-
ent classes of packets in the network; special-purpose devices
such as firewalls prevent packets from flowing onto certain
segments of the network; and systems such as Flowvisor [16]
allow multiple programs to control an OpenFlow [11] net-
work without interfering with each other. But although each
of these mechanisms provides a kind of isolation, none is a
completely satisfactory solution. VLANSs provide traffic iso-
lation, but add extra complexity to the already difficult task
of writing network configurations. Firewalls provide physical
isolation but require purchasing and deploying special de-
vices at appropriate locations in the topology. Systems like
Flowvisor provide control isolation but require interposing a
hypervisor into the management plane and placing trust in a
large and potentially buggy piece of software. Furthermore,
these mechanisms do not provide a way to formally verify
that a given network has the required isolation properties.

We believe that isolation should be provided at the lan-
guage level. Instead of relying on low-level mechanisms (e.g.,
VLANS), special-purpose devices (e.g., firewalls), or compli-
cated hypervisors (e.g., Flowvisor), we argue that languages
for programming networks should come equipped with intu-
itive and composable constructs that can be used to establish
a range of isolation properties including traffic, physical, and
control isolation. There are numerous advantages to treat-
ing isolation at the language level. The compiler can handle
all of the tedious details related to implementing isolation,
freeing programmers from having to reason about VLANs
or tricky issues such as the placement of firewall boxes into
the topology. It can also automatically apply optimizations
that make efficient use of limited low-level resources such
as VLAN tags. Unlike a hypervisor, which must intercept
and analyze every event and control message at run-time,
the compiler only needs to be executed once—before the
program is deployed in the network—which streamlines the
control plane and reduces latency. Finally, obtaining isola-
tion through language abstractions provides opportunities
for obtaining assurance using formal verification tools.

This paper presents a slice abstraction that makes it easy
to isolate network programs from each other. Slices allow
a single physical network to be used by multiple programs
without harmful interference. They can also be used within
a single program to obtain a kind of modularity—e.g., en-
suring that administrative traffic does not interfere with the
processing of ordinary packets. Formally, a slice is defined in
terms of a graph that represents a restricted version of the

“gs s e, d
S3 S1 }// —

\ /
2 2
s3 s3
‘ s1 s1
®) @ sa s

S5

A2 A2 Al
R3 R2 R1 ‘
]] 1 1]]

Figure 1: Example networks and associated slices:
(a) campus, (b) intelligence, and (c) datacenter.

S5

physical network topology, a mapping from the nodes in this
graph to the nodes in the underlying network, and a collec-
tion of predicates that specify which packets are permitted
to enter the slice at its perimeter. Programmers specify
a separate program for each slice and the compiler takes
the overall collection of slices, together with their associated
programs, and emits a global configuration for the entire
network. The specification for the compiler ensures that the
slices are isolated from each other—i.e., that the packets
traversing each slice do not interfere with the operation of
any other slice.
Overall, the contributions of this paper are as follows:

e We make the case for treating isolation at the language
level, using examples inspired by common network sce-
narios (Section 2).

e We define a simple and elegant programming abstrac-
tion for defining slices (Section 3).

e We describe algorithms for compiling slices to Open-
Flow switches and present our prototype implementa-
tion of these algorithms (Section 4).

e We discuss techniques for verifying formal isolation
properties of programs expressed using slices, as well as
a tool that implements these techniques using a model
checker (Section 5).

We focus in this paper on isolation with respect to packet
processing. We believe that our slice abstraction can be ex-
tended to handle other important issues such as bandwidth
and controller resources, but we defer an investigation of
these topics to future work.

2. EXAMPLES

This section introduces a series of examples that motivate
the need for several different kinds of isolation: traffic iso-
lation, physical isolation, and control isolation. We show

80

informally how reasoning in terms of slices helps streamline
the process of developing programs with these properties.

Traffic isolation. Consider the topology depicted in Fig-
ure 1(a), which represents a fragment of a university cam-
pus network. The hosts connected to switch S1 are desk-
top machines for trusted users such as the dean, registrar,
and other administrators. The hosts connected to switch
S2 are servers that store sensitive information including stu-
dent records. The hosts connected wirelessly to switch S3
are machines owned by untrusted users such as students and
visitors. Informally, the intended policy for the network is as
follows: S1 hosts may communicate with S2 servers, but no
traffic may flow between S2 servers and S3 hosts; S3 hosts
may communicate with web services on S2 hosts, but not
with any other services provided by those machines; and
network operators may send packets to monitor the health
of internal links, but those probes must not reach the hosts
connected to S1, S2, and S3.

It is possible to configure the network so that it imple-
ments this policy—e.g., introducing distinct VLAN tags for
trusted, untrusted, and monitoring packets, and installing
appropriate forwarding and filtering rules for each class of
traffic on all three switches—but the details are tricky to
get right, and even simple errors could easily lead to secu-
rity breaches. For example, installing the wrong forwarding
rule on S2 could allow an untrusted S3 host to communicate
with and potentially compromise an S2 server.

Using slices, it is straightforward to write a program that
correctly implements the overall policy. We simply create
a slice for each class of traffic and program the slices sepa-
rately. Figure 1(a) depicts the three slices. The red slice,
shown on the left, handles traffic between S1 hosts and S2
servers. The blue slice, shown in the middle, handles traffic
between S3 hosts and S2 web servers. The formal definition
of this slice (given in the next section) restricts traffic on S2
to packets with TCP source port 80 and on S3 to packets
with TCP destination port 80. The green slice, shown on the
right, handles all traffic between S1, S2, and S3, but does not
include the hosts connected to those switches. The program
running on each slice can implement forwarding within the
slice however it likes without worrying about violating the
overall security policy—the semantics of the slice abstraction
ensures traffic isolation. Overall, the program written using
slices is significantly simpler than a corresponding program
written using explicit VLANSs or other low-level mechanisms.

Physical isolation. For the next example, consider a net-
work that carries classified information in an intelligence or-
ganization. Suppose that the security policy for this orga-
nization mandates physical isolation—an “airgap”—between
the devices and links that process packets classified at dif-
ferent levels of confidentiality. As in the campus example,
we could carefully construct a policy that maintains this
invariant, but doing this would require performing explicit
manual reasoning about low-level switch configurations and
would be very easy to get wrong.

Using slices, the situation is much simpler. We create
a separate slice for each level of confidentiality and check
that the required airgap exists by verifying that the sets of
physical devices used to implement each slice are disjoint.
Figure 1(b) depicts one possible arrangement of slices. The
red slice, shown on the left, connects S1 and S4 and han-

dles unclassified traffic. The blue slice, shown in the middle,
connects S2 and S5 and handles secret traffic. The green
slice, shown on the right, connects hosts on S3 and handles
top-secret, traffic. These slices could be programmed sepa-
rately without worrying about traffic on any given segment
escaping to a different segment. As each program can only
reference switches and ports included in the virtual topol-
ogy for the slice, it is easy for an administrator to check
that the overall policy is satisfied—the semantics of slices
ensures that programs cannot even reference the ports ad-
jacent hosts at different levels, let alone direct packets to
them!

Control isolation. As a final example, consider a multi-
tenant cloud datacenter consisting of a collection of hosts
running client virtual machines and a network organized into
a “fat-tree” topology—i.e., the physical hosts are connected
to top-of-rack switches, which are connected to aggregation
switches one level up. To allow tenants to use the network in
the most efficient way possible, we would like to allow them
to customize the network—e.g., writing a program that im-
plements a custom multicast protocol and efficiently moves
data between their machines. But for security, we also need
to ensure that a program written by one tenant does not
affect traffic for other tenants.

Unlike the previous examples, we cannot construct a pro-
gram with the desired isolation property—the programs are
being provided by the tenants! We could use a hypervisor
to monitor and check the configurations generated by each
client program, but interposing a hypervisor into the net-
work has numerous disadvantages. For one, it requires pro-
cessing every control message using the hypervisor, which
adds latency to one of the critical paths for performance. For
another, a hypervisor is a large application (e.g., the Flowvi-
sor hypervisor is a non-trivial 16K lines of Java code), and
bugs could break important invariants related to isolation.’

Using our slice abstraction, we can create a slice for each
tenant as shown in Figure 1(c). Each slice contains the ma-
chines leased by each client as well as the top-of-rack and
aggregation switches connecting them. We assume that it is
possible to identify each client’s traffic using fields in packet
headers such as IP addresses. Note that individual machines
and switches can be included in multiple slices. It is safe to
let tenants program their slices because the compiler con-
structs a whole-network configuration that keeps the traffic
generated by each tenant’s machines separate. This config-
uration can be validated against a formal specification that
captures the intended isolation policy, so even though the
compiler is a large piece of software, it need not be trusted
to obtain assurance. Overall, slices provide effective con-
trol isolation, even in scenarios where the network must be
programmed by multiple parties.

3. THE SLICE ABSTRACTION

One reason that isolation can be difficult for program-
mers to reason about is that it is a global property—e.g., no
packets originating in one region of the network can reach
devices in some other region of the network. Slices provide a
means for programmers to limit the scope of a network pro-

'This concern is not hypothetical: a recent bug in the
Flowvisor hypervisor caused port statistics to be incorrectly
sent to all slices [5].

81

gram, restricting the devices that can be involved with the
execution of the program as well as the packets that can be
processed by it. The encapsulation provided by slices helps
facilitate compositional reasoning about program behavior.

Definition. Formally, a slice is defined in terms of the fol-
lowing ingredients:

e a topology that comprises switches, ports, and links,

e a mapping from switches, ports, and links in the slice
to switches, ports, and links in the underlying network,

e and a collection of predicates on packets, one for each
of the outward-facing edge ports in the slice.

The topology is a graph with switches as nodes, ports as an-
notations on nodes, and links as edges. It specifies the net-
work elements contained in the slice. The mapping specifies
how elements in the slice topology relate to corresponding
elements in the physical network. The mapping is required
to satisfy some straightforward conditions to ensure that it
is compatible with the underlying network. For instance, ev-
ery switch in a slice must map to a unique physical switch,
and every pair of ports connected by a link in a slice must
map to physical ports also connected by a physical link in
the underlying network. We believe it should be possible
to relax some of these conditions—e.g., allowing many-to-
one switch mappings—but our implementation does not yet
support these generalizations. Finally, the predicates specify
the set of packets that may enter the slice at edge ports.

Semantics. A slice extends the network with new logical
switches that can be configured just like an ordinary switch.
The semantics of a slice can be understood in terms of a few
simple principles:

e A packet enters a slice if it arrives an external port for
the slice and matches the predicate associated with
that port.

e Packet processing on each slice is dictated exclusively
by the program for that slice, and is not affected by
the programs for any other slices.

From these principles, it is straightforward to show that
slices do not interfere with each other, except possibly by
sending packets from an edge port on one slice to an edge
port on the other slice. Even this form of indirect interfer-
ence can also be ruled out if the slices have disjoint predi-
cates and extend all the way to the edge of the underlying
network (as in the datacenter example in the preceding sec-
tion). Moreover, these guarantees hold even if the slices are
implemented using the same physical switches. Taken to-
gether, they serve as a strong specification for the compiler,
ensuring that it translates the programs written for each
slice into physical rules that implement the same forwarding
behavior while providing isolation.

Note that these definitions do not preclude having multi-
ple overlapping slices defined over the same physical switches.
If a packet arrives at a port that connects to multiple slices,
a copy of the packet is sent to each slice whose predicate is
matched by the packet. This feature is important in scenar-
ios like the campus network example, where traffic from the
web servers must be sent to both the red and blue slices.

topology

topo = nxtopo.NXTopo ()
topo.add_switch(name="X",ports=[1,2,3,4])
topo.add_switch(name="Y",ports=[1,2,3,4])

topo.add_link (("X", 4),("Y", 4))

mappings

s_map = { IIXII:IISQII, nymnw,ng3n }

p_map = identity_port_map (topo,s_map)

maps = (s_map,p_map)
predicates
preds = \
([(p, header("srcport",80))

for p in topo.edge_ports("X")] +
[(p, header("dstport" ,80))
for p in topo.edge_ports("Y") 1)
slice constructor
slice = Slice(topo,phys_topo ,maps,preds)

Figure 2: Blue campus slice.

Example. To illustrate the use of slices, consider the Python
code shown in Figure 2 that implements the blue slice from
the campus network example. The first few lines of code
define the topology, represented as a NetworkX [9] graph
with two switches: X and Y. The switches have three edge
ports each and are connected by a link. The next few lines
of code define the switch and port mappings from the slice
down to the underlying network: switch X maps to S2, Y
maps to S3, and the port mapping is the identity function.
The subsequent lines associate a predicate with each edge
port. These predicates map web traffic into the slice but
exclude other traffic. The nc module used in this code pro-
vides an implementation of NetCore, a high-level language
for writing predicates on packets that can be compiled to
OpenFlow [12]. The final line in the program invokes the
Slice constructor and builds the actual slice.

As an example of a program we might run on this network,
consider the following NetCore program, which implements
a simple broadcast protocol connecting the hosts on the blue
slice:

(inport ("x",[1,2,3])

|then| forward(4))
+ (inport ("X",4)
|then| forward([1,2,3]))

+ (inport("vY",[1,2,3])

|then| forward(4))
+ (inport("Y",4)
|then| forward([1,2,3]))

We will use this example in the next section to explain the
details of the compilation algorithm.

4. THE SLICE COMPILER

We have implemented a prototype compiler for slices. The
code for our compiler is available at the following URL:

https://github.com/frenetic-lang/slices

The compiler takes as input a collection of slice definitions
and their associated programs, expressed in NetCore, and
emits as output a list of OpenFlow forwarding rules for each
switch in the physical network.

In general, a slice compiler has significant flexibility in
how it implements isolation. The only requirement is that it
must correctly implement the semantics of slices described
in the preceding section. In cases where the slices are defined

82

over disjoint sets of switches, the compiler can often simply
rewrite each program using the switch and port mappings
in the corresponding slice definition. But in general, the
compiler must instrument the programs to ensure isolation.
Our compiler uses a simple strategy for instrumenting pro-
grams using VLAN tags. It works by creating a program
for each slice that is—by construction—isolated from every
other slice. More formally, compilation proceeds as follows.
For each slice s, the compiler applies the following transfor-
mations to p, the NetCore program associated with s:

e Allocate a fresh VLAN tag v.

e Create a program p, by restricting p so that it only
applies to packets whose VLAN field is v.

e Create a program p;, by restricting p to only apply to
packets at edge ports that match the associated pred-
icate in s and have no VLAN tag, and add an action
that pushes the VLAN tag v onto every such packet.

e Create a program poy: by restricting p to only apply
to packets with VLAN tag v being forwarded out edge
ports, and add an action to remove the VLAN tag from
every such packet.

o Create a program pnop by restricting p to only ap-
ply to packets at edge ports that match the associated
predicate in s with no VLAN tag where p yields a for-
warding action that immediately forwards the packet
out an edge port.

e Apply the switch and port mappings to the program
formed by taking the union of py, pin, Pout, and Prop.

Intuitively, the program p, handles packets traversing the
interior of the slice, programs p;, and pow: handle packets
entering and exiting the slice respectively, and pnop han-
dles packets that enter and exit the slice in a single hop.
Each of these programs are straightforward to construct in
NetCore, because (unlike raw OpenFlow forwarding rules)
the language supports powerful set-theoretic operators such
as union, intersection, negation, etc. To generate the final
result, the compiler forms the union of the instrumented
programs for each slice, and uses the NetCore compiler to
convert the result into a list of OpenFlow rules.

Example. As an example to illustrate the compilation al-
gorithm, consider the broadcast program described in the
previous section and the blue campus slice. Because there
are no non-trivial internal paths, the interior program p, is
empty. Likewise, because there are no non-trivial one-hop
paths, the program pp.p is also empty. The only interesting
programs are the input program pin,

((inport("s2",[1,2,3]) &

header ("srcport" ,80) &

header ("vlan",0))
|then| action([4], {"vlan":1}))

|
and the output program poy::

((inport("S2",4) & header("vlan",61)
|then| action([1,2,3], {"vlan":0}))
| .

The input program for S2 takes all packets that match the
slice predicate with VLAN tag 0, re-tags them with VLAN
1, and forwards them out port 4. The output program for S2

https://github.com/frenetic-lang/slices

takes incoming packets from S3 with VLAN tag 1, re-tags
them with VLAN 0, and forwards them out its edge ports.

It is worth noting that the use of VLANs by our com-
piler is not essential; the reference implementation sketched
here is not the only possibility. We are currently working
to develop other compilation algorithms for slices that make
more prudent use of low-level switch resources.

S. VERIFICATION

One of the main advantages of developing abstractions
at the language level is that having a program to analyze
provides a means for establishing correctness using language-
based tools. We have built a verification tool that checks
isolation properties of slices expressed using logic formulas.

Our tool implements an approach to compiler correctness
known as translation validation [13]. Instead of verifying the
correctness of the compiler directly—something that would
be quite difficult to do, as it would entail developing com-
plete a formal specification of the intended behavior of the
compiler—we analyze its output and check that it has the re-
quired properties. This approach removes the compiler from
the trusted computing base and replaces it with a widely-
used and well-tested verification tool. Hence, bugs in the
compiler do not invalidate properties established using our
tool. Of course, the tool itself may have errors, but it is
extremely unlikely that a single bug would manifest in two
pieces of software developed independently.

Intuitively, isolation involves restricting the paths that
packets may take through the network. For example, traffic
isolation restricts the set of destinations that a packet may
reach and physical isolation restricts the switches and links it
may traverse. Temporal logics are a natural tool for express-
ing such properties, since their formulas describe the paths
a system can take as it evolves over time. Our tool supports
properties expressed in Computation Tree Logic (CTL) [3]
and uses the NuSMV model checker [2] to verify formulas
against models extracted from OpenFlow configurations.

Before presenting the specific isolation properties we ver-
ified with our system, let us briefly review the basic syntax
of CTL. Properties of individual packets can be expressed
using equality constraints and boolean connectives, as in
dstip = 10.0.0.1 & switch = S. This formula is satisfied
by all packets located at switch S whose destination IP ad-
dress is 10.0.0.1. CTL’s temporal operators provide a way
to express properties of packets as they flow through the
network. The formula AF ¢ states that on all paths, the
formula ¢ holds at some point in the future. For example,
AF (switch = S) states that packets can always reach switch
S from the current location. Similarly, AG ¢ states that on all
paths from the current position, ¢ must hold globally. Us-
ing logical implication, we can produce more interesting for-
mulas, such as (switch = S1) -> AF(switch = S2), which
states that all packets at switch S1 must eventually be for-
warded to S2.

Traffic isolation. To provide traffic isolation, a slice must
ensure that every packet that arrives at one its edge ports
(and matches the predicate associated with that port) only
ever traverses switches, ports, and links belonging to the
same slice. Consider the campus example from Section 2,
and suppose that ports P1 and P2 represent the ports on S1
and S2 respectively. The following formula is satisfied only
if the red slice enforces traffic isolation:

83

(loc
AF (loc

P1 | loc
P1 | loc

P2) —>
P2 | loc = DROP)

Intuitively, this formula states that any packet arriving at
one of the edge ports of the slice must eventually reach one of
the edge ports in the same slice or be dropped. The variable
loc mentioned in this formula refers to the location of the
packet in the network on a switch or a host and DROP is a
special location for dropped packets.

Physical isolation. In some networks, it is important to
ensure that all switches and links are only ever used to pro-
cess packets for at most one slice. Consider the blue slice
from the intelligence organization example in Section 2. The
following formula is satisfied only if the blue slice enforces
physical isolation:

(switch =
AG(switch

S5 & port = 1) —->
S2 | switch = S5 | loc = DROP)

Intuitively, it says that any packet entering the slice must
only traverse switches S2 and S5 or be dropped.

Deploying verification. Language-based verification has a
rich history in traditional software systems, where analy-
sis tools are often applied at compile time to detect bugs
early in the development cycle. We believe that applying
the same techniques could help increase the reliability of
network programs too. Although verification tools such as
model checkers can take a long time to complete, network
configurations are often written well in advance, so program-
mers could compile and verify their programs before they
are deployed. Verifying the behavior of a hypervisor, on the
other hand, could only take place at run-time, and global in-
variants would need to be re-verified on every network event
and control message.

6. RELATED WORK

Networks today typically achieve isolation using low-level
mechanisms such as VLANSs or firewalls. These mechanisms
can be used to effectively provide both traffic and physi-
cal isolation, but their use requires careful configuration by
expert operators and is prone to errors.

Flowvisor is the most prominent example of a system that
provides isolation in OpenFlow networks. It allows multiple
controllers to manage a single network [16]. Architecturally,
Flowvisor is organized as a hypervisor that sits between the
controllers and switches, filtering the events going up to con-
trollers and masking the messages going down to switches.
Flowvisor allows an administrator to identify “slices” of the
flowspace using topology and packet header characteristics
similar to our slices. In addition, Flowvisor also supports
bandwidth, switch control plane, and controller isolation for
slices, using heuristics to estimate the amount of processing
power needed to implement by each slice. Another example
of a system that provides isolation using a hypervisor-based
approach is XNetMon [4]. The frameworks for virtualizing
OpenFlow networks described by Casado et al. [1], Zarifis
and Kontesidou [8], and Reich et al. [14] can also be used to
provide various forms of isolation.

There is growing interest in applying verification tech-
niques to networks. The verification tool described in this
paper builds on one originally developed in the context of

work on network updates [15]. Header space analysis [7] pro-
vides a formal model of OpenFlow networks as a “transfer
function” as well as a tool for checking properties of net-
works including connectivity, access control, and loop free-
dom. Anteater [10] verifies network invariants by translating
them into SAT instances and using an external solver.

7. FUTURE WORK

Our work on slices is ongoing. We are currently developing
a formal semantics for slices, and proving properties such as
non-interference with respect to confidentiality (packets do
not leak outside of a slice) and integrity (packets generated
by other slices do not affect the operation of a slice). We
believe that these intuitive and robust guarantees will be a
powerful reasoning tool for programmers.

We are also developing additional optimized compilation
algorithms that exploit information about slices, programs,
and the topology to provide isolation while minimizing the
use of VLAN tags. For example, if a single link is only ever
used by one slice, then packets traversing that link do not
need to be tagged at all.

In the future, we plan to extend our slicing abstraction to
handle resources such as bandwidth and controller resources.
We also plan to relax the restrictions on switch and port
mappings to allow more flexible slice definitions. Finally, we
plan to develop a convenient surface syntax for describing
slices and integrate them into the Frenetic language [6, 12].

Acknowledgments. We wish to thank Shrutarshi Basu, Josh
Reich, Mark Reitblatt, Jennifer Rexford, and David Walker,
and the anonymous reviewers for many helpful comments
and suggestions. Our work is supported in part by the ONR
under grant N00014-09-1-0652 and by the NSF under grants
CNS-1111698, CCF-0424422, and SHF-1016937.

8. REFERENCES

[1] Martin Casado, Teemu Koponen, Rajiv Ramanathan,
and Scott Shenker. Virtualizing the network
forwarding plane. In Workshop on Programmable
Routers for Extensible Services of Tomorrow
(PRESTO), Philadelphia, PA, 2010.

Alessandro Cimatti, Edmund Clarke, Enrico
Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco
Roveri, Roberto Sebastiani, and Armando Tacchella.
NuSMYV 2: An opensource tool for symbolic model
checking. In International Conference on Computer
Aided Verification (CAV), Copenhagen, Denmark,
pages 359-364, July 2002.

E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 8(2):244-263, 1986.

N.C. Fernandes and O.C.M.B. Duarte. XNetMon: A
network monitor for securing virtual networks. In
International Conference on Communications (ICC),
Kyoto Japan, pages 1-5, June 2011.

FlowVisor. Bug report, March 2012. See
https://openflow.stanford.edu/bugs/browse/
FLOWVISOR-171.

84

[6] Nate Foster, Rob Harrison, Michael J. Freedman,
Christopher Monsanto, Jennifer Rexford, Alec Story,
and David Walker. Frenetic: A network programming
language. In ACM SIGPLAN International
Conference on Functional Programming (ICFP),
Tokyo, Japan, pages 279-291, September 2011.
Peyman Kazemian, George Varghese, and Nick
McKeown. Header space analysis: Static checking for
networks. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), San
Jose, CA, April 2012.

Georgia Kontesidou and Kyriakos Zarifis. OpenFlow
virtual networking: A flow-based network
virtualization. Master’s thesis, KTH Royal Institute of
Technology, 2009.

Los Alamos National Laboratory. NetworkX,
November 2011. Available from
http://networkx.lanl.gov.

Haohui Mai, Ahmed Khurshid, Rachit Agarwal,
Matthew Caesar, Brighten Godfrey, and

Samuel Talmadge King. Debugging the data plane
with Anteater. In ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and
Protocols for Computer Communications
(SIGCOMM), Toronto, Canada, pages 290-301,
August 2011.

N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: Enabling innovation in campus
networks. ACM SIGCOMM Computer
Communications Review (CCR), 38(2):69-74, 2008.
Christopher Monsanto, Nate Foster, Rob Harrison,
and David Walker. A compiler and run-time system
for network programming languages. In ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), Philadelphia, PA,
pages 217-230, January 2012.

Amir Pnueli, Michael Siegel, and Eli Singerman.
Translation validation. In International Conference on
Tools and Algorithms for Construction and Analysis of
Systems (TACAS), Lisbon, Portugal, pages 151-166,
March 1998.

Joshua Reich, Nate Foster, Jennifer Rexford, and
David Walker. Toward a language for network
virtualization. Draft, April 2012.

Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole
Schlesinger, and David Walker. Abstractions for
network update. In ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and
Protocols for Computer Communications
(SIGCOMM), Helsinki, Finland, August 2012. To
appear.

Rob Sherwood, Michael Chan, Adam Covington, Glen
Gibb, Mario Flajslik, Nikhil Handigol, Te-Yuan
Huang, Peyman Kazemian, Masayoshi Kobayashi, Jad
Naous, Srinivasan Seetharaman, David Underhill,
Tatsuya Yabe, Kok-Kiong Yap, Yiannis Yiakoumis,
Hongyi Zeng, Guido Appenzeller, Ramesh Johari,
Nick McKeown, and Guru Parulkar. Carving research
slices out of your production networks with openflow.
ACM SIGCOMM Computer Communications Review
(CCR), 40(1):129-130, January 2010.

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

https://openflow.stanford.edu/bugs/browse/FLOWVISOR-171
https://openflow.stanford.edu/bugs/browse/FLOWVISOR-171
http://networkx.lanl.gov

	Introduction
	Examples
	The Slice Abstraction
	The Slice Compiler
	Verification
	Related Work
	Future Work
	References

