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Computer architects use simulation
as a primary tool to evaluate computer system
performance and to compare architectural
alternatives. Simulation studies frequently
compare the performance of one or more
architectural enhancements against a base sys-
tem. For many such studies, instructions per
cycle (IPC) is the performance metric of
choice. An increase in IPC for an architectur-
al enhancement represents a performance ben-
efit over the base system. 

In this article, we challenge the commonly
held view that IPC accurately reflects perfor-
mance—at least for multithreaded workloads
running on multiprocessors. Our simple
counterexamples show cases in which IPC
increases do not reflect a performance gain,
and others in which IPC decreases do not
reflect a performance loss. In some of our
examples, IPC actually decreases as perfor-
mance increases, and vice versa. As the num-
ber of processors increases, IPC becomes a less
accurate measure of performance.

The IPC measurement’s inaccuracy stems
from the incorrect assumption that instructions
per program remains constant across all execu-

tions. In fact, the instruction path of multi-
threaded workloads running on multiple
processors can vary substantially.1 Spin locks
and other synchronization mechanisms mag-
nify small timing variations into very different
execution paths. This is especially true for com-
mercial workloads that spend significant time
in the operating system, where contention for
system resources can result in different sched-
uling decisions and increased idle time. 

Several researchers have used various
approaches to improve IPC’s accuracy—
ignoring system code, excluding lock over-
head and idle time, or using trace-driven
simulation, for example. These approaches,
however, have their own drawbacks. Work-
related metrics present a safer, more accurate
alternative because they are directly propor-
tional to the gold-standard performance mea-
sure, time per program.

Performance evaluation using IPC
Many computer architecture textbooks and

introductory courses teach that the time to
run an application (time per program) is the
ultimate performance measure for an archi-
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tecture.2 Other metrics can provide insight,
but only to the extent that they accurately
reflect time per program. To compare the per-
formance of a program P on a new system A
and a baseline system B, the speedup of A over
B is the ratio of P’s runtime on B divided by
its runtime on A:

Because runtime gives little insight into
microarchitectural behavior, architects have
long used the Iron Law to deconstruct pro-
gram performance:2

When substituting terms in this equation,
most performance studies assume that the first
and last terms (instructions per program and
time per cycle) are the same for both systems
A and B. This means that the speedup is a
function of the second term only—cycles per
instruction (CPI), or its inverse, instructions
per cycle (IPC):

This simplified form is accurate only if the
assumptions hold: that is, if both systems A
and B have the same cycle time (a fixed time
per cycle) and also run the same number of
instructions (the same instructions per pro-
gram). The latter assumption essentially
equates the number of instructions executed
with the amount of useful work performed by
the application. This assumption generally
holds for the complete execution of single-
threaded, uniprocessor, user-level programs.
However, programs exhibit phase behavior,
where IPC can differ vastly between one phase
and another. Researchers have proposed sev-
eral sampling techniques to accurately esti-
mate IPC in uniprocessor programs that
exhibit phase behavior.3

Multithreaded programs present a more
fundamental problem. Previous work has

shown that small timing variations, such as
the exact interrupt timing or races for a mutex
(mutual exclusion) lock, can cause the oper-
ating system to make different scheduling
decisions.1 These divergent paths result in dif-
ferent combinations of thread phases, in
which a program might execute a substantially
larger or smaller number of instructions to
perform the same amount of useful work. 

Architectural enhancements can, and do,
introduce timing variations that lead to diver-
gent execution paths. For example, a large
cache or a better prefetching algorithm elim-
inates misses that can favor one thread over
another. If this timing difference changes
which thread reaches a mutex lock first, the
enhanced system might execute a very differ-
ent path than the base system. System-level
behavior accentuates these effects—for exam-
ple, by making different scheduling decisions.
Seemingly small architectural changes can sig-
nificantly affect how much time a thread
spends executing idle-loop instructions, spin-
lock wait instructions, or various system-level
privileged code instructions, such as a trans-
lation look-aside buffer (TLB) miss handler.
Although such instructions significantly
change IPC, they have little effect on the
amount of useful work a user program actu-
ally accomplishes.

When IPC is misleading
We’ve performed several architectural simu-

lation studies to demonstrate that using IPC
can lead to incorrect conclusions. As our base-
line configuration, we used an eight-processor
chip multiprocessor (CMP) system with a 5-
GHz clock and out-of-order Sparc V9 proces-
sors. We used the Simics full-system simulator,4

extended with GEMS (General Execution-Dri-
ven Multiprocessor Simulator, a detailed mem-
ory-system and out-of-order processor timing
simulator).5 We modeled our base system as a
future-generation CMP inspired by IBM’s
Power56 and Sun’s Niagara,7 although our chip
has only single-threaded cores. The base sys-
tem has the following specifications:

• Each processor has private split L1
instruction and data caches. Each
instruction or data cache is 64 Kbytes, is
four-way set-associative, and has a three-
cycle access time.

speedup(A) =
CPI
CPI

=
IPC
IPC

B

A

A

B

time/program =
instructions

program

cycles×
iinstruction
time
cycle

×

speedup(A) =
(time/program)

(time/program)
B

A
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• The unified, shared 4-Mbyte L2 cache
(unless otherwise specified) is composed
of eight 512-Kbyte banks. The L2 cache
is eight-way set-associative and has 64-
byte lines and a 15-cycle L2 hit latency. 

• 400-cycle memory latency.
• 20-Gbytes/s aggregate pin bandwidth. 

We used four multithreaded commercial
workloads from the Wisconsin Commercial
Workload Suite, and four benchmarks from
the SPEComp2001 suite, all running under
the Solaris 9 operating system. (See the
“Workload descriptions” sidebar for details.)
For each data point in our results, we present
the average and the 95 percent confidence
interval of multiple simulations to account for
space variability.1 Our speedup results for the
commercial workloads represent the average
speedup in number of cycles per transaction
(or request). For the SPEComp benchmarks,

our speedup results represent the average
speedup in number of cycles required to com-
plete the main loop. We compared these
speedups to speedups calculated using IPC.

Experiment 1: L2 cache size 
We performed a simple experiment in which

we varied the L2 cache size between 256
Kbytes and 16 Mbytes (all with a 15-cycle hit
latency), and compared the speedups over the
256-Kbyte base case. Figure 1 shows the run-
time and IPC speedup we calculated using data
from the same runs, for four representative
benchmarks. (We show only four benchmarks
because zeus, oltp, and apsi behave similarly
to apache, and art behaves similarly to jbb.)

The speedup computed using runtime
represents the gold standard with which to
compare other measurements since it sim-
ply normalizes time per program. Speedup
computed using IPC also accurately pre-
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Figure 1. Normalized speedup, calculated using runtime and IPC, over a 256-Kbyte L2 cache baseline: jbb (a),
fma3d (b), apache (c), and mgrid (d).



dicts performance when instructions/pro-
gram remains roughly constant. Figure 1a
shows that for jbb, IPC speedup matches
runtime speedup almost exactly. For work-
loads similar to jbb, using IPC as a perfor-
mance estimate is justified. Unfortunately,
using IPC for other workloads leads to con-
clusions that are incorrect—either in direc-
tion or magnitude. 

IPC leads to wrong conclusions. Figure 1b shows
the runtime and IPC speedup for the fma3d
benchmark. By the runtime measurement,
performance improves slowly as cache size
increases; for example, a 16-Mbyte L2 cache
improves performance by 13 percent. Con-
versely, the IPC results suggest that increasing
cache size actually degrades performance; by
this measurement, a 16-Mbyte L2 cache
degrades performance by 28 percent. Clear-
ly, using IPC leads to the erroneous conclu-
sion that increasing the cache size hurts
performance. Moreover, the variability in
IPC-based results (demonstrated by the con-
fidence interval error bars) is much larger than
the variability in runtime results for the same
set of runs. 

Here, it is obvious that the conclusion
drawn from the IPC speedup is wrong. In
more subtle cases, when the architectural
enhancement’s effect on performance is not
already known, a false conclusion based on
IPC could be harder to detect.

IPC underestimates performance. Figure 1c
shows the runtime and IPC speedups for the
apache benchmark, whose behavior is also
representative of that of zeus, oltp, and apsi
(not shown). As this graph shows, increasing
the L2 cache size leads to a much greater
speedup in runtime than in IPC. Using IPC
as a performance metric underestimates the
performance improvement by nearly a factor
of 2. For example, increasing the L2 cache size
from 256 Kbytes to 16 Mbytes results in a
runtime more than 5 times as fast, but
improves the IPC by only about a factor of 3.

IPC overestimates performance. Figure 1d shows
the runtime and IPC speedup for the mgrid
benchmark. In many configurations, using
IPC results in a greater speedup than using
runtime. For example, using IPC shows a 92
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Workload descriptions
We used four multithreaded commercial workloads from the Wisconsin Commercial Work-

load Suite,1 and four benchmarks from the SPEComp2001 suite.2

Online transaction processing (OLTP)
Our OLTP workload is based on the TPC-C v3.0 benchmark using IBM’s DB2 v7.2 EEE data-

base management system. We use a 5-Gbyte database with 25,000 scaled-down ware-
houses on eight raw disks and a single log disk. We simulate 16 users per processor, warm
up the database for 100,000 transactions, and measure for 100 transactions.

Java server workload: SPECjbb
We use Sun’s HotSpot 1.4.0 Server JVM, 1.5 threads and 1.5 warehouses per processor

(12 for eight processors), a data size of approximately 44 Mbytes, a warm-up interval of
200,000 transactions, and measurement intervals of 2,000 transactions.

Static Web serving: apache
We use apache 2.0.43 for Sparc and Solaris 9, configured to use pthread locks and mini-

mal logging at the Web server. We use Surge3 to generate Web requests, a repository of
20,000 files (totaling about 500 Mbytes), and we disable apache logging for high perfor-
mance. We simulate 400 clients per processor, each with 25 ms between requests; warm up
for about 2 million requests; and measure for 500 requests.

Static Web serving: zeus
Zeus uses an event-driving server model driven by Surge, where each processor is bound by

a zeus process, which waits for Web-serving events (for example, open socket, read file, send
file, and close socket). Its remaining configuration parameters are the same as those for apache. 

SPEComp
We used four benchmarks from the SPEComp2001 benchmark suite:2 330.art, 324.apsi,

328.fma3d, and 314.mgrid. We used the ref input set, fast-forwarded each benchmark to the
beginning of the main loop, warmed up caches for about 2 billion instructions, and measured
until the end of the loop iteration.4

References
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percent speedup for the 2-Mbyte cache over
the baseline 256-Kbyte cache, while using run-
time shows only a 68 percent speedup.

Experiment 2: Branch prediction
Figure 2 shows the speedup of runtime and

IPC for two branch-predictor alternatives over
a baseline of a 256-byte YAGS (“yet another
global scheme”) direct branch predictor8 and
a 16-entry return-address stack predictor.9

The predictors’ size has a limited effect on our
benchmarks. IPC underestimated speedup for
apache and mgrid, even suggesting the incor-
rect conclusion that a bigger branch predic-
tor degrades mgrid’s performance. 

Experiment 3: Reorder buffer size
Figure 3 shows the impact of instruction

window and reorder buffer scaling on two rep-
resentative benchmarks. Although scaling
greatly improves performance for both bench-
marks, IPC significantly overestimates
speedup. For example, for the 64/128 system
(64 instruction window entries and 128
reorder buffer entries), fma3d’s runtime
speedup was approximately 50 percent,
whereas the IPC more than doubled. 

Experiment 4: More threads
Figure 4 illustrates that more threads gen-

erally cause more IPC error. In this experi-
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ment, we show the speedup of a hardware
stride-based prefetcher—similar to that imple-
mented in the Power56—for different proces-
sor configurations compared to a baseline with
the same number of processors but no
prefetching. (Speedup is shown relative to
each processor configuration, not to be con-
fused with parallel speedup over a uniproces-
sor.) Figure 4 shows that IPC overestimates
speedup in most cases. In addition, the rela-
tive error in IPC speedup generally increases
as the number of processors increase. In some
cases—such as zeus on 16 processors—this
error can lead to the opposite of the correct
conclusion. 

Incomplete solutions to IPC problems
IPC speedup differs from runtime speedup

when an architectural enhancement changes
the program’s execution path and this new
path performs more or less useful work per
instruction. For example, instructions exe-
cuted in the idle loop, spin-lock loops, and
some system calls do not directly contribute to
a program getting work done. When an archi-
tectural enhancement disproportionately
decreases the number of such instructions,
IPC can decrease even if runtime improves.
Conversely, when an architectural enhance-
ment increases the number of idle or spin-lock
instructions, IPC can be inflated with little
effect on runtime.

Previous studies have used several tech-

niques to mitigate the problems with IPC.
However, these techniques are either infeasi-
ble for commercial workloads or do not suf-
ficiently address the problem.

Using user-code IPC
Many of the drawbacks of using IPC arise

from the simulation of system code, which
does not correspond directly to work done.
Many studies—including those based on Sim-
pleScalar10—have used the simple solution of
estimating IPC for user-level code and not for
system code. For many commercial bench-
marks, however, this approach is infeasible,
because system code constitutes a significant
fraction of their runtime. 

Table 1 shows the percentages of dynamic
and static instructions and cache misses (L1
instruction, L1 data, and L2) due to system
code for our eight benchmarks. System code
has a significant impact on all the benchmarks
except jbb. For apache, zeus, and art, the
majority of all dynamic and static instructions
execute in kernel mode. System code also con-
stitutes nearly a quarter of oltp’s dynamic
instructions. Even for apsi and mgrid, where
the percentage of dynamic system code
instructions is insignificant, the majority of
all static instructions belong to the operating
system, which results in a significant fraction
of all L1 instruction cache misses. 

These results clearly demonstrate that
ignoring system code when evaluating per-
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formance leads to inaccurate conclusions for
most of our benchmarks. Furthermore, sys-
tem code also accounts for a significant por-
tion of the SPECcpu benchmark executions.

Ignoring idle time
Another source of error from using IPC is

that idle loop instructions do not correspond
to work done. But because running the idle
loop is fast, including these instructions arti-
ficially inflates IPC without a similar improve-
ment in runtime.11 However, excluding idle
loop instructions is neither easy nor sufficient. 

In real operating systems, the idle loop cor-
responds to a large number of instructions in
multiple functions. For example, the idle loop
in Open Solaris is a part of the operating sys-
tem dispatcher code and corresponds to hun-
dreds of lines of C code if we include function
calls (see http://cvs.opensolaris.org/source/
xref/on/usr/src/uts/common/disp/disp.c).

Moreover, isolating the idle loop instruc-
tions is not sufficient to resolve the discrep-
ancies in speedup between IPC and runtime,
since most well-tuned applications are idle

only for a tiny fraction of their runtime. In
our experiments, the idle time represented less
than 5 percent of all workloads’ runtime for
the baseline configurations.

Ignoring spin locks
Spin locks and atomic instructions can

cause significant deviations when IPC is the
performance estimate. Spin-lock loops can
add a significant number of instructions to a
program’s execution, inflating IPC without
improving runtime. When the number of
threads or processors increases, such loops and
atomic operations are more frequent, widen-
ing the difference between IPC and runtime.
Excluding spin-lock loops and atomic instruc-
tions might be perceived as a way to bridge
the gap, but isolating these operations is not
trivial and is not likely to be effective.

Table 2 shows the total number of static
atomic instructions in our programs and those
in user code. The large numbers of static atom-
ic operations in many benchmarks demonstrate
that eliminating them is difficult, especially
since significant proportions exist in user code.

14

COMPUTER ARCHITECTURE SIMULATION AND MODELING

IEEE MICRO

Table 2. Atomic instructions.

          Static atomic instructions                        Dynamic atomic instructions                
Benchmark Total number Number in user code Total percentage Percentage in user code
apache 53 17 0.70 0.02
zeus 30 0 0.60 0.00
oltp 167 126 0.20 0.15
jbb 320 305 0.70 0.70
apsi 18 1 0.00 0.00
art 21 0 0.01 0.00
fma3d 18 2 0.06 0.00
mgrid 20 4 0.02 0.00

Table 1. Impact of system code. 

Instructions due to system code (percent) Cache misses due to system code (percent)
Benchmark Dynamic Static L1I L1D L2
apache 86.6 61.1 69.5 91.4 85.5
zeus 80.0 80.1 66.8 80.9 72.2
oltp 23.4 21.7 23.2 44.7 33.0
jbb 2.2 20.3 3.7 4.7 3.2
apsi 0.3 89.1 57.9 0.4 0.7
art 60.5 98.0 84.5 19.7 7.3
fma3d 4.2 81.2 53.1 2.0 2.1
mgrid 1.3 57.7 33.7 2.6 2.2



Furthermore, removing such instructions can
significantly affect a program’s execution, and
eliminates the benefit from many architectur-
al enhancements that target atomic operations.
Table 2 also shows the percentages of all user-
code dynamic instructions that are atomic;
these are below 1 percent for all benchmarks,
indicating that eliminating the impact of atom-
ic instructions on IPC is unlikely to bridge the
performance gap between IPC and runtime.

Trace-driven simulation
The central problem with the IPC mea-

surement is that different execution paths
result in the execution of different instructions.
Trace-driven simulation eliminates this prob-
lem, since the trace instructions executed on
different systems would be exactly the same.
Lepak, Cain, and Lipasti used a methodology
to obtain a similar effect using execution-
driven simulation by eliminating nondeter-
minism.12 However, neither approach is
appropriate for evaluating architectural designs
that affect thread interaction or the ordering
of thread executions. Using traces or forcing
determinism can lead to executions that would
never occur for the architectural enhancement
under study. Lepak, Cain, and Lipasti con-
clude that their deterministic simulation
should be avoided when nondeterminism is
high, and should be used with care in evaluat-
ing changed or relaxed architectural semantics.

Solution: Work-related metrics
So far, we have demonstrated the weakness-

es of using IPC to evaluate performance for
multithreaded workloads running on multi-
processors and have shown that previous pro-
posals to address IPC’s problems are incomplete
or infeasible for commercial workloads. To
address this situation, architects must return to
first principles and use metrics proportional to
time per program. Because it is not feasible to
simulate the complete execution of many pro-
grams, we argue for simple work-related met-
rics—for example, time per work unit, or work
units per time. These metrics will accurately
predict performance if the unit of work is rep-
resentative of the entire program. 

Throughput-oriented applications
Work-related metrics are the norm for

throughput-oriented applications such as our

set of commercial workloads. For example,
the TPC-C benchmark reports performance
in transactions per minute for a measurement
interval of at least 2 hours after the benchmark
reaches a steady state (see http://www.tpc.
org/tpcc). To limit simulation time for archi-
tectural studies, we recommend measuring the
time required to complete a fixed number of
transactions (or requests) after a suitable
warm-up time to eliminate cold-start effects.

Using work-based metrics to estimate per-
formance can lead to nondeterministic perfor-
mance results. This behavior stems from small
timing changes that lead different systems to
execute different combinations of transactions.
However, we can use statistical techniques to
compensate for nondeterminism by using mul-
tiple runs to obtain tight confidence intervals.1

Scientific applications
Choosing an appropriate unit of work can

be more difficult for scientific applications
such as SPECcpu or SPEComp benchmarks.
For simple iterative algorithms, in which a
main loop dominates the computation time,
a single iteration is the obvious work unit.
More generally, we can define the unit of work
to be the execution between a starting point
and an end point in the program. An end
point should be a place in the program where
all executions can reach—for example, a fixed
static instruction that occurs only once. For
instructions that the program executes more
than once, an end point can be a fixed dynam-
ic instance of such an instruction or a future
static instruction. For example, you can define
an end point as the tenth dynamic instance of
a static loop instruction or the first instruc-
tion outside the loop.

To estimate performance of scientific appli-
cations, simulations should measure the time
required to finish a fixed unit (or units) of
work. As long as the work unit is representa-
tive of the whole program, this approach is far
more accurate than the commonly used IPC
approach of counting the number of cycles
required to finish a fixed number of instruc-
tions. The IPC approach is misleading,
because it does not guarantee that the differ-
ent systems will reach the same point in their
execution, so the various systems could have
finished a different amount of work.

Many IPC-based simulation studies use
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sampling techniques—such as SimPoint3—
to reduce simulation time or to obtain repre-
sentative program fragments.13 To use a
work-related metric for such sampling tech-
niques, we can define an end point for each
sampling interval. This converts IPC-based
performance estimates into work-based esti-
mates, overcomes the shortcomings of using
IPC, and makes speedup comparisons more
viable. Luo and John further demonstrated
that the error in runtime speedup is signifi-
cantly lower than that from using CPI, and
that accurately obtaining tight confidence
intervals requires a shorter sampling period.14

For multithreaded, multiprocessor appli-
cations, IPC is a misleading performance

measure that only becomes less accurate as the
number of processors increases. The wide-
spread shift to chip multiprocessors—also
known as multicore processors—means that
IPC will be a poor metric for many, if not
most, future performance studies. As we’ve
shown, the IPC-based alternatives also have
significant drawbacks. Using work-related
metrics, however, avoids these pitfalls by hold-
ing true to the time per program ideal. One
challenge that remains is to find a robust
method to deconstruct multithreaded pro-
gram performance, in the same way that
researchers have factored CPI (the inverse of
IPC) to gain intuition into the impact of
microarchitectural design decisions. MICRO
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