Dremel: Interactive Analysis of Web-Scale Datasets

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, Theo Vassilakis Google

> Presented by: Sameer Agarwal <u>sameerag@cs.berkeley.edu</u>

Dremel: Interactive Analysis of Web-Scale Datasets

Input/Output

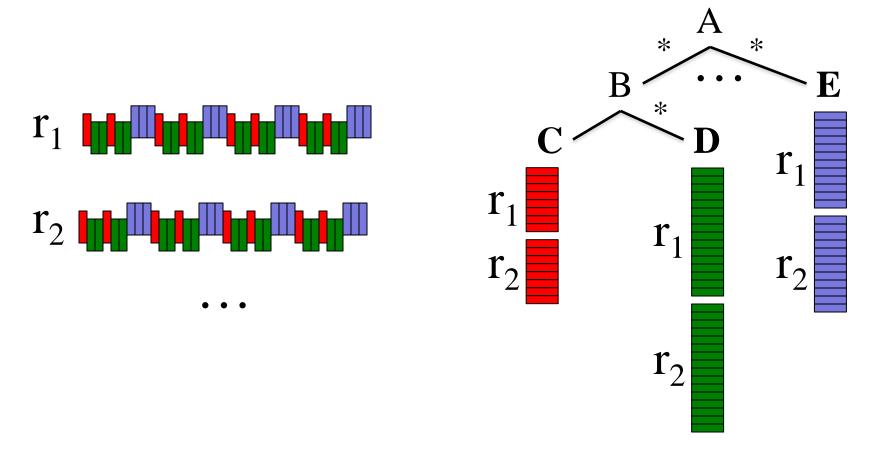
- Sequentially reading a Terabyte from disk in a second requires ~20,000 parallel reads!

Processing

- CPU-intensive queries may need to run on thousands of cores to complete within a second.
- Dealing with failures and stragglers is essential.

Input/Output

- Sequentially reading a Terabyte from disk in a second requires ~20,000 parallel reads! [Nested Columnar Storage]
- Processing
 - CPU-intensive queries may need to run on thousands of cores to complete within a second.
 - Dealing with failures and stragglers is essential.


Input/Output

- Sequentially reading a Terabyte from disk in a second requires ~20,000 parallel reads! [Nested Columnar Storage]
- Processing
 - CPU-intensive queries may need to run on thousands of cores to complete within a second. [Hierarchical Query Processing]
 - Dealing with failures and stragglers is essential.

Input/Output

- Sequentially reading a Terabyte from disk in a second requires ~20,000 parallel reads! [Nested Columnar Storage]
- Processing
 - CPU-intensive queries may need to run on thousands of cores to complete within a second. [Hierarchical Query Processing]
 - Dealing with failures and stragglers is essential.
 [Profiles, Duplicates or Ignores Them]

```
DocId: 10
Links
Forward: 20
Name
Language
Code: 'en-us'
Country: 'us'
Url: 'http://A'
Name
Url: 'http://B'
```


Read Less; Cheaper Decompression!

```
message Document {
  required int64 DocId;
  optional group Links {
    repeated int64 Backward;
    repeated int64 Forward;
  }
  repeated group Name {
    repeated group Language {
      required string Code;
      optional string Country;
    optional string Url;
```

DocId: 10 Links Forward: 20 Forward: 40 Forward: 60 Name Language Code: 'en-us' Country: 'us' Language Code: 'en' Url: 'http://A' Name Url: 'http://B' Name Language Code: 'en-gb' Country: 'qb'

Docld		
value	r	d
10	0	0
20	0	0

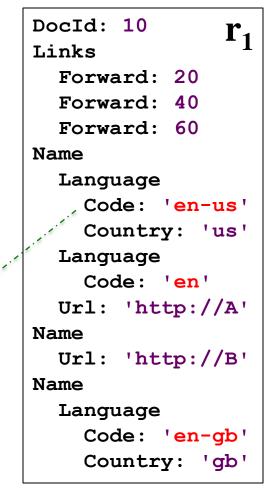
Name.U	rl)	
value	r	d
http://A	0	2
http://B	1	2
NULL	1	1

Links.Forward			
value	r	d	
20	0	2	
40	1	2	
60	1	2	

Name.Language.Code			
value	r	d	
en-us	0	2	
en	2	2	
NULL	1	1	
en-gb	1	2	

Name.L	angu	Jage	e.Country
value	r	d	
US	0	3	
NULL	2	2	
NULL	1	1	
gb	1	3	

```
Links
  Forward: 20
  Forward: 40
  Forward: 60
Name
  Language
    Code: 'en-us'
    Country: 'us'
  Language
    Code: 'en'
  Url: 'http://A'
Name
  Url: 'http://B'
Name
  Language
    Code: 'en-gb'
    Country: 'qb'
```

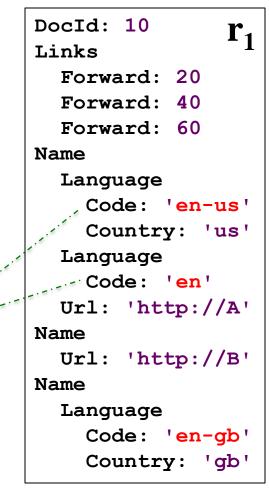

DocId: 10

Name.La	angı	lag	e.Code
value	r	d	
en-us	0	2	r ₁ .N

r₁.Name₁.Language₁.Code: 'en-us'

Repetition (r) and definition (d) levels encode the structural *delta* between the current value and the previous value.

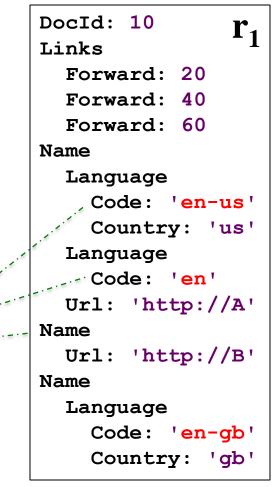
(r): Length of common path prefix(d): Number of fields in the path that could be optional but are actually present



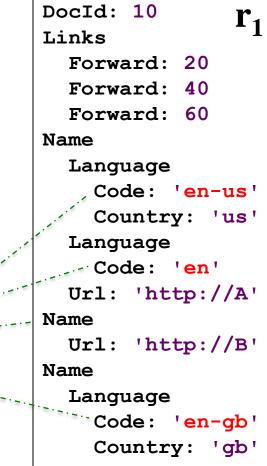
DocId: 20 Links	\mathbf{r}_2
Backward:	10
Backward:	30
Forward:	80
Name	
Url: 'http	p://C'

Name.La	angı	lage	e.Code
value	r	d	
en-us	0	2	r ₁ .1
en	2	2	r ₁ .1

r₁.**Name₁.Language₁**.Code: 'en-us '

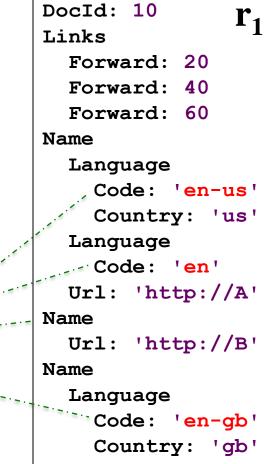

r₁.Name₁.Language₂.Code: 'en [¢]

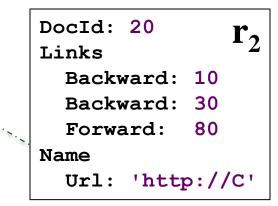
DocId: 20	\mathbf{r}_2
Links	- 2
Backward:	10
Backward:	30
Forward:	80
Name	
Url: 'http	p://C'

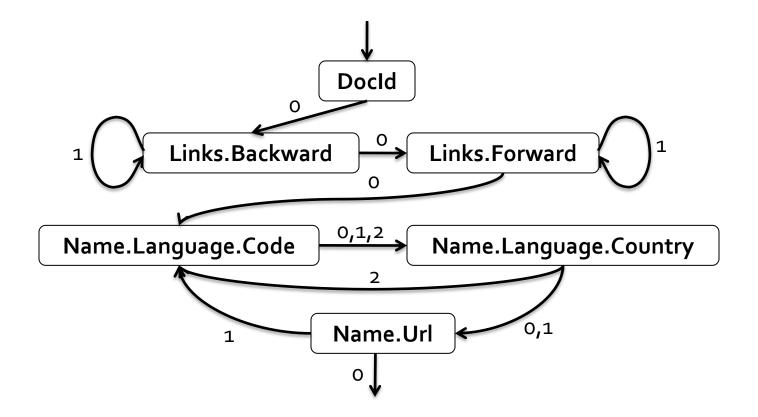

Name.Language.Code			
value	r	d	
en-us	0	2	r ₁ .N
en	2	2	r ₁ .1
NULL	1	1	r ₁ .

r₁.Name₁.Language₁.Code: 'en-us '⁴ r₁.Name₁.Language₂.Code: 'en ⁽

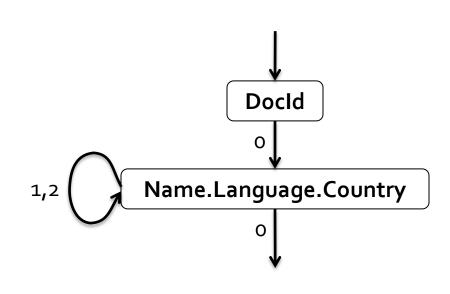
Name.La	angı	lage	e.Code
value	r	d	
en-us	0	2	r ₁ .1
en	2	2	r ₁ .
NULL	1	1	r ₁ .
en-gb	1	2	r ₁ .

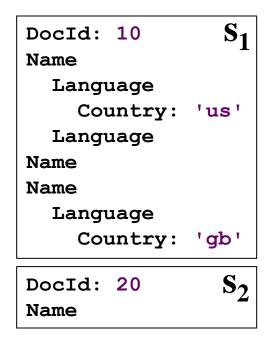

	Пац
r Nome Lenguage Coder .	
r ₁ . Name₁.Language₁ .Code: 'en-us ' ⁴	Url
r ₁ .Name ₁ .Language ₂ .Code: 'en ⁽	Name
r. Nomo	Url
r ₁ .Name ₂ «	Name
r ₁ .Name ₃ .Language ₁ .Code: 'en-gb'	Lang
	Co




DocId: 20	\mathbf{r}_2
Links	- 2
Backward:	10
Backward:	30
Forward:	80
Name	
Url: 'http	p://C'

Name.La	angı	lag	e.Code
value	r	d	
en-us	0	2	r ₁ .1
en	2	2	r ₁ .
NULL	1	1	r ₁ .
en-gb	1	2	r ₁ .۲
NULL	0	1	r ₂ .N

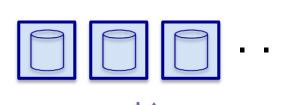

	Langua
	Code
r ₁ .Name ₁ .Language ₁ .Code: 'en-us'	Url:
r ₁ .Name ₁ .Language ₂ .Code: 'en ^{(***}	Name
	Url:
r ₁ .Name ₂ ∢	Name
r ₁ .Name ₃ .Language ₁ .Code: 'en-gb'	Langua
r ₂ .Name ₁	Code
	Colli



Docld		
value	r	d
10	0	0
20	0	0

Name.Language.Country			
value	r	d	
US	0	3	
NULL	2	2	
NULL	1	1	
gb	1	3	

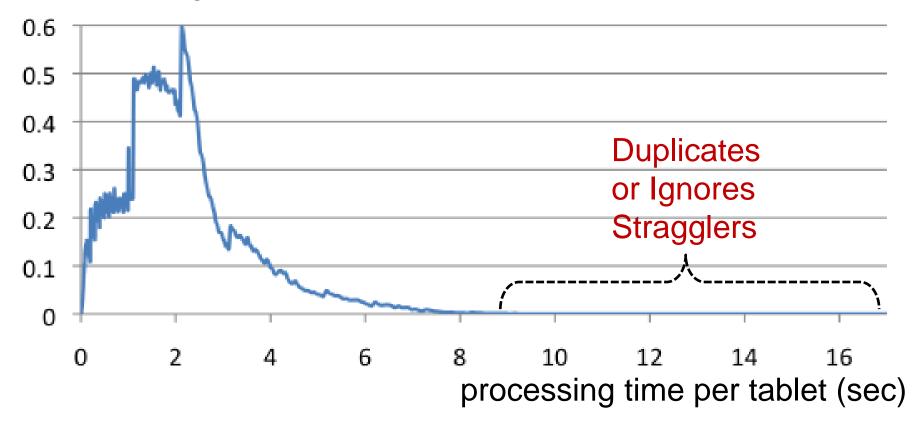
Docld		
value	r	d
10	0	0
20	0	0


Name.Language.Country				
value	r	d		
US	0	3		
NULL	2	2		
NULL	1	1		
gb	1	3		

Hierarchical Query Processing

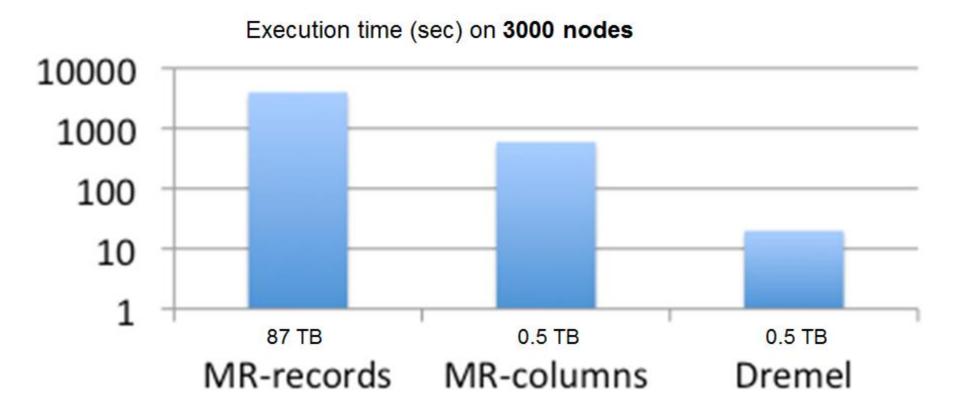
intermediate servers

leaf servers (with local storage)


storage layer (e.g., GFS)

Hierarchical Query Processing

- Optimized for Select-Project-Aggregate queries.
 - Single Scan over Data
 - Recursive Reducers
- Defers discussion of joins, indexing, updates etc. to future work.
- Scheduler's Secret Sauce.


Duplicate/Ignore Stragglers

percentage of processed tablets

Comments/Critiques

Does Dremel really require a new execution engine?

What's really novel about Aggregation Trees?

- Very similar to the MapReduce model (Leaf servers run Map tasks and Aggregators are Reduce tasks)
- Partial Aggregates/Recursive Reducers have already been proposed by Traditional Databases as well as SCOPE/Dryad.

- Input/Output
 - Sequentially reading a Terabyte from disk in a second requires ~20,000 parallel reads!

Processing

- CPU-intensive queries may need to run on thousands of cores to complete within a second.
- Dealing with failures and stragglers is essential.

- Input/Output
 - Sequentially reading a Terabyte from disk in a second requires ~20,000 parallel reads! [Sampling? In-memory RDDs?]
- Processing
 - CPU-intensive queries may need to run on thousands of cores to complete within a second.
 - Dealing with failures and stragglers is essential.

- Input/Output
 - Sequentially reading a Terabyte from disk in a second requires ~20,000 parallel reads! [Sampling? In-memory RDDs?]
- Processing
 - CPU-intensive queries may need to run on thousands of cores to complete within a second. [Better Data Partitioning?]
 - Dealing with failures and stragglers is essential.

- Input/Output
 - Sequentially reading a Terabyte from disk in a second requires ~20,000 parallel reads! [Sampling? In-memory RDDs?]
- Processing
 - CPU-intensive queries may need to run on thousands of cores to complete within a second. [Better Data Partitioning?]
 - Dealing with failures and stragglers is essential. [Giving Answers with Bounded Errors/Confidence Intervals?]

Thank You!