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Chapter 1

Introduction

We live in an increasingly connected world. Many people have high speed, always-on

Internet access at their homes, and Google is a verb in nearly every language on the planet.

Our access to multiple streams of information in digital formats has the potential to keep

us in touch with world events and far-away loved ones. We have access to this information

on multiple devices, such as wired desktop computers at home and work, and wireless

laptop computers, PDAs and cell phones. The promise of these connectivity options is

simple enough—to enable access to information when and where we need it. While this

may be true, I see two additional trends developing. First, high-speed access to data and

information has not reduced how much time people spend using the Internet, but rather

has allowed them to view more information in the same amount of time. Second, tools for

helping users manage interconnected streams of information have lagged behind access to

the information itself. A modern web browser provides a history of sites visited, but the

list is flat and provides only a day-by-day grouping of sites. Missing is the hierarchical

discovery of the information and the information itself.
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The Internet is a hierarchy of links and information, and our minds work in a similar

fashion. While Google is a good model for cutting across hierarchy to find information

quickly, the flat result list model does not match how we discover and remember informa-

tion. In fact, hierachical data objects are pervasive in information management – a customer

and their orders, a grouping of sales figures by continent, country, and region, a computer

filesystem, and so on. Developing techniques for efficiently managing information hierar-

chies is critical to bridging this gap.

My research interests concern optimizations for storage and query processing of hier-

archically organized data. In this thesis, I present three projects developed in the context of

these interests: a system for processing relational queries over XML [13] data, a compari-

son of storage optimization techniques for relational schemas in the context of row-oriented

and column-oriented storage for a read-mostly query workload, and an exploration of pred-

icate evaluation strategies for a read-optimized relational store. The next three sections

briefly describe each project.

1.1 Relational Over XML

In the first chapter of my thesis, I develop a method for evaluating relational queries over

XML data stored natively. I called this method ROX, or Relational Over XML. In some

circumstances, XML documents will conform to a regular, repeating schema—in fact, the

data may have been stored in a traditional relational database and published to conform to

the desired XML schema. In this case, defining a virtual table definition, or “nickname”,
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of the data in terms of path expressions over the XML schema is straightforward. ROX

works by translating references to these nicknames into XPath [10] expressions, evaluating

each expression over the XML data, and translating the XML result back into a relational

rowset.

One key observation of this work is that XML allows related data to be stored together

in a “de-normalized” fashion. For example, a Customer element may be the parent of sev-

eral Orders elements. When referential integrity guarantees this one-to-many relationship,

we can create a relationship between the nicknames that define the relational view for each

Customer and Order based on the structural relationship between the two. In this case, a

relational join between Customer and Orders can become a simple, navigation-based scan

of the XML document. We evaluated this idea in the XML prototype system using sev-

eral variations of the TPC-H [18] benchmark schema and discovered that obviating such

joins allowed the translated queries to run within1/2 order of magnitude of the optimized

standard relational execution time, despite obvious inefficiencies in the XML prototype.

1.2 A Comparison of C-Store and Row-Store in a Common Framework

Relational data management systems store data as complete rows of information. Such

a design provides good performance for query workloads which feature a mixture of reads

and writes to the database. Recently, Stonebraker et al. proposed a column-oriented system

called C-Store that is optimized for a “read-mostly” query workload. Their evaluation

shows incredible performance benefits when compared to a traditional relational DBMS.



4

Motivated by their work, I set out to design a set of storage and query optimizations for a

row-oriented system. I designed two storage improvements—“super tuples” and “column

abstraction”. Super tuples simply pack many relational rows into a single storage block

the size of a disk page, and later using a secondary lightweight iterator to extract each

logical tuple. Column abstraction utilizes data ordering techniques—both for arbitrary sort

columns as well as ordering by the columns in the one side of a one-to-many join in a

materialized view—to store repeating data only once to save disk space. I implemented

a prototype system that applied these optimizations to both the row- and column-oriented

architectures and found that row storage is performance competitive with column storage

for most sequential scans. I also developed a cost model which breaks down the total

scan cost into disk I/O, iteration cost, and local tuple reconstruction cost. The cost model

correctly identifies the trends and relative performance of each storage optimization and

storage choice.

1.3 Predicate Evaluation Strategies for an Read-Optimized Row Store

In the third chapter of my thesis, I extend my development and analysis of the read-

optimized relational store to include predicate evaluation strategies. The materialized views

defined and stored for matching queries in a read-mostly context may match more than one

query in a given query workload when those queries differ only by a selection predicate. I

evaluate scan-based and index-based predicate evaluation strategies over super tuples, and

explore alternative storage layouts that can accelerate evaluation for each – the PAX [9]
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layout for warm scans, and a lightweight slot array for indexes. I develop a detailed cost

model to estimate the relative costs of each strategy and layout, and extend my prototype

read-optimized relational store to provide experimental validation of the strategies and cost

models.
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Chapter 2

ROX: Relational Over XML

An increasing percentage of the data needed by business applications is being generated

in XML format. Storing the XML in its native format will facilitate new applications

that exchange business objects in XML format and query portions of XML documents

using XQuery. This chapter explores the feasibility of accessing natively-stored XML data

through traditional SQL interfaces, called Relational Over XML (ROX), in order to avoid

the costly conversion of legacy applications to XQuery. It describes the forces that are

driving the industry to evolve toward the ROX scenario as well as some of the issues raised

by ROX. The impact of denormalization of data in XML documents is discussed both

from a semantic and performance perspective. We also weigh the implications of ROX for

manageability and query optimization. We experimentally compared the performance of a

prototype of the ROX scenario to today’s SQL engines, and found that good performance

can be achieved through a combination of utilizing XML’s hierarchical storage to store

relations “pre-joined” as well as creating indices over the remaining join columns. We

have developed an experimental framework using DB2 8.1 for Linux, Unix and Windows,

and have gathered initial performance results that validate this approach.
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2.1 Introduction

After two decades of commercially-available products, relational database systems

(RDBMSs) supporting the SQL query language standard are an unqualified commercial

success, with a huge industry-wide investment in applications such as Enterprise Re-

source Planning (ERP) [3, 4, 5] and Customer Relationship Management [3, 6] that query

an RDBMS with SQL. As the acceptance and sources of XML documents have prolif-

erated, many commercial relational database systems have adapted by developing tech-

niques for storing XML documents in relational systems by shredding documents into

relations [20, 21, 32] and/or by storing each document as an unstructured, large object

(LOB) [21]. However, shredding and recomposing all documents, many of which will

never be retrieved, is unduly expensive. Alternatively, searching XML documents stored

as LOBs is prohibitively slow. As more enterprises exchange business objects, such as

purchase orders, in XML format, applications will increasingly need to efficiently query

portions of XML documents via the emerging XQuery standard [11]. This will lead to

storing the data in some native XML format that efficiently supports XQuery.

Legacy relational interfaces and native XML storage appear to be on a collision course

that raises many interesting questions. Can the relational and XML data be treated sepa-

rately, storing each in the appropriate type of repository? In other words, will data from

relational sources be queried exclusively by SQL, and XML data exclusively by XQuery?

Or will databases of the future have to be hybrids, storing both relational and XML? Or will
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we just convert relations into XML objects and store everything in XML format? Regard-

less, what is to become of the “legacy” applications written in “good old” SQL that need

access to data that increasingly originates as XML data? Do they need to be re-written,

or can XML repositories support both XQuery and SQL? Will there be evolution, or a

revolution?

We are convinced that XML adoption must necessarily be an evolution—that existing

relational applications are too big and complicated to convert them all rapidly or inexpen-

sively from SQL to XQuery. We also project that the data accessed by these SQL applica-

tions will increasingly come from XML sources and need to also be accessible via XQuery,

and hence will be stored in native XML format.

This chapter therefore explores how to efficiently support Relational Over XML (ROX),

i.e., the existing SQL interface to a native XML store. We postulate a database containing

a blend of both tables and XML documents, with an increasing percentage of XML docu-

ments over time. The ROX scenario limits our consideration to SQL queries as input that

return rows as output, in order to support legacy applications, even though the system is

very likely to also support XQuery interfaces to the same database.

The ROX scenario alone raises many important issues. Perhaps the most important is

whether ROX can perform as well as today’s SQL engines. What is the impact of the obvi-

ous expansion of data caused by tags and other structuring information? How much should

XML documents be normalized, and does the denormalization supported by XML help or

hinder performance? Or is normalization of data obsolete with the advent of XML? The
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remainder of this chapter is organized as follows. The next section summarizes the evo-

lution of XML data management. Section 2.3 discusses issues involving query semantics

of SQL and XQuery, tradeoffs for selecting an appropriate XML schema, and performance

concerns. We present our ROX experimental design in Section 2.4, and the results of those

experiments in Section 2.5. Our conclusions and directions for future research comprise

the last section.

2.2 The Evolution of XML Data Management Systems

Storing and processing XML data have been a focus of the database research com-

munity for much of the last decade. Several XML data management systems have been

proposed, most based on various degrees of adaptation and reuse of relational [7] tech-

nology. There are two main reasons for reuse of relational technology. First, adaptation is

presumably less expensive and allows faster time to market than development from scratch.

The other reason is that such hybrid systems are capable of storing both relational (struc-

tured) and XML (semi-structured) data. As most applications are likely to operate over

both types of data, the new generation of databases will need to support both allowing the

application to access a single data repository.

Several different architectures have been proposed for building a hybrid XML-relational

database, as illustrated in Figure 2.1. Chronologically, the first attempts were based on

reusing the whole RDBMS stack when processing XQuery queries: from the SQL query

language to the relational data storage. In this XML-Over-Relational (XOR) approach, the
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XML documents are shredded into atomic values that are then stored in relational tables.

XQuery queries are translated into SQL queries to be evaluated by the existing query pro-

cessor. Several research prototypes have explored this scheme, such as LegoDB [12], and

XPeranto [35], and several products offer different shredding and XPath querying capabil-

ities based on this approach [2, 21]. The advantage of this architecture is that it requires

almost no modification of existing database engines. As such, an XQuery implementa-

tion can easily be adapted to several different DBMS systems. However, as the XQuery

language has evolved into an elaborate and complex standard, it has become clear that

translating XQuery queries into SQL queries is a daunting task. While shred-and-query

systems claim compatibility with a subset of the language, none has managed to produce a

fully compliant XQuery implementation.

Next in the timeline were systems that are on the other side of the architectural spec-

trum, named Co-processor Architecture in Figure 2.1(b). Here, XML is stored as unparsed

text in VARCHAR or LOB columns of relational tables. The XML data is opaque to the

RDBMS and only the storage layer is re-used. The XML data is queried using an XQuery

processor that is external to the database and invoked much like a user-defined function.

The communication between the two processors is using textual or equivalent format. The

SQL and the XQuery processors can be developed separately and interchanged. This solu-

tion is attractive for its relative simplicity and modularity.

Most of today’s commercial systems support this type of XML manipulation using

stored procedures to invoke an external XQuery processor [2, 21], in conjunction with
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XOR support. However, due to the loose coupling of the query processors, usually the

entire XML document is brought into memory before processing, severely limiting the size

of the data and optimization possibilities.

Several systems have been reported that support only XQuery. Systems such as Nia-

gara [28] and Timber [25] break the XML document into nodes and store the node infor-

mation in a B+-tree, with all document nodes stored in order at the leaf level. This allows

for efficient document or sub-tree reconstruction by a simple scan of the leaf pages of the

tree. In Niagara, additional inverted list indexes are created to enable efficient structural

join algorithms for ancestor/descendant paths. However, these systems do not support SQL

or relational storage.

More recently more native storage of XML documents has been proposed in [26]

and [40]. In our work we take a similar approach where the XML data is stored as in a

native tree format in which document nodes are in most cases clustered together on a page.

Bulk processing is performed using indexes, while the storage is optimized for fast naviga-

tion to evaluate the non-index portions of the query. Parent-child traversal does not require

a join between different tables. Since most XPath expressions require parent-child traver-

sal, this scheme allows for efficient access to the data. We use this model as an example to

explore the consequences of representing relational data with hierarchical trees.

At this point we consider where will the system architecture move beyond today’s state

of the art? Can we project the direction of the path based on the evolution so far? Is the
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current situation similar to the introduction of the relational database systems compared to

IMS? We try to analyze the issues from several angles and answer to these questions.

One probable direction in the short term is the side-by-side architecture, as shown in

Figure 2.1(c). In this architecture there is a tighter coupling between the query processors

than in the architecture based on shredding. Query fragments can be translated from one

language to the other and exchanged using internal data structures that may not adhere to

the language semantics. Such a mechanism improves the efficiency of the translation and

allows more degrees of freedom in the evaluation. For example, when returning values

from XQuery to SQL, as required when evaluating SQL/XML, queries might require that

an element is constructed by an embedded XQuery query and then shredded by an SQL

table function. Instead, the optimizer can re-write such queries so that rows of values are

returned from the XQuery processor directly into the SQL processor, although rows are not

part of the Query Data Model [22].

While more efficient than the first two architectures, the side-by-side architecture in-

troduces many complexities. It requires that various system components have compatible

definitions on both sides of the system. For example, the catalogue description of inter-

nal objects such as indexes and materialized view definitions need to be matched to both

the SQL and XQuery queries. While these issues pose interesting research challenges, we

view this architecture only as a partial solution that will be simplified and eventually morph

into the Relational over XML architecture shown in Figure 2.1(d) where the primary pro-

cessing is performed by an XQuery engine with native XML storage model. In its engine
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all transformations are governed by the XQuery language specification and the Query Data

Model. The SQL support is divided between a thin parse-and-rewrite layer and a library for

support of the SQL functions and operators that cannot be mapped to the XQuery functions

and operators.

The ROX architecture is at the opposite extreme of the solution space when compared to

the first XQuery query processor designs, in which the XQuery processor was a thin layer

over SQL database systems. The obvious question is what makes this architecture viable

if the opposite solution has not been implemented in any of the major database products?

Furthermore, in terms of development cost, this architecture requires a complete XQuery

engine that is adapted to run SQL queries, seemingly a much more demanding path than

the opposite route.

As XQuery and the Query Data Model conceptually subsume the SQL language and the

relational model, implementing SQL on top of an XQuery engine poses significantly lesser

challenge than the opposite. We also believe that this architecture will not be achieved by

developing an XQuery engine from scratch. Existing relational engines will be morphed

into this architecture possibly through the intermediate stages represented by the other ar-

chitectures depicted in Figure 2.1. It seems to us that, beyond the initial releases of the

commercial database products for XML data management, the main forces in the database

engine evolution will be to increase the performance and reduce the complexity of the

relational-XML engines. These two forces will be the major factors in the appearance of

the ROX architecture, shown in Figure 2.1(d).
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2.3 ROX Model Issues

While unable to implement a complete ROX architecture, we single out three issues

that are crucial to demonstrate the viability of the infrastructure and explore each in more

detail. We first overview the language semantics issues and how the semantics differences

between SQL and XQuery impact the ROX architecture. Then we turn our attention to

the data layout and normalization related issues as posed by the nested XML data model.

Finally we consider the performance impact of an XML native format, query optimization

issues, and XML data manageability.

2.3.1 Language Semantics

The main difficulty in running SQL queries over an XQuery implementation is provid-

ing semantically correct answers to the queries. Although SQL and XQuery have simi-

larities, there is an abundance of differences. First of all, the languages are defined over

different data models. The SQL language is defined over the relational model [7], while

the XQuery language is based on the Query Data Model [22] that represents XML data as

typed trees. SQL queries operate over column values, while XQuery manipulates ordered,

heterogeneous sequences of values and node references. While a detailed description of

the differences is beyond the scope of this discussion, in general, the Query Data Model is

much more elaborate than the relational data model. This is the core reason why XQuery-

to-SQL translation is unsuitable as a basis for a fully functional XQuery system.
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The languages also differ in their operational semantics. The most quoted difference is

the document order preservation of XQuery vs. unordered semantics of SQL. Further-

more, each language standard contains precise descriptions of the language operators.

These specifications seldom match. For example, the comparison operators in SQL use

3-value logic, operating over Boolean operands and returning true, false or NULL. The

same XQuery operators (general comparison) operate over sequences of nodes or values

and return true and false. There is no NULL value defined in the XQuery data model.

Another discrepancy stems from the different definitions of the basic data types as deci-

mals and datetime. As many of the built-in functions operate over such values, they might

potentially return different results.

Despite these differences, XQuery is designed to be able to manipulate structured data

along with unstructured [16]. Therefore, there is an overlap in the functionality of SQL and

XQuery. While different in data model and semantics, when constrained over structured

data, many XQuery operations have semantics close to that of SQL, and under certain car-

dinality constraints match the SQL semantics. For example both XQuery and SQL numeric

operations are based on the IEEE standard and seem to be reconcilable. Furthermore the

XQuery arithmetic operators treat empty sequences in the same manner as SQL operators

treat the NULL values. This is also true for the XQuery value comparison operators (eq,

gt, neq, etc.) which have 3-value logic (returning empty sequence if any of the operators is

an empty sequence) as the comparison operators of SQL. Translating the SQL comparison

operators into XQuery value comparison operators, we can achieve the same semantics as
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in SQL. This allows pushdown of simple arithmetic and comparison predicates from SQL

to XQuery. While the XQuery Boolean operators operate using 2-value logic, it is simple

to implement 3-valued Boolean operators in XQuery that have same semantics as the SQL

operators. With such a small implementation effort, a large class of SQL predicates over

numeric types and strings can be translated into equivalent XQuery predicates. However,

based on the current standards proposal for XQuery, it seems that it will not be possible to

translate all SQL functions to existing XQuery functions. We envision this necessary for

SQL datatypes that are not subsumed into XQuery datatypes, such as types representing

date-time and timestamps [20].

2.3.2 Normalization

One of the key benefits of a native XML store is not having to normalize the elements

that make up a business object by shredding them into tables. For example, consider a com-

mon business object—the purchase order shown in Figure 2.2, which might contain some

customer elements and one or more line items describing each object being purchased.

Since the purchase order arrives in XML format, it is tempting to store the entire document

as it comes into the system, to minimize any processing. But is that the right thing to do?

Does the nesting of XML documents make normalization of objects in databases obsolete?

And if not, what elements should be normalized and which should not?

The answer is that normalization is still needed in XML databases, for the same reason

it was needed in relational databases: redundancy of data and update anomalies [19]. In the

above example, the line items nested within an order are wholly owned by that order, so
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<order>
  <date>12 July 2003</date>
  <customer>
   <ID>43839</ID>
   <name>Slaghorn Bolts</name>
   <contact>Joyce Smith</contact>
   <address>
    53495 N. First St.
    Cleveland, OH 45678
   </address>
   <order_discount>
    0.10
   </order_discount>
  </customer>
  <line_item>
   <part_ID>RYZ04856-8945</part_ID>
   <quantity>33</quantity>
   <discount>0.12</discount>
  </line_item>
  <line_item>
   <part_ID>KFE389745-2248</part_ID>
   <quantity>15</quantity>
   <discount>0.05</discount>
  </line_item>
  <line_item>
   <part_ID>OI230988-2833</part_ID>
      <quantity>100</quantity>
   <discount>0.21</discount>
  </line_item>
</order>

Figure 2.2Purchase order in XML format
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they cannot suffer the update anomalies of shared subobjects. However, the customer infor-

mation is a bit more subtle. It is likely to be shared by many other orders, so keeping it with

each purchase order would both be unnecessarily redundant and risk update anomalies. For

example, the customer address is on the purchase order, but it’s probably the same address

as on hundreds of other orders from the same customer. But if it suddenly changed, this

order might be sent to the address that was in effect at the time the order was made, rather

than the address in effect when the order is shipped. Other attributes of the customer suffer

from a similar problem. So pretty clearly the customer information should be normalized.

However, some elements of the customer are really elements of the interaction of the cus-

tomer and this order. For example, the orderdiscount element might depend upon the size

of the overall order and how valued this customer is. Hence it cannot be normalized out of

the purchase order.

The good news is that native storage of XML documents permits denormalization when

it makes sense semantically (sub-objects are not shared), while still retaining the option to

normalize data, i.e., when subobjects may be shared and hence risk update anomalies. The

database designer is thus free to do what best models the data, rather than forcing the design

into a large number of overly-normalized, homogeneous tables. And, as we shall see later,

denormalization can also have performance benefits by obviating the need for some joins

when the data is queried.

Today’s relational engines use data redundancy in form of pre-joined relations to speed

up evaluation of queries [24]. Materialized view techniques will also be important in XML
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databases in general and with the ROX model in particular. In Section 2.5.3, we show that

data nesting that matches the query structure allow for much better evaluation times. As

opposed to relational systems in which the materialized, pre-joined views are flat tables, an

XML engine allows these to be in non-first normal form, similar to the proposal of [33].

2.3.3 Performance

To achieve good query performance for the ROX model, we must consider several is-

sues. The storage of the XML tree could be sorted in either depth-first (document) or

breadth-first order. The depth-first order is advantageous when the goal is efficient recon-

struction of the XML. However, if our XML documents have several levels of hierarchy,

queries referencing only data at the top levels of the document will suffer.

Another concern is the overhead of storing the structure of the document inline with the

data being represented. Although it is possible that the stored XML document conformed to

a stated XML schema, in general our storage format must allow for XML documents which

lack a predefined schema. This storage overhead forces a native XML store to consume

more space for representing a certain dataset than the relational storage. The absence of an

XML schema also forces data in the document to be stored as text, which also adds storage

overhead. To facilitate efficient selection and value-based joins between XML documents,

an XML index is required. As with relational systems, such an index will allow us to find

documents which contain a certain value in a certain location. Many indexing strategies for

XML have been proposed, such as inverted lists of elements for structural joins and path

indexes.
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2.3.4 Optimization

Compiling SQL queries on XML documents presents new challenges for query opti-

mization. Although denormalized data in the form of materialized views and join indexes

is already widely exploited by relational query optimizers, both the query and the denor-

malized data are defined in relational terms, usually SQL. In ROX, the optimizer must

now match joins and predicates in the SQL query to XPath expressions that define the

schema of XML documents (presumably the XML documents manipulated by ROX will

have a schema with sufficient homogeneity to permit a tabular view of them). Join predi-

cates between documents must also be folded into predicates at various points of an XPath

expression, depending upon the join order. In our experiments, discussed below, we per-

formed this mapping manually to avoid the challenge of automating it. Having documents

with various schemas—or even no schema at all!—mixed together in the same repository,

called “schema chaos”, negates the homogeneity that simplified the cost model and the

database statistics on which relational optimization depended. And though the denormal-

ization of XML documents reveals correlations among objects, it is not at all clear what

database statistics are needed to summarize those correlations and how those statistics can

be exploited to accurately estimate the number of documents satisfying a particular SQL

query. And this doesn’t even consider the considerable challenges of optimizing XQuery

queries!
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2.3.5 Manageability

Will a database of XML documents be easier or more difficult to manage than relational

tables?

Some would argue that management of XML repositories should be child’s play. Since

real-world objects no longer need to be normalized into homogeneous collections of rows

(tables), the XML repository can be reduced to a single, virtualized heap of heterogeneous

objects (documents), creating the relational equivalent of the Universal Relation [27]. In

lieu of perhaps tens of thousands of normalized tables, there would be only one collection

of documents to configure, backup, recover, reorganize, collect statistics on, etc. Database

design would be trivial, normalization would be unnecessary, and one index over this entire

collection would suffice to find any object in the database—the “Google model” applied to

databases!

On the other hand, management of modern databases entails far more than just deciding

what tables and indexes to create. As argued in Section 2.3.2 above, some normalization

will still be required to avoid update anomalies, so logical database design may be less

constrained but certainly not obviated. Eventually, XML systems will permit the definition

of the XML equivalent of materialized views, and deciding which to create will surely be

no easier than it is now for relational systems. Even if all documents are in one mono-

lithic collection, administrators will probably have to define arbitrary boundaries within

that collection for administration purposes, so that pieces can be maintained while the rest

of the database is available for querying and updating, much as the rows of large tables
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are usually divided into ranges for administrative purposes [8]. And given the increased

challenges posed by optimizing queries against these heterogeneous collections (see pre-

vious section), it is likely that the database statistics required for optimization will be far

more extensive than for relational systems. For performance reasons, we might still want to

cluster related documents together to exploit the larger pre-fetching chunks that relatively

slower disk arms necessitate, or possibly de-cluster them to spread access among multiple

arms for greater I/O parallelism, rather than simply append each new document to the end

of the heap.

2.4 Design for Experimentation

In Section 2.2, we described a number of architectural alternatives for a mixed SQL

and XQuery system, including the ROX model. We now provide a description of the im-

plementation we chose for our experimental framework.

A full implementation of the ROX architecture would require a fully-functional XQuery

DBMS, upon which a thin SQL-to-XQuery translation layer would sit. However, building

a system like this would take a significant number of person-years to implement. Instead,

we took advantage of a prototype XML store available to us and implemented a much sim-

pler mapping layer. This experimental architecture is described in detail in the following

sections.
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CREATE NICKNAME REGION(
  R_REGIONKEY int
     OPTIONS(XPATH ‘R_REGIONKEY/text()’),
  R_NAME char(25)
     OPTIONS(XPATH ‘R_NAME/text()’),
  R_COMMENT varchar(152)
     OPTIONS(XPATH ‘R_COMMENT/text()’))
FOR SERVER xml_server
OPTIONS(XPATH ‘/REGION’);

Figure 2.3Nickname definition

<REGION>
  <R_REGIONKEY>2</R_REGIONKEY>
  <R_NAME>ASIA</R_NAME>
  <R_COMMENT>sladfkj weoiu sdflkj
  </R_COMMENT>
</REGION>

Figure 2.4Sample XML document

2.4.1 SQL to XQuery Translation using the XML Wrapper

For our experiments, we modified an existing product called the XML Wrapper, which

is part of the IBM DB2 Information Integrator, version 8.1. The unmodified XML Wrapper

provides a mechanism for presenting relational views of XML data stored as text files

on disk. Each relational view defined over an XML document is called a nickname, and

utilizes syntax similar to the CREATE TABLE statement.

In Figure 2.3 we show a possible CREATE NICKNAME statement that DB2 would

use in conjunction with the XML Wrapper to query the XML document shown in Fig-

ure 2.4. The product version of the XML Wrapper uses the Xerces [30] XML parser and

the Xalan [29] XPath evaluator to find data in the XML document(s). Both Xerces and

Xalan are subprojects of the Apache XML project [1]. The wrapper queries the XML and

creates relational rows conforming to the CREATE NICKNAME statement to hand back

to the database engine.

Because XML allows hierarchical nesting of elements, entities may be stored physically

together in the same document. For example, you might store a Customer with all of the
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Orders he has placed as child elements of the Customer. To exploit this, the XML wrapper

allows special columns to be specified as the PRIMARYKEY or FOREIGNKEY for a

nickname. For example, a column ‘fk’ in a nickname for ORDERS may be defined as

the FOREIGNKEY of the PRIMARY KEY column ‘pk’ in a nickname for CUSTOMER.

When a SQL query references these two nicknames with an equality join predicate between

fk and pk, the wrapper knows that any Order information returned will be found as sub-

elements of the Customer in the XML document. Any paths specified by the ORDERS

nickname must be relative to the XPATH specified for the CUSTOMER nickname. The

value for the pk column is simply a serialization of a Xerces element reference.

For our experiments, we modified the existing XML Wrapper to be an interface to a

prototype XML store. Since our data had been previously parsed and stored in this native

XML store, we removed the Xerces code. Also, the Xalan XPath evaluator could not be

used, since it operates over in-memory DOM trees only. In its place, we used a custom

XPath evaluation engine that evaluates paths over the prototype XML store. To implement

the PRIMARY KEY column option, we used an internally generated XML node identifier.

We present an overview of our experimental architecture in Figure 2.5.

One of the primary advantages of a native XML store is that we have an opportunity

to create one or more indices over the loaded data. The prototype XML store contains a

path-based XML indexing module, but lacks automatic XML index selection in the query

optimizer. To enable using each XML index created, we wrote custom parameterized table

functions that take a key value as input and return relational rows that are the inner join
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result for that key value. This works because the XML index stores the same XML node

reference value that the XPath evaluator uses. This idea also allows us to hand-optimize

the join order for queries that refer to more than two nicknames by using a column from

the result of one table function call as the input for another. For example, if we want to

force a scan of the CUSTOMER nickname to be the outer entity in an index nested-loops

join with ORDERS, we would write the following SQL query:

SELECT O.O_ORDERDATE

FROM CUSTOMER C, tfORDERS(C.C_CUSTKEY) O;

In this example,tfORDERS() is a user-defined table function that takes as input a

customer key and returns columns from the ORDERS nickname from rows that con-

tain a matchingO CUSTKEY value. The XML documents that match are found by per-

forming a lookup in the XML index to find all documents which contain the path /OR-

DERS/OCUSTKEY/text() = [CCUSTKEY], where CCUSTKEY is the value passed to

the table function.

2.4.2 Prototype Walkthrough

To illustrate the prototype ROX architecture, we will describe how the following SQL

query is executed:

SELECT r_name,

COUNT(n_nationkey) AS n_count

FROM region, nation

WHERE r_regionkey = n_regionkey

GROUP BY r_name;
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Logically, the input to the query optimizer is a SQL parse tree. For our example query,

it will contain references to our nickname definitions for REGION and NATION, as well

as the RREGIONKEY = N REGIONKEY predicate. Since DB2 only knows about the

definition, it must consult the server specified by the CREATE NICKNAME statement, and

therefore our modified XML wrapper, to create alternate execution plans and cost estimates.

Plans enumerated include plans for: REGION only, NATION only, a plan that pushes

the equality predicate into the wrapper and returns rows containing both REGION and

NATION columns, and a plan for NATION which takes as input a context RREGIONKEY

and returns rows with an equal NREGIONKEY column. We would accept this last plan

only if R REGIONKEY was defined with the PRIMARYKEY option in the REGION

nickname, and NREGIONKEY defined with the FOREIGNKEY option and referencing

the REGION nickname. With a full cost model in the wrapper, we could tell the optimizer

that one or more of these plans would provide the best performance. For each plan the

wrapper can accept, we create a structure containing everything necessary to execute the

plan later at runtime, and return control back to the optimizer. In the prototype, the structure

would contain an XQuery to be executed at runtime. For example, we would create the

following XQuery when asked to scan the REGION nickname:

for $a in /REGION, $b in $a/R_NAME

return $a, $b;

Once the optimizer chooses a final query plan, the query runtime takes control and

begins to execute the plan. Any operator in the plan containing a packed structure created

by the wrapper during optimization now calls back into the wrapper requesting to open a
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cursor based on the information contained in that structure. For our example query, the first

request might be to do a table scan on the REGION nickname.

For each row returned from the wrapper for that scan, a second cursor would be

opened over the NATION nickname, with an additional parameter containing the value

of the RREGIONKEY column for the current REGION row. Recall that the value of the

R REGIONKEY column would be the internal XML node identifier for the REGION ele-

ment parenting the NATION information to return. The XML navigation would begin with

the node identifier passed in, rather than from the document root. If the XML nodes are

stored on disk in document order, we likely have the relevant NATION elements already

in memory. The prototype expects DB2 to perform the calculation of the NCOUNT out-

put column and to handle the GROUP BY RNAME clause. Note that better performance

could be achieved for this query by pushing the aggregate down into the XML Wrapper,

but the prototype did not do so.

2.4.3 Experimental Dataset

We chose the TPC-H [18] dataset for our experiments. This dataset is well known

throughout both the industrial and academic research communities, and is representative of

a normalized relational schema that can be adapted to the ROX model. The schema con-

sists of eight entities, namely REGION, NATION, SUPPLIER, PART, PARTSUPP, CUS-

TOMER, ORDERS, and LINEITEM. The PARTSUPP entity exists to allow a many-to-

many relationship between PART and SUPPLIER.
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For the corresponding XML schema of this dataset, we have quite a few choices. As

with the relational schema, we discard any choice which results in data duplication. Please

refer to Section 2.3.2 for our discussion of data normalization. We compare three XML

schemas for our experiments, named Unnest, Nest2, and Nest3. Our Unnest schema con-

sists of one XML document per relational row per relational table. The root element of each

document is the name of the relation from which it came, each sub-element the name of a

column from that relation, and the text contained in each sub-element is a value from the

row that we used to generate the document. Figure 2.4 shows an example XML document

created from one row of the REGION table. Our Nest2 schema stores LINEITEM elements

nested within the correct ORDERS element, and PARTSUPP within PART, but leaves the

remaining data as in the Unnest schema. Finally, the Nest3 schema stores LINEITEM ele-

ments within ORDERS elements, which in turn are nested within the correct CUSTOMER

element, with all other data as in the Unnest schema. With the TPC-H schema, it is not pos-

sible to create a semantically meaningful, properly normalized document with four levels

of nesting.

2.5 Experiments and Results

This section presents the experimental results we gathered to validate the feasibility and

performance of the ROX model.

All experiments were executed on a quad processor PowerPC-based machine running

AIX 5.1, equipped with 16GB of main memory and SCSI disks. Data and indices were
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loaded into separate DB2-managed tablespaces striped across 22 5GB SCSI disks. All

timings reported in this section are an average of 5 runs. We calculated that all timings for

each average are within 1% of the average value with 95% confidence.

All experiments are run using data generated at TPCH Scale Factor 0.1. This means

our largest entity, LINEITEM, has approximately 600,000 rows. The raw data is nearly

100 MB on disk.

2.5.1 Storage Comparison

In this section, we examine the storage requirements of both the relational and XML

versions of the TPC-H data set. The number of disk pages required to store the data has

a direct impact on the cost of any sequential scan. For this experiment, we loaded several

of the TPC-H relations into both standard DB2 tables and our native XML storage engine,

and present the disk storage requirements in Table 2.1.

Relation(s) Relational XML
CUSTOMER 2656 13312
ORDERS-LINEITEM 100960 888832
PART-PARTSUPP 15904 66560

Table 2.1Relational and XML Storage Requirements for selected TPC-H relations,
in KB

It is clear that a generic XML store generates significant storage overhead when com-

pared to the same data stored relationally. These overheads are due mostly to three factors.

All text data is stored in Unicode format in the prototype XML store. Although DB2 allows

tables to store Unicode data, it does not do so unless explicitly asked to by the user. This
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is a factor of two size increase for any text data in the TPC-H tables. Secondly, a generic

XML store must duplicate the document structure for every relational record converted to

XML format. For XML documents with a high structure-to-data ratio, this overhead is

high. Finally, our XML storage engine currently stores all XML data in text format. For

any numeric data, this adds significant storage overhead. Storage for the element tags does

not require significant overhead, however. Each unique element and attribute name is en-

tered into a mapping table, which allows us to store an integer tag ID for each document

node.

2.5.2 Bufferpool Effects

As discussed in Section 2.5.1, the storage required for the XML schemas under test is

significantly more than for the relational version of the data into DB2. It therefore makes

sense to consider the effects of varying the size of DB2’s bufferpool on query performance.

We chose to run each series of queries using four different bufferpool sizes. The sizes were

chosen to be 10%, 25%, 50%, and 100% of the total storage (data and indices) required

for the schema. Using this definition implies that the 10% case for the relational schema

is a much smaller number of pages than for the 10% XML schema case. Please refer

to Table 2.2 for the specific bufferpool sizes tested. It may seem unfair to use different

bufferpool sizes for the tests. After all, when 100% of the relational data and indices fit

in memory, only 11% of the XML data and indices fit. Further, given a specific memory

budget, the relational data has a size advantage and should benefit from it. However, if the
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scale factor of the data increased, we would not have a choice but to choose a bufferpool

size<10% in both cases.

Size Relational XML
10% 450 4000
25% 1125 10000
50% 2250 20000

100% 4500 40000

Table 2.2Tested bufferpool sizes (in number of 32K pages)

We present a graph in Figure 2.6 which illustrates the effects that the bufferpool size

has on the performance of TPC-H query 10. The results presented are normalized to the

execution time when the 100% bufferpool size is used. For the relational schema, addi-

tional memory directly contributes to decreased query execution time. However, additional

memory does not give an advantage for queries executed using the XML schemas. The

additional CPU cost of navigating through the XML schema and converting the retrieved

text to the correct column datatype may be to blame. Similar results were obtained for the

other queries we tested.

When the number of bufferpool pages are roughly the same for the relational and XML

schemas, the relational schema appears to be the clear winner. In Figure 2.7, we present

the results of two queries executed over all schemas. The relational schema was tested at

the 100% bufferpool level of 4500 pages, while the XML schemas used their 10% level of

4000 pages. For Q10, the best XML schema is still a factor of about 19x slower than the

relational schema. For Q22, we see that the Unnest and Nest2 schemas are about a factor

of 5 slower.
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2.5.3 Schema Variations

In this section, we discuss the measured effects of varying the nesting of the XML

schema. All experiments discussed in this section assume a 10% bufferpool size. As the

level of nesting in each XML document is increased, we encounter mixed performance re-

sults. Consider the graph in Figure 2.8, which shows the normalized execution times for

two TPC-H queries for our three XML schemas. TPC-H Q10 is called the Returned Item

Reporting Query. This query is basically a four-way join between NATION, CUSTOMER,

ORDERS, and LINEITEM. This query fits our Nest3 schema extremely well, and the re-

sults show that this query is about twice as fast with Nest3 as with either the Nest2 or

Unnest schemas. One obvious question, though, is why we don’t see any benefit from the

Nest2 schema, which has LINEITEM nested in ORDERS. The answer lies in the fact that
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we are utilizing the XML index to join CUSTOMER to ORDERS in both cases, and also for

ORDERS to LINEITEM in the Unnest case. As we will see in the next section, the XML

index performs very well and brings Unnest’s performance in line with Nest2. Although

Nest3 was the clear favorite for Q10, it suffers for other queries such as Q22. This query

scans CUSTOMER looking for customers in specific countries who have never placed an

order but have a good account balance. The country selection predicate is reasonably se-

lective, and so the join to ORDERS can be avoided for most customers. The Nest3 schema

performs very poorly for this query due to the storage of each CUSTOMER’s ORDERS

and LINEITEM information—the very attribute that made it much better for Q10. Since

this query does not use the ORDERS information very often and never uses the LINEITEM

information, we needlessly pay to load them from disk. CUSTOMER information packs

much better in the Unnest and Nest2 schemas, as both utilize the CUSTOMER-only XML

document format. These results suggest that the XML schema chosen should factor in the

expected query workload, if known.

2.5.4 XML Index Exploitation

We now consider the benefits of utilizing the XML index to aid in joining across docu-

ments. In all of our chosen XML schemas, we maintain some normalization. For example,

all of our schemas keep PART and LINEITEM unnested. To find the name of a part given

a specific lineitem, we must do a standard join. In this section, we compare two types of

joins—index nested loops join using the XML index, and DB2’s hash join. In Figure 2.9,

we show results for TPC-H query 5—the Local Supplier Volume Query. This query joins
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six of the eight tables using a total of six equijoin predicates. The extra join ensures that

the supplier and customer are from the same nation. Here, we have normalized the results

to the execution time for the Relational schema. For this query, utilizing the XML index

provides a very tangible benefit. The Unnest schema shows a much larger improvement

over the hash join plan than the Nest2 schema, with both schemas at about 3 times the

relational query time when the XML index is used. In the Hash Join case, the Unnest2 per-

forms better because the plan executed still takes advantage of the nesting of LINEITEM

in ORDERS, thereby obviating a very expensive join.

These results show that our immature ROX prototype can achieve performance within a

factor of three of a mature relational database system for an important category of queries.

With proper tuning and optimization of the storage format, XML navigation, and XML

index utilization, even better results could be obtained.
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2.6 Conclusions/Future Work

In this chapter, we have discussed an alternate solution to the problem of integrating

relational and XML data sources to support both new XQuery and legacy SQL queries.

We called this solution the ROX model, and described the architectural tradeoffs involved.

Our solution allows existing SQL applications to continue to run unmodified, and allows a

gradual transition of some or all data to the XML storage format. We created a prototype

to compare the performance of the ROX model to the standard relational model, and found

that it can compete for an important class of queries. We found that the choice of the XML

schema to represent the relational data can have a profound impact on performance. Also,

by utilizing an index over the XML storage, we could achieve performance within a factor

of three of a mature relational DBMS for queries with many joins.

Many research questions remain open for future work. Updates in a native XML storage

system can pose problems such as document order anomalies and subtree locking issues.

Further, an XML update standard (or even a candidate specification) does not yet exist. It

would be interesting to consider the ROX model as the XML update standard is created.

Storage overheads associated with general native XML stores are a significant source of

performance problems when using the ROX model to perform sequential scans. Identifying

ways to store XML compactly and exploring tree storage alternatives based on document

access patterns are interesting areas for future research.

For a given query workload and XML schema, we could utilize the query optimizer to

create alternate plans that would be possible if a different XML schema was available, and
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use this information to automatically suggest a better XML schema for that query workload,

much as was done in DB2’s Index Advisor [38] and Design Advisor [41].

Resolving these questions will bring us closer to the time when XQuery and SQL

queries can both be processed efficiently against both structured and semistructured

databases.
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Chapter 3

A Comparison of C-Store and Row-Store in a Common
Framework

Recently, a “column store” system called C-Store has shown significant performance

benefits by utilizing storage optimizations for a read-mostly query workload. The authors

of the C-Store paper compared their optimized column store to a commercial row store

RDBMS that is optimized for a mixture of reads and writes, which obscures the relative

benefits of row and column stores. In this chapter, we describe two storage optimizations

for a row store architecture given a read-mostly query workload—“super tuples” and “col-

umn abstraction.” We implement both our optimized row store and C-Store in a common

framework in order to perform an “apples-to-apples” comparison of the optimizations in

isolation and combination. We also develop a detailed cost model for sequential scans

to break down time spent into three categories—disk I/O, iteration cost, and local tuple

reconstruction cost. We conclude that, while the C-Store system offers tremendous perfor-

mance benefits for scanning a small fraction of columns from a table, our optimized row

store provides disk storage savings, reduced sequential scan times, and low additional CPU

overheads while requiring only evolutionary changes to a standard row store.
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3.1 Introduction

Recently, a column-oriented storage system called C-Store [36] has shown provocative

performance results when compared to a commercial row-oriented DBMS. Their compari-

son of the read-optimized C-Store ideas to a write-optimized commercial DBMS obscures

the relative benefits of row and column storage for read-mostly workloads. For example,

one sequential scan query in the C-Store evaluation takes 2.54 seconds for C-Store while the

DBMS takes 18.47 seconds—even with a materialized view that directly answers the query.

In this chapter, we show that the row store can also be optimized for a read-mostly query

workload, and the query above can be run in as little as 1.42 seconds with our optimized

row store. In an attempt to shed light on the comparison between the two, we implement

both a read-optimized row store and the C-Store system in a common framework.

The C-Store architecture uses several main techniques to improve performance when

compared to current commercial relational systems. First, C-Store stores each column of

a relation separately on disk. In this way, scanning a small fraction of the columns from a

relation with many columns saves disk I/O. Second, it carefully packs column values into

large page-sized blocks to avoid per-value overheads. Third, C-Store uses a combination of

sorting and value compression techniques to further reduce disk storage requirements. Both

the page packing and sorting/compression techniques are an attempt to trade decreased I/O

for increased CPU utilization.
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The performance evaluation presented in the C-Store paper uses a modified TPC-H [18]

schema and query workload to measure the combined effects of their performance improve-

ment techniques. The reported results are very impressive—the C-Store system provides a

significant performance improvement compared with a commercial row store. Although the

commercial row store compares poorly, an optimized row store can benefit from most of the

same performance techinques proposed for the C-Store system. Specifically, our optimized

row store uses both careful page packing, which we call “super tuples,” and sorting to en-

able compression, which we call “column abstraction.” The remaining technique—column

storage—is the primary difference between row- and column-oriented storage. Careful

page packing is particularly low-hanging fruit for a row store. Enforced sorting of the rela-

tion and storing repeating values only once to save space is slightly more effort, as it breaks

the one-to-one mapping of the logical relational schema to the physical tuple on disk.

The main contributions of this chapter are as follows:

• We provide descriptions of the “super tuple” and “column abstraction” performance

techniques to optimize for a read-mostly query workload.

• We build a software artifact to evaluate these performance improvements for both

the row and column stores in isolation and in combination, using a common storage

manager. Our experiments vary tuple width, number of rows, level of sorting and

column abstraction, and number of columns scanned to identify performance trends.
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• We propose and validate a formal cost model for sequential scan for both row and

column storage. The model takes into account the storage improvements and their

effects on performance by identifying three factors which contribute to overall scan

time. We compare the model predictions with our experimental results. We also use

the model to forecast the behavior of systems and scenarios to gain further insight

into performance trends.

The rest of the chapter proceeds as follows. In Section 3.2, we present the storage op-

timizations and implementation details. Section 3.3 describes our experimental prototype

and evaluates the storage optimizations in isolation and combination to discover perfor-

mance trends. We then develop our formal cost model, with validation and forecasting,

in Section 3.4. We describe related work in Section 3.5, and offer conclusions and future

directions for research in Section 3.6.

3.2 Storage Optimizations

In this section, we describe the “super tuple” and “column abstraction” optimizations

for the row store architecture. To illustrate the effects of each storage option, we will use

an instance of a materialized view defined in the C-Store [36] paper. The view is based on

a simplified version of the schema from the TPC-H benchmark [18], and is defined using

SQL as follows:

CREATE VIEW D4 AS

SELECT L RETURNFLAG, C NATIONKEY, L EXTENDEDPRICE

FROM Customer, Orders, Lineitem

WHERE C CUSTID = O CUSTID
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L RETURNFLAG C NATIONKEY L EXTENDEDPRICE

A 3 23
A 3 34
A 9 64
N 3 88
N 14 49
R 9 16
R 9 53
R 9 7
R 11 63
R 21 72
R 21 72

Table 3.1Example instance of materialized view D4

AND O ORDERID = L ORDERID

ORDER BY L RETURNFLAG, C NATIONKEY;

The definition is identical to the view called D4 in the C-Store paper with the exception

of the secondaryORDER BY on theC NATIONKEY column. Table 3.1 contains an instance of the

D4 view that we use in all examples for this section. Figure 3.1(a) shows how a standard

row store would layout the first few rows of the D4 view on a disk page.

3.2.1 Super Tuples

All of the major DBMS products use a variant of the slotted page for storage of tuples

in a table. Slotted pages use an array of slots that point to the actual tuples within the

page. Typically each tuple is prefaced by a header that provides metadata about the tuple.

For example, metadata in the Shore storage manager [15] includes the type of tuple (small

or large), the size of the user-specified record header, and the total size of the record if it

is larger than one page and split across disk pages. The tuple header is implementation

specific, but typically is 8-16 bytes in addition to the tuple’s slot entry.
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While the slotted page design provides a generic platform for a wide range of data

storage needs, these per-tuple overheads can be problematic. Even for an 80 byte tuple,

a 16 byte overhead is 20%. We reduce per-tuple overhead by packing many tuples into

page-sized “super tuples.” For fixed-length tuples, the super tuple is an array of tuple-sized

entries which can be indexed directly. For variable length tuples, the tuple length must be

stored. The super tuple design uses a nested iteration model, which ultimately reduces CPU

overhead and disk I/O.

An important side effect of using super tuples is that external addressability of indi-

vidual tuples is more difficult. Both the C-Store design and our optimized row store trade

the storage benefits derived from tight packing of values for additional overhead associated

with utilizing and maintaining value indexes. We present an analysis of the effects of super

tuples on index-based predicate evaluation in Chapter 4.

3.2.2 Column Abstraction

Sorting provides an opportunity for disk storage savings. If the database can guarantee

that tuples are retrieved from storage according to the sort order, we can store each unique

value in the sort column once and then store the remaining unsorted attributes separately,

according to the specific storage architecture. In this chapter, we use the term “column

abstraction” to describe the process of storing repeating values once. Disk space savings

are higher when the number of unique values in the sorted column is smaller.

The columns in a materialized view may come from different tables and be related to

each other by one or more join keys. For example, consider the one-to-many relationship
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L RETURNFLAG C NATIONKEY L EXTENDEDPRICE

A 3 23
A 3 34
A 9 64
N 3 88
N 14 49
R 9 16
R 9 53
R 9 7
R 11 63
R 21 72
R 21 72

Table 3.2Column abstraction encoding of data from Table 3.1. Only need to store
values in boxes – other values are implicit.
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between theC NATIONKEY and L EXTENDEDPRICE columns in our example D4 materialized

view. Even when D4 is sorted byL RETURNFLAG first, we can save space on disk by storing

C NATIONKEY once for each relatedL EXTENDEDPRICE. We show in Table 3.2 how the sort

column(s) for view D4 can be used to more efficiently encode the same data. We show

which values must be stored on disk by drawing boxes around them.L RETURNFLAG and

C NATIONKEY are sort attributes for D4 which allows us to store repeating values for each

attribute only once. Note thatC NATIONKEY is sorted only within each uniqueL RETURNFLAG

value, so we must store values such as3 and9 more than once. Figure 3.1(b) shows how

we layout pages in our optimized row store using column abstraction for view D4. Note

that storage needs have increased due to additional row headers for the abstracted columns.

In Figure 3.1(c), we show that combining super tuples with column abstraction creates a

more efficient disk page layout.

In general, a view may not specify an explicit sort. However, referential integrity con-

straints may specify an enforced one-to-many relationship between two or more tables in

the view definition. We use the referential integrity information to insert an implicit sort

on the columns from the one side of the one-to-many join(s). It is sufficent to sort on the

primary key of the “one” side of the join. If the view does not project the key, we sort by

all columns mentioned on the one side of the join. As an example, consider our instance

of view D4. With enforced one-to-many relationships for Customer to Orders and Orders

to Lineitem, we add a secondary sort on theC NATIONKEY column when the view is not al-

ready sorted by that column. This implicit sort opens up another opportunity to store the
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repeating column(s) only once to save space. Sorting must be performed only once during

population of the materialized view. At query runtime, scanning the view produces tuples

in the correct sort order without additional sorting.

3.2.3 Updates and Indexing

Both C-Store and our optimized row store pose problems for updates and indexing. This

is a result of a deliberate decision to optimize for scan-mostly read-mostly workloads. Our

goal in this section is not to prove that our optimized row store can be efficiently updated,

but rather, to mention that data in row-stores with our optimizations can be updated and

indexed, although the performance of these operations will not match their counterparts in

a standard row-store.

The super tuple and column abstraction optimizations create additional inconvenience

in processing updates for both C-Store and row stores. Inserting rows may force super tu-

ples to be rebuilt or split across two pages. Updates to existing rows may force several rows

in the table to be deleted and reinserted elsewhere. C-Store takes a “snapshot isolation” ap-

proach to handling updates in batch, and a similar technique can be used in our optimized

row store.

Indexing columns in tables optimized for read-mostly also presents implementation

challenges. C-Store only allows indexes on the primary sort column of each “projection”.

Their design allows updates to the index to be bounded to a specific range of values in the

index, as the values and pages containing those values are correlated by the sort. Indexes

on other columns of the table are possible for both C-Store and the optimized row store,
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but maintenance is expensive when table records move within a super tuple or are split to a

new page due to inserts.

3.3 Evaluation

To evaluate the performance benefits of specific storage improvements, we created an

experimental prototype. The prototype is designed to allow each storage optimization in-

troduced in Section 3.2 to be applied in isolation and in combination for both the row and

column stores. We report results for the column store only with the “super tuple” optimiza-

tion, since the per-value overheads are several times larger than the data itself without super

tuples.

We first provide a detailed description of the prototype. To calibrate the performance

of our C-Store implementation, we then compare our implementation to the C-Store sys-

tem [36] using query Q7 from the C-Store paper. Later in this section, we evaluate the

benefits of the “super tuple” optimization for the row store, sorting and run-length encod-

ing benefits for both the row and column stores, and finally the effects of combining the

optimizations. We focus on identifying performance trends that emerge rather than trying

to choose the “best” combination.

3.3.1 Experiments Description

We implemented the row store and column store architectures in a single prototype us-

ing Shore [15] as the storage manager. We implemented a sequential scan operator for the
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row and column stores that can operate over the super tuple and column abstraction opti-

mizations. We ran the experiments on a dual processor Pentium 4 2.4GHz Xeon machine

with 1GB of main memory running Fedora Core 3 with a stock 2.6.13 kernel. We created

a hardware RAID-0 volume using six 250GB disk drives to contain the data volumes. A

separate 250GB disk stored the system catalog information. Shore was configured to use a

32KB page size and a 512MB buffer pool. All reported results are the average of five runs.

By implementing all storage architectures and optimizations in a single prototype, our

goal is to hold performance variables constant while changing only the variable of interest.

Our prototype avoids memory copies from the buffer pool whenever possible. Shore offers

direct read-only access to data which allows us to minimize expensive copy-out operations.

In our C-Store implementation, we allocate 256MB in main memory to be divided

equally among the columns scanned for sequential prefetching of pages. For example,

when scanning8 columns, we sequentially read 32MB from each column during the scan.

Without prefetching, random I/O can easily dominate scan times for a column store when

reading a large number of columns. The necessity for page prefetching in a column store

is further motivated in [31].

We turned off locking and logging to match the settings used in the C-Store evalua-

tion [36]. We believe this is fair since an underlying assumption of both papers is a read-

mostly query workload and all queries being evaluated are read-only. We gathered results

for a cold Shore buffer pool and file system cache. We ran our experiments with warm

buffers as well, but do not report these results since the contribution of disk I/O to the total
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a1 a2 a3 a4

1 1 1 1
1 1 2 2
1 1 3 3
1 2 1 1
1 2 2 2
1 2 3 3
1 3 1 1

. . .
1 4 3 3
2 1 1 1
2 1 2 2

. . .

Table 3.3 Instance of Gen2 4 3 table with boxes around actual values stored. Sorted
by column a1 and a2

scan times does not change our analysis of performance trends. To eliminate file system

caching effects, we unmounted and remounted the data volume just before each cold run.

All data sets consist of rows of 4, 8, 16, and 32 integer columns with a varying number

of rows per data set. We synthetically generated the data to enable exploration of various

column abstraction choices. The data for each column is a simple sequence of integers,

starting at1. When a new level of column abstraction starts, the column values at each

lower level of abstraction reset and begin counting from1 again. See Table 3.3 for an

example. The frequency of each value within a column is important for column abstraction,

but the exact values do not matter.

To evaluate the effects of sorting and encoding techniques on sequential scan perfor-

mance, we generated data sets which provide encoding opportunities. Consider the 4-

column data set in Table 3.3. The rows are sorted first by column a1 and then by column a2.
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We call this data set Gen2 4 3, and it contains 24 rows in total. Recall from Section 3.2.2

that column abstraction is the process of storing repeating values from sort column only

once to save disk space. For the data set in Table 3.3, we have 2 unique values in column

a1 and 4 unique values in column a2. For each unique a2 value, we have 3 unique val-

ues for columns a3 and a4. We have drawn boxes around the values in the data set that

must be stored when using column abstraction. We use the name of the relation to describe

the number of unique values at each level of column abstraction. In this case, the name

Gen2 4 3 specifies three levels, and specifies2 ∗ 4 ∗ 3 = 24 tuples. Our experimental data

sets follow the same naming convention. The chosen data sets allowed us to measure the

effects of both constant rows and constant total data size for all tuple widths.

3.3.2 C-Store Query 7

To ensure that our implementation of C-Store had performance representative of the

system presented in [36], we acquired their code [37] and compared the performance of

their implementation of a column store with ours on our hardware. The result was that our

implementation of a column store was comparable to theirs. We present one representative

query as an example of the comparison. We ran query Q7 from their evaluation on our

benchmark hardware to establish a baseline. We also implemented query Q7 in our Shore-

based prototype, which is represented in SQL:

SELECT c nationkey, sum(l extendedprice)

FROM lineitem, orders, customer

WHERE l orderkey=o orderkey AND

o custkey=c custkey AND

l returnflag=’R’
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GROUP BY c nationkey;

We loaded their D4 projection (materialized view) and implemented the query plan ac-

cording to the method used by the C-Store system. We executed the query in our system

and theirs using our hardware. The hardcoded query plan for Q7 in the C-Store pro-

totype system assumes that the view is sorted by theL RETURNFLAG column, and that the

L RETURNFLAG column is run-length encoded. We ran the query in the C-Store prototype on

our benchmark hardware, and it took4.67s. By contract, our Shore-based C-Store imple-

mentation took3.95s for the same query plan, which provides evidence that our C-Store

implementation does not introduce overheads that would render the rest of our experiments

suspect. For comparison, the C-Store paper [36] reported a time of2.54s for their system

for query Q7 on their 3.0 GHz benchmark machine.

3.3.3 Super Tuple Effects

To show the benefits of the super tuple storage optimization, we performed two experi-

ments. First, we measured the effects of varying the number of columns per tuple scanned

when combined with the super tuple optimization. We then compared standard and super

tuple row storage by holding rows scanned and fields scanned constant.

3.3.3.1 Vary Columns Scanned

The primary benefit of the column store design is its ability to read only the data for

columns requested by a query. We show the effects of varying the number of scanned

columns in Figure 3.2. For both graphs, we scanned 8 million rows.
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Figure 3.2Execution times for varying number of columns scanned for an 8M row
table without abstractions for (a) 4-Column and (b) 32-Column tuples.
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In Figure 3.2(a), we used 4-column tuples and varied the number of columns scanned.

The standard row store takes more than twice the time of the super tuple row and column

stores. When scanning one column, we see the column store is faster than the super tuple

row store, but is slower for all other cases. Turning to Figure 3.2(b), we used a 32-column

tuple and scanned1, 8, 16, 24, and32 columns. In this case, the column store enjoys a

sizable performance edge over both the standard and super tuple row stores.

It is clear that C-Store performs extremely well when it scans a small fraction of the

total number of columns in the table. This result puts us in a quandry as to how to show

results for the remainder of the chapter; scanning a small fraction of the columns will show

the column store as relatively better performing for all cases, while scanning all columns

will show the row store in a more favorable light. We have opted to keep the optimiza-

tions separate and focus on performance trends for each storage choice individually. We

therefore will scan all columns for each tuple width in all remaining graphs. The intent is

to focus on the performance within each storage choice for a given storage optimization,

rather than the relative performance of row and column stores.

3.3.3.2 Constant Rows and Constant Fields

To demonstrate the benefit of using “super tuples” for a row store, we present two

graphs in Figure 3.3. We varied the number of columns per tuple in both graphs, but held

the number of rows constant in Figure 3.3(a) and the total number of fields constant in

Figure 3.3(b).
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When the number of rows is held constant, as in Figure 3.3(a), the amount of data being

scanned doubles as the tuple width doubles. We see that the scan times for all storage

choices are increasing as the tuple width increases. Interestingly, the standard row store

takes 13 seconds to scan 8 million 4-column tuples, but only 21.6 seconds to scan 8 million

32-column tuples. Although we have increase the amount of data by a factor of eight,

the scan time has not even doubled. Part of the reason the scan time does not increase

as expected is that disk requirements are augmented by per-tuple overheads. Shore’s per-

tuple overhead is 16 bytes, which is 100% of our 4-column tuple and 25% of the 32-column

tuple. Disk I/O costs alone are not enough to explain this behavior, however. We will revisit

this issue later in the chapter.

Figure 3.3(b) deals with varying the tuple width while the number of total fields remains

constant. Holding the number of fields constant as the tuple width increases implies that the

number of rows must decrease. We scanned 8 million 4-column tuples, but only 1 million

32-column tuples. We held the total number of fields(rows∗columns) scanned constant at

32 million. Again we saw that the super tuple row store is the fastest in all cases. In fairness

to the column store, these experiments were the worst case for that storage choice. We

expected that scan times for all storage choices would stay roughly constant for a constant

data size. While we saw constant scan times for the column store and the super tuple row

store, the scan times for the standard row store dramatically decreased as the tuple width

increased. Again, disk I/O is part of the story due to the elimination of 7 million per-tuple

overheads. We saw a crossover point between the standard row store and the column store
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just below the 16-column tuple mark due to the marked decrease in standard row store scan

costs.

For all of these experiments, we see that adding super tuples to standard row storage

makes a significant difference in execution time for sequential scan.

3.3.4 Column Abstraction Effects

We now turn our attention to the effects of column abstraction. We generated synthetic

data sets specifically to demonstrate how varying the amount of repeating data affects scan

performance. We expect scan times to decrease as we increase the number of columns and

the amount of data to be stored by using the column abstraction technique. To verify this

hypothesis, we present two graphs in Figure 3.4. We hold the number of fields scanned

constant at 32 million in both graphs.

Figure 3.4(a) shows three column abstraction choices for an 8 million row table with

4-column tuples. Gen8000000 uses no abstraction to provide a baseline for compari-

son. Gen20000010 4 stores three abstraction levels with one column in the first level

with 200000 unique values, one column in the second level with 10 values per first level

tuple, and two columns in the leaf level with 4 values per second level tuple. This ta-

ble is similar to the join cardinalities of Customer, Orders, and Lineitem from the TPC-

H schema, respectively. Gen10 4 200000 also has three abstraction levels, but has ten

unique values at the first level, 4 second level tuples per first level, and 200000 leaf tu-

ples per second level tuple. This table is more like the D4 view we used in Section 3.2

as an example, with LRETURNFLAG at the first level, CNATIONKEY at then second
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level, and LEXTENDEDPRICE at the third level. As the amount of abstracted data in-

creases, we see a general trend for the scan times of the column store and the super tuple

row store to decrease. Interestingly, the scan time for the standard row store increases from

Gen8000000 to Gen20000010 4. We recall that column abstraction increases the total

number of physical tuples for a row store. When combined with per-tuple storage overhead

in the standard row store, it becomes clear why scan time might increase for certain data

sets and abstraction levels.

The benefit of column abstraction with a standard row store depends on the number

of additional tuples created by the process more than the savings in disk I/O. If disk I/O

is the primary bottleneck, the standard row store should always be faster with column

abstraction, not slower in some cases as seen in Figure 3.4. We break down the total scan

time in Section 3.4 to identify the contributing factors.

3.4 Cost Model and Analysis

In Section 3.2, we presented the basic storage optimizations along with implementation-

specific details for row and column stores. In Section 3.3, we identified several performance

trends for the storage optimizations in isolation and combination. In this section, we de-

velop a cost model for sequential scans for several reasons. First, it will verify our under-

standing of the costs that determine the relative performance of a standard row store and

the super tuple row and column stores. Second, having an accurate cost model allows us
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to vary system parameters and/or properties of test data to forecast relative performance

without actually building additional systems or loading the data.

At the most basic level, sequential scan is the most important factor in determining

query performance. This is especially true when considering materialized views that have

been created to exactly match the needs of a given query.

3.4.1 Cost Model Details

Our cost formulae depend on several variables, which we present in Table 3.4. The units

for SEQIO, RDMIO, FC, andIC are “cost” units, which provide a basis for comparing

scan costs relative to one another.

Figure 3.5 details the cost model for sequential scan of the traditional row store. We

break each model down into three major contributing factors—disk I/O, iteration cost for

the storage manager, and local per-tuple reconstruction cost. Tuple reconstruction, when

necessary, consists of copying either a reference to the field value or the field value itself

if it is small. We scale disk I/O costs by the fraction of pages expected to be in the DBMS

buffer pool already. At the extremes,F = 1 when all pages must be read from disk and

F = 0 when all pages can be found in the buffer pool. A traditional row store must make a

call to the storage manager layer for each row in the table. If the per-iteration overhead is

high, these costs may even be significant when the buffer pool is cold.

Although column abstraction reduces or eliminates data duplication, the abstract

columns must be stored. For example, if we are storing columns from Customers and

Orders using column abstraction, we need to store a tuple for each Customer in addition to
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Var Description
SEQIO Cost of a single sequential I/O
RDMIO Cost of a single random I/O

|R| Size of storage (pages)
|P | Size of “super tuple” storage (pages)
||R|| Cardinality of table (tuples)
C Width of row (columns)
F Fraction of cold pages
S Number of columns being retrieved

FC Cost of function call
IC Cost of storage manager iteration
n Abstraction levels

(1 means all cols in leaf)
C(n) Columns in abstraction leveln
||L(n)|| Average cardinality of

abstraction leveln (tuples)
|BP | Size of buffer pool (pages)

PGSZ Usable size of disk page (bytes)
CSZ Column size (bytes)
OH Tuple overhead (bytes)

Table 3.4Cost Model Variables
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the tuple for each Order. However, using column abstraction may reduce the total number

of disk pages (|R|), which will reduce disk I/O costs. With no column abstraction, we will

haven = 1, C(1) = C and||L(1)|| = ||R||, which simplifies the iteration cost to||R||∗IC.

SeqScan(StdRowStore) = |R| ∗ SEQIO ∗ F (3.1)

+

(
n∑

i=1

i∏
j=1

||L(j)||

)
∗ IC (3.2)

+ ||R|| ∗ FC (3.3)

Figure 3.5Cost of sequential scan for standard relational storage with contributions
from (3.1) Disk I/O (3.2) Storage manager calls, and (3.3) Local per-tuple overhead

We provide a cost model for the “super tuple” row store in Figure 3.6. We base disk

I/O and storage manager calls on the number of packed pages. The improvement in storage

manager calls is the primary benefit of the super tuple row store, especially for small tuples.

Finally, we provide the cost model for our “super tuple” column store in Figure 3.7.

We make several assumptions in this cost model. First, we assume that disk storage is

uniformly distributed among the columns, which is certainly not true when a column is

run-length encoded. We also assume a uniform distribution of per-column contribution to

the cost of local tuple reconstruction. Finally, we model prefetching of column data pages

in accordance with our prototype implementation, as described in Section 3.3.1.

In Figure 3.8, we present a model for estimating the number of pages required to store

a table based on the number of rows, columns, and average column size. These formulae



64

SeqScan(SuperRowStore) = |P | ∗ SEQIO ∗ F (3.4)

+ |P | ∗ IC (3.5)

+ ||R|| ∗ FC (3.6)

Figure 3.6Cost of sequential scan for “super tuple” relational storage with
contributions from ( 3.4) Disk I/O, (3.5) Storage manager calls, and (3.6) Local

per-tuple overhead

|PS| =
S

C
∗ |P | (3.7)

|PC| =
|BP |/2

S
(3.8)

|RP | =
|PS|
|PC|

(3.9)

SeqScan(SuperColumnStore) = (|RP | ∗RDMIO + (|PS| − |RP |) ∗ SEQIO) ∗ F

(3.10)

+ |PS| ∗ IC (3.11)

+
S

C
∗

n∑
i=1

(
C(i) ∗

i∏
j=1

||L(j)||

)
∗ FC (3.12)

Figure 3.7Cost of sequential scan for “super tuple” column storage with
contributions from ( 3.7) Actual pages to scan, (3.8) Prefetch size per column, (3.9)
Total random I/Os, (3.10) Disk I/O, (3.11) Storage manager calls, and (3.12) Local

per-tuple overhead
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could easily be inverted to estimate row cardinality based on a measured (or sampled) count

of storage pages.ABSAV is a calculation of the reduction in size given information about

column abstraction. Note that the sum is from 1 ton − 1, soABSAV is zero without at

least one level of column abstraction.

ABSAV =
n−1∑
i=1

(
C(i) ∗ CSZ ∗

(
||R|| −

i∏
j=1

||L(j)||

))
(3.13)

|R| =
||R|| ∗ (OH + C ∗ CSZ)− ABSAV

PGSZ
(3.14)

|P | =
||R|| ∗ C ∗ CSZ − ABSAV

PGSZ
(3.15)

Figure 3.8Calculations of (3.13) expected reduction in storage pages from
abstraction, and resulting storage requirements for (3.14) regular and (3.15) “super

tuple” storage.

3.4.2 Model Validation and Prototype Performance Analysis

Our cost models attempt to capture performance trends as any set of variables change

given constant values for the remaining variables. Before we begin the validation of our

models, we must determine constant values for our prototype. Table 3.5 shows the values

we hold constant and the measured values we use forSEQIO, RDMIO, FC, andIC.

Their relative values were calculated from measurements taken during a scan using the

prototype system on our test hardware. The values would change given other hardware -

for example,SEQIO would increase relative toIC andFC if we had a single disk spindle

instead of the large RAID-0 array.
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Var Value
SEQIO 15000
RDMIO 450000

FC 6
IC 80
|BP | 16384 pages

PGSZ 32000 bytes
CSZ 4 bytes
OH 16 bytes

Table 3.5Prototype constant values for cost model variables

In Figures 3.9 and 3.10, we show the predicted relative and actual prototype perfor-

mance of scanning 4 and 16 columns, respectively, of the Gen8000000 relation for our

three page layouts. We see that the column store time increases as the number of column

being scanned goes up. The increase is due mostly to the per-tuple local reconstruction

cost. We also note that the cost of disk I/O decreases as the number of scanned columns

decreases, as expected. Finally, we note the extremely high cost of tuple iteration for the

standard row store. In contrast, tuple iteration is less than 1% of the total running time for

both the column store and the “super tuple” row store. The cost model seems to track the

three parts of total cost for both scans.

Figures 3.11 and 3.12 show the model prediction for scanning32 million fields of data

stored as8 million 4-column rows and1 million 32-column rows, respectively. In Fig-

ure 3.11 we again see the high iteration cost for the standard row store. In addition, the cost

for disk I/O is very high for the standard row store compared to the “super tuple” column

and row stores. Figure 3.12 tells a much different story. The model predicts that disk I/O is
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69

now roughly the same for each of the page layout choices. Iteration costs for the standard

row store are much lower, while tuple reconstruction has increased for the column store.

3.4.3 Model Forecasting

In Section 3.4.2, we validated our cost model against the Shore-based prototype system

we created for experimental evaluation. In this section, we will change variables in the cost

model to predict how systems with other characteristics would perform sequential scans.

3.4.3.1 Sensitivity to Iteration Cost

Our experimental evaluation and cost model analysis demonstrates that using the Shore

tuple iterator to scan a standard row store is CPU-bound. In fact, for our benchmark ma-

chine, iterating 1000 tuples on a page takes 5 times as long as reading the page from disk

into the buffer pool! If possible, reducing per-tuple iteration cost for read-mostly workloads

would provide a significant benefit even if no actual storage improvements are made.

Figure 3.13 shows the time for scanning 8 million 4-column tuples when theIC vari-

able is8 instead of the Shore value of80. The cost model predicts that a sequential scan of

all columns for the standard row store is now less than the column store scan time. Compare

this graph to Figure 3.11(a) to see how dramatic the difference is. Reducing the iteration

cost does not provide much performance improvement for the super tuple column and row

stores—their iterations occur only once per disk page, not once per tuple. In fact, choosing

the super tuple layout is a superior solution to reducing per-row iterator costs, since the

iteration cost is paid once per page regardless of the number of tuples on the page.
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3.4.3.2 Sensitivity to Tuple Width

Our experiments vary tuple width from 4 to 32 columns. Using the model, we can

forecast relative performance for the three storage formats for wider tuples. Figure 3.14

shows the cost model forecast for scanning 25% of the columns in 8 million tuples for

tuple widths of 64, 128, 256, and 512 columns. Our model predicts that the overhead of

tuple reconstruction for the column store increases until it is less expensive to scan using

the standard row store with no improvements somewhere between 256 and 512 columns.

As the tuple width increases, the number of tuples per page decreases and asymptotically

approaches 1.

Scan 8M rows 25% columns
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Tuple Width (columns)

R
e
la

ti
v
e
 C

o
st

Std Row
Super Col
Super Row

Figure 3.14Forecasted relative performance of scanning 25% of the columns of an
8M row table without abstractions as tuple width varies from 64 to 512 columns.
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3.5 Related Work

Optimizing storage of one-to-many joins to avoid redundancy has been explored in the

context of Non-First Normal Form databases. NFNF architectures allow nesting relations

by permitting relation attributes to be defined as a set of tuples conforming to an arbitrary

schema. In [33], Scholl et al. proposed a method for providing a logical relational view

of data to the user while transparently storing a hierarchical clustering of related tuples as

nested relations using a subset of the NFNF model for query optimization. Their proposal

achieves a result similar to column abstraction and super tuples. However, their proposal

is for base-table storage and not optimizing storage of materialized views. Further, their

evaluation does not provide a direct comparison to an optimized column store system.

In [9], Ailamaki et al. evaluate CPU and cache-related overheads of various data page

layouts, including row- and column-oriented choices. Their main contribution is a third

choice called PAX, which combines the two by storing each column of a relation on a

“minipage” within each physical disk page. PAX is effectively a column store within a row

store. We evaluate the effects of choosing PAX to aid in predicate evaluation over super

tuples in Chapter 4 of this thesis.

Fractured mirrors [31] store two copies of relations—one row-oriented and one column-

oriented—to provide better query performance than either storage choice can provide in-

dependently. The mirroring also provides protection against data loss in the event of disk

failure. The evaluation of the fractured mirrors work does not consider the column abstrac-

tion or super tuple optimizations of either the row or column stores.
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The Bubba system [17] used a novel combination of inverted files and a “remainder”

relation comprised of non-inverted attributes to store a relation. The inverted files are used

as a data compression technique for attributes which contain redundant values. The in-

verted files are similar to a true column-oriented storage system, and capture the benefits

of reducing disk I/O to improve sequential scan time. This work provides early motivation

for the C-Store system for both column-at-a-time storage and data compression.

3.6 Conclusion

While prior work on column storage has clearly demonstrated the performance im-

provements it can deliver over row stores, the relative benefits of column stores and row

stores have been obscured because there was no comparison in a common implementation

framework. Further, several of the optimizations exploited by the C-Store proposal have

analogues in row stores, but these row store optimizations were not considered. In this

chapter, we have attempted to shed light on the comparison between the two by imple-

menting both in the same code base, and by defining and implementing the “super tuple”

and “column abstraction” optimizations in the row store.

We noted several performance trends in our experimental evaluation. First, we verified

the tremendous advantages of a column store system over a row store for workloads that

access only a fraction of the columns of a table. Second, the “super tuple” optimization

for the row store architecture appears to provide a significant performance benefit. Third,

column abstraction can be used effectively to reduce storage needs for all storage choices,
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although its benefit is limited for a row store when used in isolation without super tuples.

Finally, we showed that the contribution of CPU cost to total scan time can be a sizable

component for scans of tables in a standard row store given a reasonably balanced hard-

ware configuration with good sequential disk I/O performance, and that the super tuple

optimization reduces CPU utilization in this case. We used our cost model to forecast the

performance with a lightweight iterator and found that the row store architecture could be

improved significantly without any changes to the underlying storage.

Many areas for future research are apparent. The crossovers in scan performance be-

tween super tuple-based row and column stores suggests that automatic storage selection

for a given query workload would be beneficial for a system optimized for read-mostly

query workloads. The cost model we devleoped in this chapter can provide the basis for

creating a storage selection “wizard.” Note that selecting which views to materialize is an

orthogonal issue—once the correct set of views is selected, one must still decide among the

physical storage options.

We also note that column abstraction of one-to-many joins combined with super tuple-

based row storage seems an ideal solution for efficient reconstruction of shredded XML

documents or other complex entities. For normalized schemas which must frequently be

re-joined but do not change frequently, choosing a super tuple-based materialized view as

the primary storage for several tables in the schema may provide better performance.
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Chapter 4

Predicate Evaluation Strategies for an Read-Optimized Row
Store

In the previous chapter, we described the changes necessary to create a read-optimized

variant of the traditional relational row store. Specifically, the optimized row store uses

large disk pages, super-tuples to tightly pack tuples onto those pages and avoid per-row

overheads, and column abstraction to avoid duplication of data. We defined materialized

views to exactly answer the query workload to take full advantage of sequential I/O. While

it is always possible to have one materialized view per query, we may be able to save

significant disk space by noticing that several queries differ only by a WHERE predicate.

In fact, these queries may have a significant overlap in the rows required to produce the

answer. In this chapter, we evaluate several standard predicate evaluation techniques in the

context of a read-optimized row store. For highly selective predicates over a single column,

we explore using a value index strategy to evaluate equality and range predicates. In this

context, we add a lightweight slot array to each super-tuple to reduce CPU overheads and

compare with standard super-tuples. For less selective predicates, we compare super-tuple

storage with the PAX storage layout.
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4.1 Introduction

The main contributions of this chapter are as follows:

• We describe the scan and index-based predicate evaluation strategies for super tuple

storage, and storage layout alternatives such as PAX [9] and a lightweight slot array

that can accelerate predicate evaluation.

• We extend our software artifact to include support for PAX, super tuples with slot

arrays, and value indexes over super tuple columns. Our experiments vary predicate

selectivity, tuple width, and column abstraction properties to identify performance

trends.

• We propose and validate a formal cost model for sequential scan and index-based

predicate evaluation over super tuples, with and without slot arrays, and PAX storage.

We compare the model predictions with our experimental results.

We are able to draw several conclusions from the experimental evaluation:

• Sequential scan-based predicate evaluation over super tuple storage is cost-

competitive with both PAX and index-based strategies.

• Index-based evaluation strategies are effective only for very highly selective

predicates—i.e., less than 1% selective.

• As column abstraction increases, index-based plans become less attractive due to

decreasing scan-based evaluation costs.
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• PAX storage layouts provide significant cache locality benefits for predicate evalua-

tion, but require expensive tuple reconstruction and hurt performance for full scans.

The rest of this chapter proceeds as follows. In Section 4.2 and 4.3, we describe pred-

icate evaluation for super tuple storage that utilize scan- and index-based strategies, re-

spectively. We develop the cost model in Section 4.4. We show experimental results in

Section 4.5, and we conclude in Section 4.6.

4.2 Scans with Selection Predicates

In this section, we describe scan-based predicate evaluation for super tuples, and issues

that affect evaluation performance. We also discuss an alternative page layout called PAX,

as defined by Ailamaki et al. in [9]. Finally, we consider the combination of PAX and

column abstraction.

4.2.1 Scanning Super Tuples

The design of super tuples for row-based storage allows us to maximize the benefits

of sequential scan of disk resident pages through the use of a large disk page size, tight

packing of values on the page, and column abstraction when possible.

4.2.1.1 Design Issues

Tight value packing can save several bytes per tuple. For example, consider a tuple

containing a 1 char field, a 4-byte int, another 1 char field, and a 2-byte short int. If we

use traditional word alignment techniques to ensure aligned access to these attributes later,
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we would waste a total of 4 bytes for each tuple. The wasted space would require 50%

more disk pages for storage of a relation stored in this manner. With tight value packing,

no space is wasted at the expense of misaligned memory reads.

The cost of misaligned reads is small compared with the cost of additional disk I/O.

However, as our disk needs decrease, it stands to reason that disk pages are more likely

to be in a warm memory cache. When the pages are memory resident, the misalignment

penalty looks much worse as a percentage of the total scan time.

When super tuples are combined with column abstraction, misalignment can occur even

when tuples contain only 4-byte integers. We store a 1-byte “chunk ID” to identify what

columns follow. The “chunk ID” is stored inline with the super tuple storage, and thus

causes misalignment due to tight packing.

4.2.2 PAX

An alternative storage layout called PAX [9] addresses these alignment concerns. PAX

is a “column store within a row store” design. All columns for a set of tuples are stored on

a single disk page, but the values within each column are stored together. The name “PAX”

stands for Partition Attributes Across.

The PAX design provides two benefits and one detriment. The first benefit is de facto

value alignment. Since we are grouping like-type values together, we get automatic align-

ment as long as the first value in each column is aligned correctly. Note that alignment

is only beneficial when the column datatype is a multiple of the word size for the CPU.

The second benefit, however, is the real design win for PAX. When evaluating a selective
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predicate over a PAX column, many values in that column fit in a single L1 cache line.

The processor can access memory in the L1 cache much faster than L2 or main memory.

Thus, a highly selective predicate can be evaluated very efficiently, and cache misses due

to columns not needed for predicate evaluation can be minimized.

The downside to the PAX design is one of tuple reconstruction cost. Since the tuples

have been physically partitioned across the disk page, a new page of tuples satisfying the

predicate must be created. Even if we copy out tuples from normal super tuple storage, the

PAX tuples are more expensive to rebuild for the same reason that a one column predicate

can be evaluated more quickly—cache misses.

4.2.2.1 PAX with column abstraction

PAX is easily extended to utilize column abstraction. Page layout proceeds as described

in Section 3.2.2, with all columns being partitioned per the PAX design. The only exception

is that we must encode the run-length for each level of column abstraction. We store the

run-length and “chunk ID” information in a special meta-column on the page. For exam-

ple, consider column abstraction for a materialized view containing Customer, Orders, and

Lineitem. We may have a Customer that has 5 Orders, and the orders have 2, 4, 5, 7, and

3 Lineitems, respectively. We would store C5O2O4O5O7O3 to encode the run-lengths.

Note that Lineitem is not represented in the run-length encoding, since leaf chunks do not

repeat. We can infer that the page contains2 + 4 + 5 + 7 + 3 = 21 tuples.

Predicate evaluation over an abstracted PAX column should provide additional runtime

savings, as many tuples can be eliminated (or qualified) with a single comparison.
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4.3 Indexing Strategies

In Section 4.2, we described layout choices for scan-based predicate evaluation. In this

section, we describe using a non-clustered value index as a predicate evaluation alternative

for super tuple storage.

4.3.1 Super Tuple Layout

A typical value index contains pairs of attribute values and a record ID identifying

the originating tuple. For highly selective predicates, using a value index to identify and

retrieve satisfying records can be a cost effective alternative to a scan-based predicate eval-

uation strategy. Many factors determine when the index plan is better, such as clustering,

buffer cache “warmth”, and relative costs of sequential and random I/O. Previous heuris-

tics suggest that the index plan will be beneficial only below 10% selectivity [34], and in

practice the number is less than 4%.

Our read-mostly optimized storage layout reduces the benefits of index-based predi-

cate evaluation even further. Larger disk pages force us to load even more irrelevant data

for “rifle-shot” style or unclustered range index lookups. As mentioned in Section 3.2.1,

one side effect of the super tuple layout is external addressability of tuples on the page is

difficult. At best, we can construct a record ID consisting of a page number and a “scan

ordinal” for use in an index.
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4.3.2 Super Tuple Slot Array

We eliminated the slot array for our read-mostly storage optimizations as a space sav-

ings measure. Our justification is that read-mostly implies scan-mostly, and the slot array

is unnecessary when each page is scanned completely most of the time.

In reality, the space of layout choices between write-optimized and read-optimized stor-

age is a continuum. Adding a lightweight slot array to super tuple storage would aid index

lookups at the expense of slightly longer scan times and increased disk usage. Our slot

array would be three bytes per tuple—two byte integer offset for the start of the record, and

one byte to hold the “chunk ID”. We move the chunk ID to the slot array to allow more ef-

ficient discovery of the chunks necessary to reconstruct a tuple. Remember that our storage

is ordered within each page. If we index a column from a Lineitem chunk, we must find

the Orders and Customer chunks to complete the tuple during an index lookup. The record

ID from the Lineitem attribute value index would tell us how to find the Lineitem chunk.

We can simply scan the slot array backward to find the Orders and Customer chunks that

precede the indexed Lineitem chunk in scan order. Note that this strategy only works when

records are fully contained within a single page.

4.4 Cost Model

In this section, we present a detailed cost model for both scan-based and index-based

predicate evaluation. Our cost formulae depend on several variables, which we present in

Table 4.1. The units forSEQIO, RDMIO, FC, andIC are “cost” units, which provide a
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basis for comparing scan costs relative to one another. New variables includef to represent

the selectivity of the predicate being evaluated, andL1miss to represent the cost of a

memory reference that misses in the L1 data cache.

4.4.1 Scan-based evaluation

We first develop cost models for scan-based predicate evaluation. Figure 4.1 shows

the model details for standard super tuple storage. The contributing costs are similar to

the straight sequential scan costs presented in Figure 3.6. However, we have an additional

predicate evaluation cost on line 4.3, and per-tuple overhead is reduced by the selectivity

of the predicate on line 4.4.

SeqScanPred(SuperTuple) = |P | ∗ SEQIO ∗ F (4.1)

+ |P | ∗ IC (4.2)

+ ||R|| ∗ (comp + L1miss) (4.3)

+ f ∗ ||R|| ∗ FC (4.4)

Figure 4.1Cost of scan-based predicate evaluation for “super tuple” relational
storage with contributions from (4.1) Disk I/O, (4.2) Storage manager calls, (4.3)

Predicate evaluation, and (4.4) Local per-tuple overhead

Figure 4.2 presents the cost model for PAX storage. To make the comparison to super

tuple storage more clear, we present this model as a delta of the standard super tuple cost

model, as shown on line 4.5. On line 4.6, we show the reduction in cost due to L1 cache lo-

cality of the values necessary for predicate evaluation. Note that the constant0.875 reflects
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Var Description
SEQIO Cost of a single sequential I/O
RDMIO Cost of a single random I/O

|R| Size of storage (pages)
|P | Size of “super tuple” storage (pages)
|Q| Size of slot array storage (pages)
||R|| Cardinality of table (tuples)
C Width of row (columns)
F Fraction of cold pages
f Selectivity of predicate

L1miss Cost of L1 miss to L2 cache
S Number of columns being retrieved

FC Cost of function call
IC Cost of storage manager iteration
n Abstraction levels

(1 means all cols in leaf)
C(n) Columns in abstraction leveln
||L(n)|| Average cardinality of

abstraction leveln (tuples)
|BP | Size of buffer pool (pages)

PGSZ Usable size of disk page (bytes)
CSZ Column size (bytes)
OH Tuple overhead (bytes)

Table 4.1Cost Model Variables
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our assumption that eight attribute values fit in each L1 cache line. In a more general cost

model, this constant would be calculated based on the size of the datatype of the column.

Finally, on line 4.7 we have the increase in tuple reconstruction cost due to the partition-

ing of attributes across the page. In Section 4.4.3.1, we will show graphs that predict the

behavior of scan-based predicate evaluation for super tuples and PAX.

SeqScanPred(Pax) = SeqScanPred(SuperTuple) (4.5)

− 0.875 ∗ ||R|| ∗ L1miss (4.6)

+ f ∗ ||R|| ∗ S ∗ L1miss (4.7)

Figure 4.2Cost of scan-based predicate evaluation for PAX storage with
contributions from ( 4.5) Base super tuple evaluation cost, (4.6) Reduced evaluation

cost, and (4.7) Increased tuple reconstruction cost

4.4.2 Index-based Cost Model

We now turn our attention to a cost model for index-based predicate evaluation over

super tuple storage. In Figure 4.3, we introduce several variables that will be used in the

cost models. First is a variablek to represent the number of rows to be retrieved from

storage. The second variable is|Q|, to represent the number of pages required for the super

tuple storage with a slot array. As in Figure 3.8, we useABSAV to represent the reduction

in size afforded by column abstraction. The third calculated variable is|RP |, to represent

an estimation of the number of disk pages from the relation to be retrieved via random I/O.

We use the Cardenas estimate [14] for this purpose. Yao [39] developed a more refined
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estimator for page retrieval in this context, but acknowledges that the error in the Cardenas

estimate is “practically negligible” for large blocking factors. Super tuples are an attempt

to maximize the blocking factor||R||
|P | , so we use the slightly simpler Cardenas estimator.

Finally, |RQ| is the Cardenas estimator for retrieval of slot array pages.

k = df ∗ ||R||e (4.8)

|Q| =
||R|| ∗ (2 + C ∗ CSZ)− ABSAV

PGSZ
(4.9)

|RP | = |P | ∗

(
1−

(
1− 1

|P |

)k
)

(4.10)

|RQ| = |Q| ∗

(
1−

(
1− 1

|Q|

)k
)

(4.11)

Figure 4.3Common factors for index-based predicate evaluation, including (4.8)
Number of rows to be retrieved from storage, (4.9) Number of pages for slot array
storage, (4.10) Cardenas estimate of super tuple pages to be retrieved, and (4.11)

Cardenas estimate of slot array pages to be retrieved

The cost model for index-based predicate evaluation for standard super tuples is pre-

sented in Figure 4.4. On line 4.13, we detail the penalty associated with not having a slot

array on the page. The value||R||
2∗|P | ∗ (comp + L1miss) represents the average case cost

of scanning the page to find the tuple referenced in the index leaf entry record ID. Even if

k = 1, the average scan cost is a reasonable guess for any page selected from an unclustered

index.

The cost model for index-based predicate evaluation for super tuple pages with slot

arrays is presented in Figure 4.5. Although the slot array allows us to avoid the scan penalty,
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IndexPred(SuperTuple) = F ∗ |RP | ∗RDMIO (4.12)

+ k ∗
(

IC +
||R||

2 ∗ |P |
∗ (comp + L1miss)

)
(4.13)

+ k ∗ FC (4.14)

Figure 4.4Cost model for index-based predicate evaluation for standard super tuple
storage, with contribututions from (4.12) Disk I/O, (4.13) Storage manager calls and

page scans to find referenced tuples, and (4.14) Local per-tuple overhead

the predicate may require more random I/Os due to the increase in pages required to store

the relation with the slot array.

4.4.3 Cost Model Graphs

In this section, we present and analyze several graphs based on the cost model for

predicate evaluation over super tuples. Our constant values representing measurements

from our prototype are presented in Table 4.2. We present graphs for scan-based evaluations

in Section 4.4.3.1, followed by index-based evaluations in Section 4.4.3.2. All graphs have

arbitrary “cost units” on the Y axis. The cost model does not output time-based values.

We label the Y axis with Relative Cost to underscore that the costs can be compared to

each other for the same set of input variables, but not across graphs or directly to measured

execution times.
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IndexPred(SuperTupleWithSlots) = F ∗ |RQ| ∗RDMIO (4.15)

+ k ∗ IC (4.16)

+ k ∗ FC (4.17)

Figure 4.5Cost model for index-based predicate evaluation for super tuple storage
with a slot array, with contribututions from ( 4.15) Disk I/O, (4.16) Storage manager

calls, and (4.17) Local per-tuple overhead

Var Value
SEQIO 15000
RDMIO 450000

FC 6
IC 80
|BP | 16384 pages

PGSZ 32000 bytes
CSZ 4 bytes
OH 16 bytes
comp 0.1

L1miss 0.5

Table 4.2Prototype constant values for cost model variables
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4.4.3.1 Scan-based Estimates

In Figure 4.6, we present the cost model estimate for scan-based predicate evaluation

of 4-column and 32-column tuples for a variety of selectivity values. The estimate is based

on a completely warm buffer pool to highlight the effects of the PAX layout. We notice

that PAX is estimated to be the best layout for both cases when the percentage of tuples

selected by the predicate is low. As the percentage increases, standard super tuples become

the best choice. The main difference between the two graphs is where the crossover point

occurs. We estimate the crossover at about 20% selectivity for 4-column tuples, while it

occurs at less than 5% selectivity for 32-column tuples. It seems that PAX incurs more of

a penalty for wider tuples.

4.4.3.2 Index-based Estimates

In this section, we present estimates for index-based evaluation over super tuple storage,

with and without a slot array on the page. Figure 4.7 shows the cost model predictions for a

cold buffer pool, while Figure 4.8 presents the same pair of graphs for a warm buffer pool.

We show results for both 4-column and 32-column tuples again for varying selectivity.

When we have a cold buffer pool, as in Figure 4.7, we see that disk I/O costs are the

dominant factor. In fact, for the 32-column case, our estimate is that the costs are the same

with or without the slot array. However, we estimate that the layout without a slot array will

perform better for 4-column tuples. This may seem surprising at first blush, considering

the increased scan time to find the actual tuple referenced without a slot array. However,
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Figure 4.6Cost model prediction for varying selectivity of Super Tuple and PAX
storage using using (a) 4-Column and (b) 32-Column tuples.
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for one million 4-column tuples, we have|RP | = 532 and|RQ| = 594, which gives the

storage without a slot array a 10% advantage in disk I/O.

The warm buffers case, as shown in Figure 4.8, is another matter entirely. In both cases,

storing the slot array is a clear win for both 4-column and 32-column tuples up to about 1%

selectivity. After that, it is better to scan the relation and evaluate the predicate on the fly.

4.5 Experiments

In this section, we discuss our experimental evaluation of scan-based and index-based

predicate evaluation strategies for super tuples. We also compare our cost model predic-

tions from Section 4.4 with the measured results.

4.5.1 Experiments Description

The experimental prototype used in this section is esentially identical to the system

described in Section 3.3.1. Rather than repeat the description, we simply describe the

changes necessary to perform our predicate evaluation experiments.

We utilize a synthetic dataset for all experiments, using a modified version of Gray’s

data generator as presented in [23]. We chose his generator to utilize the random distri-

bution of unique keys. Subsequently building an index on the random unique key column

allows us to use an index range scan of a subset of the keys to achieve random I/O behavior

for the index-based plans. All experiments use a relation of one million tuples.
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Figure 4.7Cost model prediction for varying selectivity of index-based evaluation for
super tuple storage with a cold buffer pool using using (a) 4-Column and (b)

32-Column tuples. Scan of super tuple storage provided as baseline.
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super tuple storage with a warm buffer pool using using (a) 4-Column and (b)

32-Column tuples. Scan of super tuple storage provided as baseline.
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We implemented PAX as described by Ailamaki et al. in [9]. In our prototype, however,

we use a lightweight tuple iterator for PAX pages instead of a Shore-based PAX iterator.

Avoiding per-tuple calls into Shore eliminates overheads that would cloud the comparison.

We added the lightweight slot array as an option for super tuple storage to the prototype.

When the slot array is present, the “chunk ID” byte is also stored in the slot array instead of

inline like normal super tuples. Indexes are provided by Shore, and are a standard B+-tree

variant with key/RID pairs at the leaf level.

4.5.2 Scan-based predicates

In Figure 4.9, we show how scan-based predicate evaluation execution time varies with

selectivity for both normal super tuples and the alternate PAX layout. We show the results

for a warm buffer pool only. When the buffer pool is cold, the cost of disk I/O dominates

both plans and the difference between the two layouts is negligible. PAX was designed to

take advantage of memory cache locality [9], and should be evaluated when data pages are

already in memory. Figure 4.9(a) shows the results for 4-column tuples. We note that the

PAX layout is the dominant plan for selectivities below approximately 40%, after which

the super tuple layout is the better choice. PAX requires tuple reconstruction for tuples

that satisfy the predicate, which explains why execution time increases faster for PAX

than it does for super tuples. Contrasting with the 32-column relation results shown in

Figure 4.9(b), we see that the crossover point occurs much earlier, before 10% selectivity.

As tuple width increases, PAX incurs a larger cost for tuple reconstruction. If a subset of
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columns are being projected in combination with a selective predicate, the PAX benefits

will increase.

We note that the general trends shown in Figure 4.9 are correctly captured by our cost

model, as shown in Figure 4.6. Our model is slightly agressive with where the crossover

points occur, due to a slight overestimation in the cost of tuple reconstruction. As selectivity

increases, the PAX minipages required to reconstruct each tuple are more likely to be found

in the L2 cache. Our simple cost model does not reflect this probability.

For highly selective predicates over a relation in main memory, PAX provides a sub-

stantial benefit for overall execution time without requiring additional on-disk storage. Due

to increased tuple reconstruction costs, however, standard super tuples are a reasonable al-

ternative. Further, super tuples represent a more “stable” scan time and may be preferable

when selectivity of predicates in the query workload is not known up front.

We also evaluated the effects of using column abstraction for both super tuples and

PAX. The results are presented in Figures 4.10 for abstraction typical of a materialized view

involving Customer, Orders, and Lineitem relations from TPC-H. The storage contains

25, 000 unique Customers,10 Orders per Customer, and4 Lineitems per Order. The results

for a predicate on the Customer column are somewhat surprising, as PAX is slower than

super tuples for all selectivities. Column abstraction is designed to reduce disk storage

costs, and therefore primarily benefits cold buffers. It does require additional CPU costs

for keeping track of the current tuple chunks within the page. Disqualifying a tuple at the

Customer level of abstraction does not remove the need to advance the currency pointers
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Figure 4.9Execution times for varying selectivity of Super Tuple and PAX storage
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into each minipage for PAX, and doing so requires reading the run-length and chunk ID

information. We have10 Orders per Customer, and each Order has Lineitems that must

be skipped. Column abstraction adds runtime overhead for PAX, and when the amount of

abstraction is small the primary benefit of PAX is removed.

A similar set of graphs in Figure 4.11 show results for a materialized view of columns

from Region, Nation, and Customer. More abstraction is possible for this dataset since it

contains10 unique Regions,4 Nations per Region, and25, 000 Customers per Nation. In

this case, column abstraction provides a significant benefit to PAX by reducing the number

of comparisons required to disqualify tuples, requiring minimal overhead to keep track of

minipage positions, and reducing tuple reconstruction costs due to reusing columns copied

from the Region and Nation abstraction levels. Figure 4.11(a) shows that PAX is better than

super tuples until around 80% selectivity for a predicate on the Region column. Crossover

points occur earlier for predicate on Nation and Customer columns.

4.5.3 Index-based Evaluation

We next present experimental results for index-based predicate evaluation over super

tuples. We vary selectivity for both 4-column and 32-column tuple widths. Results for cold

buffers are found in Figure 4.12, while Figure 4.13 details the results for warm buffers.

First, we will discuss the cold buffers case in Figure 4.12. As with our model predic-

tions from Figure 4.7, we see the standard super tuples (without a slot array) give superior

performance for 4-column tuples. Having a slot array does provide a benefit for the 32-

column tuple width, however. As with the model prediction, we see that the scan-based
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Figure 4.10Average execution times for storage of Customer, Orders, and Lineitem
columns in a materialized view using column abstration for PAX and Super Tuple

layouts with a predicate on a column from (a) Customer, (b) Orders, and (c)
Lineitem.
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Figure 4.11Average execution times for storage of Region, Nation, and Customer
columns in a materialized view using column abstration for PAX and Super Tuple

layouts with a predicate on a column from (a) Region, (b) Nation, and (c) Customer.
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approach is cost-competitive even for very highly selective predicates. Maintaining an in-

dex would be beneficial for “rifle-shot” queries such as looking up one Orders record.

Turning to the warm buffers case shown in Figure 4.13, we note that having a slot array

seems to always provide benefit. This result is in agreement with our model predictions

from Figure 4.8. The crossover point for the standard super tuple index plan seems to agree

with the model, but it would appear that our model underestimates the cost of the index

plan with a slot array.

Although index-based plans are rarely beneficial for super tuples above 1% selectivity,

they still provide a tremendous benefit for individual tuple lookups. In Figure 4.14, we

show average execution times for individual tuple lookups for both cold and warm buffer

pools. Each bar on the graph is an average of30 lookups randomly distributed throughout

the relation. We omit the scan-based alternative from these graphs due to the large differ-

ence in run times—please refer to Figures 4.12 and 4.13 to see the scan times. In the warm

bufferpool case, the large error bars for the Index cases show the downside to not having

a slot array. We also see that lookups with a larger tuple width are faster due to decreased

scan costs once the correct page from the relation is retrieved. In both cases, having a slot

array on the page provides superior performance.

4.6 Conclusion

In this chapter, we have evaluated two strategies for predicate evaluation of super tu-

ples. We first presented a scan-based approach, and presented the PAX storage layout as
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Figure 4.12Execution times for varying selectivity of index-based evaluation for
super tuple storage with a cold buffer pool using using (a) 4-Column and (b)

32-Column tuples. Scan of super tuple storage provided as baseline.
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Figure 4.13Execution times for varying selectivity of index-based evaluation for
super tuple storage with a warm buffer pool using using (a) 4-Column and (b)

32-Column tuples. Scan of super tuple storage provided as baseline.
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an alternative. We also detailed an index-based approach, and discussed the tradeoffs as-

sociated with introducing a lightweight slot array to accelerate index-based lookups into

super tuples. We developed and analyzed formal cost models for each evaluation approach,

and performed an experimental evaluation. We discovered that both PAX and the index-

based approaches can provide a runtime benefit for highly selective predicates. However,

standard super tuples provide reasonable and stable performance when used as a scan-only

storage format for predicate evaluation.
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Chapter 5

Conclusion

In this thesis, I have presented storage and query processing optimizations for

hierarchically-organized data. In this chapter, we discuss contributions made by this thesis,

potential applications of this work, and share some final words.

5.1 Contributions

The primary contributions of this thesis involve the motivation, implementation, and

evaluation of alternative system designs for storage and query processing of hierarchical

data. For the read-optimized relational store, we also provide a detailed and accurate cost

model to further aid in evaluation and cost forecasting.

The ROX prototype showed that relational query processing of XML data can be a

reasonable alternative to standard relational storage, especially when the data is stored

using a schema that matches the primary query workload access patterns.

The read-optimized relational store evaluation showed that significant storage and query

processing optimizations are possible in exchange for additional insert and update costs.

The row-oriented architecture is cost competitive with the column oriented design for most

queries, only bested when a small fraction of the columns are projected. We also discovered
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that scan-based predicate evaluation is cost competitive with index-based evaluation for

range predicates in a read-optimized relational store. For individual tuple lookups, having

a value index available provides the best performance.

5.2 Potential Applications

The storage optimizations proposed in my most recent work clearly provide benefits for

read-mostly query workloads. A natural next step is to design and build a storage selection

“wizard”. Given an input query workload and a logical relational schema, two approaches

are possible. First, hold the choice of storage (row- or column-oriented) and optimizations

constant and choose a set of materialized views which cover the query workload while

providing the best performance. Second, hold the set of materialized views constant and

choose the best combination of storage and optimizations. Note that the best storage choice

may be a combination of row- andcolumn-oriented structures. Adding a small update work-

load into the equation would likely change the decisions made by the wizard.

Hierarchically-organized data is pervasive in data and information flow. I would like

to investigate techniques for harnessing the flow of news and information on the Web and

providing both a personal and scalable lineage and provenance record for near and long

term recall purposes. For example, RSS feeds have become a widely used method for ag-

gregating news and personal interest information. Unfortunately, these views are extremely

transient—all of the story links may be gone within a day. Some limited historical archiv-

ing is possible with current RSS aggregators, but they cannot answer contextual questions.
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For example, which sites did I visit as a result of following an RSS link? Which unrelated

subjects were interesting to me in the same time frame? At the Internet scale, can we trace

the spread of news through RSS by following links back to the source? The provenance

of news can provide us with a metric for establishing a “seed-rank” to establish each feeds

reputation for either breaking news or simply linking to others. The graph created may also

discover cycles which expose sites that cite each other as references to establish credibility.

Although developing techniques and systems to answer these questions may be years away,

I believe that my techniques for efficiently storing and querying hierarchically-organized

data will play an important role.

5.3 Final Words

Mountains of data are being generated every day, and our ability to manage this data

continues to be a challenge. My work focusing on the management of hierarchically or-

ganized data can help with a subset of the problem. I would like to continue developing

techniques for managing data and systems to prove that these techniques are viable.
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