
Qubit Mapping and Routing via MaxSAT
Abtin Molavi, Amanda Xu, Martin Diges, Lauren Pick, Swamit Tannu, Aws Albarghouthi

University of Wisconsin-Madison, Madison, WI, USA
{amolavi, axu44, mdiges, lpick2, stannu, albarghouthi}@wisc.edu

Abstract—Near-term quantum computers will operate in a
noisy environment, without error correction. A critical problem
for near-term quantum computing is laying out a logical circuit
onto a physical device with limited connectivity between qubits.
This is known as the qubit mapping and routing (QMR) problem,
an intractable combinatorial problem. It is important to solve
QMR as optimally as possible to reduce the amount of added
noise, which may render a quantum computation useless. In this
paper, we present a novel approach for optimally solving the
QMR problem via a reduction to maximum satisfiability (MAXSAT).
Additionally, we present two novel relaxation ideas that shrink
the size of the MAXSAT constraints by exploiting the structure of a
quantum circuit. Our thorough empirical evaluation demonstrates
(1) the scalability of our approach compared to state-of-the-art
optimal QMR techniques (solves more than 3x benchmarks with 40x
speedup), (2) the significant cost reduction compared to state-of-
the-art heuristic approaches (an average of ∼5x swap reduction),
and (3) the power of our proposed constraint relaxations.

Index Terms—quantum computing, qubit mapping

I. INTRODUCTION

Quantum computers enable efficient simulation of quantum
mechanical phenomena, and therefore open up the door to
advances in quantum physics, chemistry, material design, opti-
mization, machine learning, and beyond. Unfortunately, near-
term quantum computers face significant reliability challenges
as quantum hardware is highly error-prone: quantum bits
(qubits) used for computation are sensitive to environmental
noise. Furthermore, implementing quantum error correction [1]
to detect and correct hardware errors requires thousands of
physical qubits, and therefore is unlikely to become viable
soon. In the meantime, near-term quantum computers with
several dozens of qubits are expected to operate in a noisy
environment without any error correction using a model of
computation called noisy intermediate-scale quantum (NISQ)
computing [2].

A critical problem in NISQ computing is laying out a logical
circuit onto a physical device with limited connectivity between
qubits. This is known as the qubit mapping and routing (QMR)
problem. Specifically, we can only apply two-qubit gates on
physically adjacent qubits, so we need to move (route) qubits to
physically adjacent locations. Qubit routing is a noisy process
that can be detrimental to successful execution. Thus, our goal
is to lay out the circuit in such a way that minimizes the
required routing.

Solving QMR optimally is known to be NP-hard [3]. Thus,
a majority of the proposed techniques have been heuristic in
nature, producing suboptimal results [4]. A small number of
techniques have been proposed for solving QMR optimally,
mostly by reducing the problem to optimizing an objective

This paper TB-OLSQ EX-MQT
0

20

40

60

80

100

be

nc
hm

ar
ks

 s
ol

ve
d

(o
ut

 o
f 1

60
)

(a) Number of benchmarks
solved

This paper TB-OLSQ EX-MQT
0

100

200

300

400

500

600

la
rg

es
t c

irc
ui

t s
ol

ve
d

(#
 tw

o-
qu

bi
t g

at
es

)

(b) Size of largest circuit solved

Fig. 1: Comparison against constraint-based tools

function subject to constraints, e.g., integer linear programming
or satisfiability modulo theories [5], [6], [7]. While such
constraint-based approaches produce optimal results with
minimum noise, they have not been scalable to larger circuits.

In this paper, we propose a novel constraint-based approach
that significantly advances the state of the art (see Fig. 1). We
believe that scaling constraint-based approaches is an important
problem for two reasons: (1) With heuristic QMR techniques,
one can easily add an unacceptable amount of noise for NISQ
computers, producing uninformative outputs. (2) Constraint-
based techniques present an optimal baseline with which to
evaluate the solution quality of heuristic algorithms, and can
therefore help us understand and improve their operation.

QMR as MAXSAT. Our primary insight is that we can reduce the
QMR problem to maximum satisfiability (MAXSAT) [8, Chapter
19]. MAXSAT is the optimization analogue of the Boolean
satisfiability (SAT) problem. While SAT solving is the canonical
NP-complete problem, the past two decades have witnessed
impressive advances in SAT solving with industrial-grade tools
applied at scale (e.g., at Amazon [9], SAT solvers are invoked
millions of times daily). MAXSAT solvers are typically simple
loops that repeatedly invoke a SAT solver to get better and better
solutions. Compared to other approaches that use satisfiability
modulo theories (SMT) solvers [5], [6], [7], MAXSAT solvers
are lighter weight as they do not require complex theory-solver
interaction. At a high level, we demonstrate that a MAXSAT
approach can and should be used for solving QMR constraints.

As summarized in Fig. 1, compared to state-of-the-art
constraint-based tools [5], [10], our approach can solve
significantly more QMR problems (∼3x) and scale to larger
circuits. In addition, our approach is an order of magnitude

local relaxation no local relaxation
0

20

40

60

80

100

be

nc
hm

ar
ks

 s
ol

ve
d

(o
ut

 o
f 1

60
)

(a) Number of benchmarks
solved

local relaxation no local relaxation
0

100

200

300

400

500

600

la
rg

es
t c

irc
ui

t s
ol

ve
d

(#
 tw

o-
qu

bi
t g

at
es

)
(b) Size of largest circuit solved

Fig. 2: Comparison against enabling local relaxation

faster (∼40x) than the fastest constraint-based tool. Compared
to state-of-the-art heuristic-based QMR tools, our approach
achieves an average of ∼3.6x to 7x reduction in the number of
inserted swap operations. Further, on ∼14% of the benchmarks,
our approach inserts no swap operations at all.

Sketching-like encoding. Our MAXSAT encoding is inspired by
program sketching [11], a program-synthesis paradigm where
a synthesizer automatically completes holes in a program. In
our setting, these holes are the routing operations—specifically,
SWAP gates that exchange the contents of two adjacent qubits.
We encode every possible SWAP as a Boolean variable, where
assigning the variable to true denotes performing a SWAP of a
specific pair of adjacent physical qubits. We therefore ask the
MAXSAT solver to minimize the number of SWAP variables set
to true.

Relaxation techniques. While solving MAXSAT constraints
results in an optimal QMR solution, for large circuits, the
MAXSAT solver may not be able to efficiently solve the
generated constraints. In this paper, we demonstrate a novel
relaxation of constraint-based solutions to QMR, which we
call locally optimal relaxation. The idea is to slice the circuit
horizontally into a number of consecutive subcircuits and solve
a set of smaller MAXSAT problems for each of them. We
demonstrate that our locally optimal relaxation can scale our
approach (as shown in Fig. 2) while still producing almost-
optimal results (as detailed in Section VII).

Additionally, we present a relaxation for efficiently mapping
cyclic circuits, like in quantum approximate optimization
algorithms (QAOA) [12]. Cyclic circuits are where the same
subcircuit is repeated more than once. Instead of generating
one big set of constraints for the entire circuit, we solve
a special set of MAXSAT constraints only for the repeated
subcircuit in isolation, and then stitch the subcircuits back
together to generate a mapping for the entire circuit. Our
results demonstrate that this relaxation can make our technique
scale to larger QAOA circuits.

Contributions. We summarize our contributions as follows:
• A novel constraint-based approach for optimally solving

the qubit mapping and routing problem via a reduction to
maximum satisfiability (MAXSAT).

1: cx q0,q1
2: cx q0,q2
3: cx q3,q2
4: cx q0,q3

q0 • • •
q1

q2

q3 •
<latexit sha1_base64="+pMnvf6N3c729p8pwigiLoFgBbE=">AAADPHicjZK7jtNAFIbHhoVsuGwCzUo0IyLQNkS2IwFNpEhpKBNELlIcRePJJDvK+JKZY1Bk5W14Dh5g26WhR6JYbUvN2HHuKTiSrU//ufr4eJHgCizrl2E+eHj26HHhvPjk6bPnF6Xyi64KY0lZh4YilH2PKCZ4wDrAQbB+JBnxPcF63qyZ+ntfmVQ8DL7AImJDn0wDPuGUgJZGZaPutimXNOaAG826zXzc+Fy3qu81pJZkb+wKBZzOkvnIWuK32KUgRWJv0clw/m0j1NaC6xYxPiyyygQip6m+CsRbPBJOFtn0XAfu1Mvw/8rUDsvsYPYp705Mm9dZjkoVq2plho/BzqGCcmuNSn/ccUhjnwVABVFqYFsRDBMi9TSCLYturFhE6IxM2UBjQHymhkn2n5f4jVbGeBJK/QSAM3U3IyG+Ugvf05E+gWt16EvFU75BDJOPw4QHUQwsoKtGk1hgCHF6NHjMJaMgFhoIlVzPiuk1kYSCPq29LvP8mNLN2Id7OIauU7VrVaftVBqX+Y4K6BV6ja6QjT6gBvqEWqiDqPHduDFujZ/mD/O3eWfer0JNI895ifbM/PsPVNztrg==</latexit>

(a) Original circuit

p0 p1 p2 p3
<latexit sha1_base64="ct2x9Mr4/jUCbG2D0n1RrQGNZ84=">AAACjXicbVFNbxMxEHWWrxI+msIFiYtFhNTDNtpNW8GBoCIOcKkUCmkrJavIO/FuR/F6jT2LSFf5VfyaXuGP4E1zIC0j2Xp6M88z85wahY6i6KoV3Ll77/6DrYftR4+fPN3u7Dw7dWVlQY6gVKU9T4WTCrUcEZKS58ZKUaRKnqXzj03+7Ie0Dkv9jRZGJoXINWYIgjw17RxPUpmjrgnnlwaBKiuX7Uluh4Iuxsf+Cv1zGf4cmPDkwyDuHYYnXwd78X5SH/g6qWcbymmnG/WiVfDbIF6DLlvHcLrT2p3MSqgKqQmUcG4cR4aSWlhCUM0olZNGwFzkcuyhFoV0Sb3ae8lfe2bGs9L6o4mv2H8VtSicWxSpryz8Ku5mriH/lxtXlL1NatSmIqnhulFWKU4lb0zkM7QSSC08EGDRz8rhQlgB5K3e6ELzy71U2tyv0t5IfAe0UCEtG7LxUGFqhV3UpnTY/A3qPOQZUghCgVd7b+ObTt4Gp/1evN/rf+l3j16sXd5iL9krtsti9oYdsc9syEYM2C92xX6zP8F2cBi8C95flwatteY524jg01/cB8kj</latexit>

(b) Physical qubit connectivity graph
MaxSAT constraints

set of hard and
soft constraints

p1 • • •
p0

p2 ⇥
p3 • ⇥

<latexit sha1_base64="POJwaXI3iymyZFwcmiB84qbfPZs=">AAADh3icfVJdS+NAFJ0mrh/dVasiLAjusEXxxZpUUF+ELr7so4pVoSllMp22QycfnblRS8i7f3F/wT76F3aSJtbWpRcC55575tyby3VDwRVY1p+SYS59WV5ZXSt//ba+sVnZ2r5XQSQpa9JABPLRJYoJ7rMmcBDsMZSMeK5gD+7wKq0/PDGpeODfwThkbY/0fd7jlICmOlulV+eGckkjDrhxdWkzDzduL63amQZlnEWMHaGA02Ecduxkwh1ih4IUsc4LWE80Gj3jImayqSjnHadc1KbuVlYFIvuzBouNi2SB8XvbQpj3+NAtzZyReibhvGiR8em88XTi7H+Ps4UVxrr6kibF9Jk+d006lapVs7LAn4GdgyrK47pT+et0Axp5zAcqiFIt2wqhHROpZxMsKTuRYiGhQ9JnLQ194jHVjrOTSfCBZrq4F0j9+YAz9uOLmHhKjT1XKz0CAzVfS8n/1VoR9C7aMffDCJhPJ416kcAQ4PT+cJdLRkGMNSBUcj0rpgMiCQV9pTNdRvldppux5/fwGdzXa/ZprX5Trza+5ztaRXvoJzpCNjpHDfQbXaMmoqU3Y9fYN36Ya+aJeWZeTKRGKX+zg2bC/PUP/pv4lQ==</latexit>

 Circuit with swaps

1: cx p1,p0
2: cx p1,p2
3: cx p3,q2
 swap p2,p3
4: cx p1,p2

Solution to MaxSAT problem is an optimal
(1) initial mapping from logical to physical qubits, and
(2) a modified circuit with inserted swap operations (routing)

q0 7! p1

q1 7! p0

q2 7! p2

q3 7! p3
<latexit sha1_base64="2tEjP3ZSPLudgN30ES/9P/iWDK0=">AAACRXicbZDLSsNAFIYnXmu8Rd0IbgaL4KokqaDLggtdVrAXaEKYTCft0MmlMxOhhD6Sz+EDuBJ07cqduNVpmkXa+sPAz3fO4cz5/YRRIU3zTVtb39jc2q7s6Lt7+weHxtFxW8Qpx6SFYxbzro8EYTQiLUklI92EExT6jHT80e2s3nkiXNA4epSThLghGkQ0oBhJhTzjTh97JnRClAgZw8SzHEcRq0TMnNglYuekXiJ13TOqZs3MBVeNVZgqKNT0jE+nH+M0JJHEDAnRs8xEuhnikmJGprqTCpIgPEID0lM2QiERbpYfPIUXivRhEHP1IglzWp7IUCjEJPRVZ4jkUCzXZvC/Wi+VwY2b0ShJJYnwfFGQMqiunKUH+5QTLNlEGYQ5VX+FeIg4wlJlvLBljCnHKZVTlYy1nMOqads1q16zH66qjdMiowo4A+fgEljgGjTAPWiCFsDgGbyCd/ChvWhf2rf2M29d04qZE7Ag7fcP+y2vvA==</latexit>

Initial map

Fig. 3: Running example and overview

• A locally optimal constraint relaxation based on circuit
slicing.

• A specialized constraint relaxation for cyclic circuits, e.g.,
as in QAOA.

• A thorough empirical evaluation demonstrating (1) the
scalability of our approach compared to state-of-the-
art constraint-based techniques, (2) the significant cost
reduction compared to heuristic approaches, and (3) the
power of our proposed constraint relaxations.

II. AN ILLUSTRATIVE EXAMPLE

In this section, we provide background on the qubit mapping
and routing (QMR) problem and walk through a running
example that motivates our approach.

QMR primer. Quantum computers typically support two kinds
of operations, single-qubit gates (e.g., NOT, analogous to a
bit flip), and two-qubit gates (e.g., CNOT, analogous to an
exclusive or). Due to various physical design constraints,
NISQ-era quantum computers support two-qubit operations
only between certain pairs of physical qubits as described
by a connectivity graph. Consider, for instance, the simple
connectivity graph in Fig. 3(b), which illustrates a small device
with four physical qubits, p0, . . . , p3. Edges between physical
qubits denote whether we can perform two-qubit operations
between them. For example, we can perform a two-qubit
operation over p0 and p1, but not p0 and p2.

In order to execute a quantum circuit on a particular device,
the compiler maps the logical qubits that appear in the circuit
to appropriate physical qubits such that every two-qubit gate
can be applied. Consider the circuit in Fig. 3(a); the first gate
is a CNOT between logical qubits q0 and q1 (denoted in the
assembly code on the right as cx q0,q1). Therefore, the logical

qubits q0 and q1 should be mapped to physical qubits that are
adjacent in the connectivity graph, e.g., physical qubits p3 and
p4 in the graph in Fig. 3(b).

Typically, a static initial map does not suffice and so the map
has to be transformed during circuit execution to accommodate
for other two-qubit gates later on in the circuit. This process,
called routing, is achieved by inserting SWAP operations, which
exchange the values of two connected qubits. For instance,
suppose we want to perform a two-qubit gate on p1 and p3.
They are not connected in the connectivity graph; therefore,
we need to bring them next to each other. One way to do so
is to swap the qubits p2 and p3.

Our goal is to solve the QMR problem optimally:

Find an initial map that requires the least routing (number of
swap operations to be inserted).

Each additional gate in the circuit increases the probability
of error. In particular, two-qubit gate error rates are significantly
higher than one-qubit gate error rates. In addition, two-qubit
gates such SWAPs have significantly longer gate latency, which
can make qubits prone to decoherence errors, so minimizing
the number of SWAPs is critical.

Our MAXSAT approach. Finding an optimal QMR solution is a
combinatorially challenging problem; indeed, it is NP-complete.
In this paper, we capitalize on the success of satisfiability (SAT)
solvers for finding satisfying assignments of Boolean formulas.
E.g., for a Boolean formula a ∧¬b, setting a to true and
b to false is a satisfying assignment. While the satisfiability
problem is the quintessential NP-complete problem, algorithmic
and engineering progress in satisfiability has made SAT solving
practical in many instances [8]. Since QMR is an optimization
problem, we use a MAXSAT solver, which builds upon a SAT
solver to find an optimal satisfying assignment.

Roughly speaking, given a circuit and a connectivity graph,
we generate a set of Boolean formulas (constraints) whose
optimal satisfying assignment corresponds to an initial mapping
of logical to physical qubits and a set of SWAP operations to be
inserted before each two-qubit gate. Specifically, the crucial bit
of our encoding is that we model all possible SWAP operations
as Boolean variables; for example, swap p0,p1 would have a
corresponding Boolean variable in every location it could be
placed in the circuit. Then, if a Boolean variable is assigned to
true in the solution to the MAXSAT problem, the corresponding
SWAP is inserted into the circuit; otherwise, it is not.

Fig. 3 provides an example of the QMR problem. The circuit
Fig. 3(a) applies two-qubit operations between the logical qubit
q0 and three other logical qubits, but every physical qubit is
only connected to at most two other physical qubits. Therefore,
SWAPs are needed here. It turns out that inserting a single swap
is sufficient for this example. Fig. 3(bottom) shows an optimal
QMR solution that can be discovered by solving the MAXSAT
constraints (the inserted SWAP is highlighted in green).

A MAXSAT solver is typically implemented as a loop that
queries a SAT solver for better and better solutions, until it
arrives at an optimal one. Therefore, a benefit of using a

q0 • • •
q1

q2

q3 •
<latexit sha1_base64="+pMnvf6N3c729p8pwigiLoFgBbE=">AAADPHicjZK7jtNAFIbHhoVsuGwCzUo0IyLQNkS2IwFNpEhpKBNELlIcRePJJDvK+JKZY1Bk5W14Dh5g26WhR6JYbUvN2HHuKTiSrU//ufr4eJHgCizrl2E+eHj26HHhvPjk6bPnF6Xyi64KY0lZh4YilH2PKCZ4wDrAQbB+JBnxPcF63qyZ+ntfmVQ8DL7AImJDn0wDPuGUgJZGZaPutimXNOaAG826zXzc+Fy3qu81pJZkb+wKBZzOkvnIWuK32KUgRWJv0clw/m0j1NaC6xYxPiyyygQip6m+CsRbPBJOFtn0XAfu1Mvw/8rUDsvsYPYp705Mm9dZjkoVq2plho/BzqGCcmuNSn/ccUhjnwVABVFqYFsRDBMi9TSCLYturFhE6IxM2UBjQHymhkn2n5f4jVbGeBJK/QSAM3U3IyG+Ugvf05E+gWt16EvFU75BDJOPw4QHUQwsoKtGk1hgCHF6NHjMJaMgFhoIlVzPiuk1kYSCPq29LvP8mNLN2Id7OIauU7VrVaftVBqX+Y4K6BV6ja6QjT6gBvqEWqiDqPHduDFujZ/mD/O3eWfer0JNI895ifbM/PsPVNztrg==</latexit>

final
mapping from

slice 1

MaxSAT
constraints

for slice 1

MaxSAT
constraints

for slice 2

backtrack if no solution is found

Slice 1 Slice 2

locally
optimal

mapping

Fig. 4: Illustration of our locally optimal relaxation

MAXSAT solver is that, even for large circuits where the solver
cannot efficiently find an optimal solution, the solver may be
terminated early to extract the best solution found so far (if it
has progressed past the first loop iteration).

Slicing and cyclic circuits. As mentioned previously, for large
circuits, the MAXSAT solver may not be able to efficiently solve
the generated constraints. In the worst case, the MAXSAT solver
will not even find a non-optimal solution to the QMR problem
in a feasible amount of time. In this paper, we demonstrate a
locally optimal relaxation of the constraints, in which we slice
the circuit horizontally into a number of consecutive subcircuits
and solve a set of smaller MAXSAT problems for each of them.
This relaxation allows us to scale our approach to larger circuits
by sacrificing a guarantee of global optimality.

This idea is illustrated for our running example in Fig. 4.
First we slice the circuit into two slices (it could be more, but
we stick to two slices for illustration), as shown in the shaded
areas. We solve the MAXSAT constraints for the first slice; this
generates an optimal solution for the slice in isolation. We then
take the final mapping from this solution—i.e., the mapping
at the end of slice 1 after all swaps have been executed—and
add it to the constraints for solving slice 2. As we describe in
Section V, in some cases we need to backtrack as the solution
of slice 1 may be incompatible with slice 2.

We also present an analogous idea for efficiently solving
QMR for cyclic circuits, which consist of repeated instances
of the same subcircuit. Rather than generating a monolithic
set of constraints for the entire circuit at once, we instead
generate and solve a special set of MAXSAT constraints only
for the repeated subcircuit in isolation. We then stitch copies
of the solution to generate a mapping for the entire circuit. We
describe this idea in Section VI.

The two aforementioned relaxations can be easily composed
by slicing subcircuits of a cyclic circuit, thus exploiting both
the cyclic and slice-like structure of a circuit.

III. QUBIT MAPPING AND ROUTING

We now define the qubit mapping and routing problem.

Connectivity graph. We will use G = (Phys,Edges) to denote
a connectivity graph between physical qubits on a quantum
device, where

• Phys = {p0, p1, . . .} is the set of physical qubits and
• Edges ⊆ Phys × Phys is the set of edges connecting

physical qubits.
Graph edges denote on which pairs of physical qubits we can
perform two-qubit operations.

Quantum circuit. We will use C to denote a quantum circuit
over logical qubits, Logic = {q0,q1, . . .}. Specifically, a circuit
C is a sequence of gate applications, where each gate is an
operation that applies to one or two logical qubits. We will
use gk to denote the kth gate in the circuit, gk(q) to denote
the application of the one-qubit gate gk to logical qubit q, or
gk(q,q′) to denote the application of the two-qubit gate gk to
qubits q and q′.

Qubit map. Given a circuit C and an undirected connectivity
graph G, a qubit map M : Logic → Phys is an injective function
from logical qubits to physical qubits.

Our goal is to find a map sequence ⟨M1, . . . ,M|C|⟩, where
|C| is the number of gates in the circuit, such that if the kth
gate in the circuit is a two-qubit gate gk(q,q′), then

(Mk(q),Mk(q′)) ∈ Edges,

i.e., logical qubits q and q′ are mapped to physical qubits that
are connected in the connectivity graph.

Example 1: Recall our running example. The initial map,
M1, is shown in Fig. 3(bottom). Observe that logical qubits q0
and q1 are mapped to adjacent physical qubits, p1 and p0, i.e.,
(M(q0),M(q1)) ∈ Edges.

SWAP operations. We will use s(p, p′) to denote the SWAP
operation that swaps the physical qubits p and p′.

Suppose that in qubit map M we have M(q)= p and M(q′)=
p′. Applying s(p, p′) in M results in a new map M′ that is just
like M but where M′(q) = p′ and M′(q′) = p. Note that SWAP
operations are only allowed on pairs of connected physical
qubits, i.e., (p, p′) ∈ Edges.

Optimal qubit mapping and routing (QMR). An optimal
solution to the QMR problem is a map sequence ⟨M1, . . . ,M|C|⟩
that minimizes the cost of routing qubits between adjacent
maps in the sequence; formally:

min
|C|−1

∑
i=1

cost(Mi,Mi+1)

where cost(M,M′) is the smallest number of SWAP operations
needed to go from M to M′.

Example 2: Continuing our running example:
Only one swap operation happens, right before the fourth

gate, making the total cost 1. So, M3 = M2 = M1. Before the
fourth gate, the physical qubits p2 and p3 are swapped, resulting
in the map M4 that is the same as M1 except that M4(q2) = p3
and M4(q3) = p2.

IV. OPTIMAL QMR VIA MAXSAT

In this section, we will present our approach for discovering
an optimal solution of the QMR problem via a reduction to
maximum satisfiability (MAXSAT). We begin by providing some
background on MAXSAT.

A. MaxSAT Background

MAXSAT is the optimization analogue of the classical
Boolean satisfiability problem, SAT. Before turning to our
encoding, we will define both of these problems.

The SAT problem. In the satisfiability problem (SAT), we are
given a Boolean formula and our goal is to find an assignment
to the variables that makes the formula true—a model of the
formula. We will use standard notation to denote Boolean
operations: ∧ (AND), ∨ (OR), ¬ (NOT), and → (implication).

Example 3: Consider the following formula, where a,b,c
are Boolean variables:

(¬a∧b)→ c

This formula is satisfiable because there is a model that makes
it true. One such model is:

I = [a 7→ false, b 7→ true, c 7→ true]

Given a formula φ , we will use I |= φ to denote that I is a
model of φ . If φ has no models, then it is unsatisfiable.

The MAXSAT problem. In the MAXSAT problem, we are
given two sets of Boolean formulas: Hard constraints and Soft
constraints. Our goal is to find a single assignment I that is a
model of all hard constraints and as many soft constraints as
possible.

Example 4: Consider the MAXSAT problem with one hard
constraint and two soft ones:

Hard = {¬a∨b}
Soft = {b, a∧¬b}

Since a∧¬b in Soft is the negation of ¬a∨ b, there is no
model of Hard that is also a model of {a∧¬b}. Therefore the
maximum number of formulas from Soft that can evaluate to
true is one. A solution is I = [a 7→ false,b 7→ true].

B. MaxSAT Encoding of Optimal QMR

We will now present our MAXSAT encoding for optimally
solving the QMR problem. Throughout, we fix a circuit C
over logical qubits Logic and a connectivity graph G =
(Phys,Edges).

Our encoding will define a set of hard constraints and a
set of soft constraints, (Hard,Soft), constituting a MAXSAT
instance. A solution to this MAXSAT instance yields an optimal
solution to the QMR problem, specifically, (1) an optimal map
sequence, ⟨M1, . . . ,M|C|⟩, and (2) a sequence of SWAPs before
every two-qubit gate to perform routing. The soft constraints
aim to minimize the number of inserted SWAPs.

Our encoding uses two sets of Boolean variables: the map
variables, which represent the sequence of maps ⟨M1, . . . ,M|C|⟩,

Mapping constraints:

Hard A: Maps are injective functions. For every gate gk in the
circuit, every logical qubit q, and every pair of distinct physical
qubits p, p′, we add the following hard constraint:

map(q, p,k)→¬map(q, p′,k)

Similarly, for every gk, every pair of distinct logical qubits,
q,q′, and every physical qubit p, we add the following hard
constraint:

map(q, p,k)→¬map(q′, p,k)

Hard B: Executing two-qubit gates.
For every two-qubit gate gk(q,q′), we add the following hard
constraint: ∨

(p,p′)∈Edges

(map(q, p,k)∧map(q′, p′,k))

Routing constraints:

Hard C: Only one swap. For the kth gate and for its ith SWAP,
we add the hard constraint:∨

(p,p′)∈Edges′

(
swap(p, p′,k, i)∧unique(p, p′)

)
where

unique(p, p′)≜
∧

(r,r′)∈Edges′\{(p,p′)}
¬swap(r,r′,k, i)

Here Edges′ = Edges ∪ {(p0, p0)}, a synthetic edge used to
denote a no-op SWAP.

Hard D: The effect of SWAPs. For every gate gk and sequence
S of swaps of physical qubits, s(p0, p′0), . . . ,s(pn−1, p′n−1), we
add the following hard constraint:(∧

0⩽i<n
swap(pi, p′i, i,k)

)
→ effect(S)

where

effect(S)≜
∧

q∈Logic,
phys∈Phys

(map(q, p,k−1)↔map(q,π(S, p),k))

Soft constraints:

Soft: Minimize the number of SWAPs. For every gate k, we
add the following soft constraint:

swap(p0, p0,k)

Fig. 5: Formalization of our MAXSAT encoding

and the swap variables, which represent where SWAPs are
inserted in the circuit. In what follows, we describe our
constraints in a semi-formal manner with examples and refer
to Fig. 5 for the complete formalization.

1) Mapping Constraints: We start by describing the con-
straints that specify that our map sequence is valid.

We will use the Boolean variable map(q, p,k) to denote that,
for a logical qubit q ∈ Logic and a physical qubit p ∈ Phys,
q maps to p right before the kth gate of the circuit. In other
words, if map(q, p,k) is assigned true, then this means that
Mk(q) = p.

Example 5: Recall our running example from Fig. 3. The
initial map, M1, shown in Fig. 3(bottom), maps q0 to p1.
This is represented in our encoding by assigning the variable
map(q0, p1,1) to true in the solution to the MAXSAT constraints.
Similarly, all other variables map(q0, pi,1), where i ̸= 1, are
set to false, because q0 can only be mapped to a single physical
qubit.

Hard A: Maps are injective functions. Our first set of
hard constraints (formalized in Fig. 5) specify that our map
variables model injective functions. Following Example 5, such
constraints ensure that we cannot set both map(q0, p1,1) and
map(q0, p2,1) to true in a solution of the MAXSAT constraints.
Additionally, we cannot map different logical qubits to the
same physical qubit.

Hard B: Executing two-qubit gates. Our second set of hard
constraints specify that for each two-qubit gate in the circuit,
the two logical qubits it acts on are mapped to adjacent physical
qubits.

Example 6: In our running example, the first gate is a CNOT
over q0 and q1. Therefore, we should initially map q0 and q1
to adjacent physical qubits. One way to satisfy this is to set
map(q0, p0,1) and map(q1, p1,1) to true, since (p0, p1) is an
edge in the connectivity graph. However, we cannot satisfy this
constraint by setting map(q0, p0,1) and map(q1, p3,1) to true,
since there is no edge connecting physical qubits (p0, p3).

2) Routing Constraints: We now describe the routing
constraints. The key idea is that right before a two-qubit gate,
g(q,q′), we want to insert a sequence of SWAPs to ensure
that the two logical qubits, q and q′, are mapped to adjacent
physical qubits.

Suppose, for illustration, that the kth gate in the circuit is
a CNOT over q0 and q1. Right before this CNOT, we allow
our encoding to insert up to n SWAPs. We can think of this
through the lens of program sketching [11], where we don’t
know which qubits to swap before the kth gate, so we add up
to n SWAPs with unknown parameters (denoted with • below)
and the goal of our encoding is to discover those parameters.

swap •,•
· · ·

swap •,•
cx q0,q1

Specifically, for every inserted SWAP with unknown pa-
rameters, we create a number of Boolean variables denoting
every possible instantiation of the parameters. Formally, the
Boolean variable swap(p, p′,k, i) denotes that the ith SWAP
inserted before gate k is over physical qubits p and p′. (If
both parameters are set to the same qubit, then the SWAP is
considered a no-op.)

Example 7: Suppose n= 1—i.e., we only allow up to 1 SWAP
before a two-qubit gate—and we have a device with only two
physical qubits, p0 and p1, with an edge between them. For
the fourth gate in the circuit, we will have the following set
of Boolean variables:

{swap(p0, p0,4,1),swap(p0, p1,4,1)}

If the first variable is set to true in a solution to the MAXSAT
constraints, then no SWAP is inserted before the fourth gate
(no-op); if the second variable is set to true, then a SWAP
operation is inserted that swaps p0 and p1.

Hard C: Only one swap. As indicated by the above example,
for a specific SWAP with unknown parameters, only one of
its associated Boolean variables can be set to true, since
there’s only one possible instantiation of its parameters. This
is enforced by a standard only-one hard constraint [13].

Hard D: The effect of SWAPs. The most involved routing
constraint is encoding the effect of a sequence of SWAPs on
the map sequence. Specifically, we have to encode how the
inserted SWAPs transform map Mk−1 into Mk.

We define a function π(S, p) that specifies the effect of a
sequence of SWAPs S on a physical qubit p, i.e., which qubit
p gets routed to after executing the swaps in S. The following
example provides a simple illustration:

Example 8: For the sequence S that just swaps p and p′,
we have π(S, p) = p′. For the sequence S that swaps p and p′

and then p′ and p′′, we have π(S, p) = p′′.
The final set of hard constraints (Hard D) encodes the

effect of every possible sequence S of n SWAPs. While the
number of sequences is exponential in n, in practice, we have
experimentally found that a small constant suffices for finding
optimal solutions (Section VII).

3) Soft Constraints and Optimality: We have described all
the required hard constraints. Finally, we define a set of soft
constraints with the goal of minimizing the number of inserted
SWAPs. Informally, we want to ensure that as many SWAPs
are no-ops as possible. So, we maximize the number of true
Boolean variables of the form swap(p, p,k).

Fig. 5 fully formalizes all of the hard and soft constraints
that our encoding generates. So, if we are given a circuit C and
a connectivity graph G, we can use our encoding to generate
a MAXSAT instance (Hard,Soft) whose solution results in an
optimal QMR solution.

Given a model I |= (Hard,Soft), we can extract a valid map
sequence from the assignments of the Boolean variables of the
form map(q, p,k) by setting Mk(q) = p exactly when I assigns
map(q, p,k) to true.

This following theorem states optimality of our solutions:
Theorem 1: Let I be a solution for (Hard,Soft). Let

⟨M1, . . . ,M|C|⟩ be the map sequence corresponding to I as
described above. Then, ⟨M1, . . . ,M|C|⟩ is an optimal solution
of the QMR problem (as per Section III).

In the theorem above, we make the assumption that n (the
number of SWAPs allowed before each CNOT) is set to the

diameter of the connectivity graph. This ensures that we can
always bring any two qubits into adjacent positions.

Encoding size. If n, the number of SWAPs allowed before each
CNOT, is held constant (see Section VII), the MAXSAT encoding
from Section IV scales polynomially with the size of the input
circuit and architecture. In particular, a naive implementation
requires O(|C| · |Edges|) variables and O(|Phys|2 · |Logic| · |C|)
constraints (Hard A is the dominating term). However, using a
standard “only-one” encoding [13], we need only O(|Phys| ·
|Logic| · |C|) constraints. This is a more compact representation
than EX-MQT [6] and matches the asymptotic behavior of a
subsequent SMT approach, TB-OLSQ [5]. While the number
of constraints is roughly the same as TB-OLSQ, our sketch-
based view allows us to eschew the use of integer arithmetic,
eliminating the expensive theory-lemma generation of an SMT
solver.

V. A LOCALLY OPTIMAL RELAXATION

Solving the MAXSAT encoding presented in the previous
section results in an optimal QMR solution. However, this can
be expensive in practice due to the complexity of MAXSAT. In
this section, we will present a relaxation that produces locally
optimal solutions. Specifically, our approach slices the circuit
into a number of subcircuits and solves a MAXSAT problem
for each of them in sequence. The result is that we need to
solve a number of smaller MAXSAT problems.

Slicing the circuit. We can think of a circuit C as a sequence of
subcircuits, or slices, ⟨C0, · · · ,Cs⟩. Recall Fig. 4, which shows
a circuit viewed as two slices. We will now demonstrate how
to solve QMR by solving MAXSAT constraints for each slice in
isolation.

We do this iteratively, starting with C0 and going through the
rest of the slices. First, for C0, we simply generate a MAXSAT
instance (Hard0,Soft0) and solve it as described in the previous
section. This results in a model I0. Then for every slice Ci,
where i > 0, we run the following procedure:

1) Generate MAXSAT constraints (Hardi,Softi) for Ci
2) For every variable map(q, p, |Ci−1|) set to true in Ii−1,

add map(q, p,1) to Hardi.
3) Solve (Hardi,Softi), generating a model Ii

The interesting step here is step 2, which connects the final
mapping from slice i−1 with the initial mapping from slice i.
Specifically, we add the final mapping from slice i−1 as hard
constraints on the initial mapping for slice i.

Example 9: Consider the circuit and connectivity graph in
Fig. 6. If we solve QMR using the MAXSAT encoding, a possible
optimal initial map is the one that maps qi to pi, as shown on
the right, which requires no SWAPs to be inserted.

Suppose, however, that we slice the circuit into two slices,
as highlighted. Solving the first slice might, for example, result
in the map shown on the bottom right, with no swaps. This is
optimal for the slice, but sub-optimal overall, since now we
need to insert a SWAP between the two gates. Specifically, we
will need to swap p0 and p1 (or p2).

q0 •
q1 •
q2

<latexit sha1_base64="sJYVoBd9gtaOdo7hdHKGMBJLnc0=">AAACyXicbVHLTgIxFO2Mb3yhbkzcNBKNKzKDibohIWFj4kaMiAlDsFMKNHQetHdUnLDy8/wCv8DfsDMMCspJenN67j29zb1uKLgCy/o0zKXlldW19Y3c5tb2zm5+b/9BBZGkrE4DEchHlygmuM/qwEGwx1Ay4rmCNdxBNck3nplUPPDvYRSylkd6Pu9ySkBL7fyHU6Nc0ogDrlTLNvNw5a5sFS80SRCnEeeS4AgFnA7iYdsa41PsUJAitlM6fPmJ2HFyOMOvY1IGRPYSfcacXScPLHKWpg2mpTOPzLvG7XzBKlop8H9iZ6SAMty2819OJ6CRx3yggijVtK0QWjGRurdg45wTKRYSOiA91tTUJx5TrTgd+hifaKWDu4HUxwecqrOOmHhKjTxXV3oE+upvLhEX5ZoRdK9aMffDCJhPJ426kcAQ4GSDuMMloyBGmhAquf4rpn0iCQW957kuw2y1yWTsv3P4Tx5KRfu8WKqVCpXDbEbr6AgdozNko0tUQdfoFtURNWyjYTwZxLwxh+ar+TYpNY3Mc4DmYL5/A5fbyso=</latexit>

Circuit with two slices

p0 p1 p2
<latexit sha1_base64="16fVVEiLEAae3TdmyttvRTPYPfA=">AAACjXicbVFNbxMxEHWWrxI+msIFiYtFhNTDNtpNVMGBoCIOcKkUCmkrJavIO/FuR/F6jT2LSFf5VfyaXuGP4E1zIC0j2Xp6M88z85wahY6i6KoV3Ll77/6DnYftR4+fPN3t7D07dWVlQY6hVKU9T4WTCrUcE5KS58ZKUaRKnqWLj03+7Ie0Dkv9jZZGJoXINWYIgjw16xxPU5mjrgkXlwaBKitX7WluR4IuJsf+Cv1zGf4cmvDkwzDuHYYnX4cH8SCpB75O6vmWctbpRr1oHfw2iDegyzYxmu219qfzEqpCagIlnJvEkaGkFpYQVDNK5aQRsBC5nHioRSFdUq/3XvHXnpnzrLT+aOJr9l9FLQrnlkXqKwu/iruZa8j/5SYVZW+TGrWpSGq4bpRVilPJGxP5HK0EUksPBFj0s3K4EFYAeau3utDi8iCVNvertLcS3wEtVEirhmw8VJhaYZe1KR02f4M6D3mGFIJQ4NXe2/imk7fBab8XD3r9L/3u0YuNyzvsJXvF9lnM3rAj9pmN2JgB+8Wu2G/2J9gNDoN3wfvr0qC10TxnWxF8+gvaGcki</latexit>

Connectivity graph

Optimal initial map
No swaps needed

A possible locally
optimal initial map
1 swap needed

q0 7! p1

q1 7! p0

q2 7! p2
<latexit sha1_base64="gqkThszWiQgHDy27G+7MW7off1M=">AAACM3icbZDLSsNAFIYn9VbjLepGcDNYBFclqYouC25cVrAXaEKYTCft0JkknZkIJfRJfA4fwK0+gbgTwZXv4DTNohd/GPj5zjmcOX+QMCqVbX8YpbX1jc2t8ra5s7u3f2AdHrVknApMmjhmsegESBJGI9JUVDHSSQRBPGCkHQzvpvX2ExGSxtGjGifE46gf0ZBipDTyrWtz5NvQ5SiRKoaJ77iuJs4csXNSmyM107cqdtXOBVeNU5gKKNTwrR+3F+OUk0hhhqTsOnaivAwJRTEjE9NNJUkQHqI+6WobIU6kl+XnTeC5Jj0YxkK/SMGczk9kiEs55oHu5EgN5HJtCv+rdVMV3noZjZJUkQjPFoUpg/rKaVawRwXBio21QVhQ/VeIB0ggrHSiC1tGmAqcUjXRyTjLOayaVq3qXFZrD1eV+kmRURmcgjNwARxwA+rgHjRAE2DwDF7BG3g3XoxP48v4nrWWjGLmGCzI+P0DY0OpEQ==</latexit>

q0 7! p0

q1 7! p1

q2 7! p2
<latexit sha1_base64="DBrJfO6uYG0bdTNN2KkE8eW/hdc=">AAACM3icbZDLSsNAFIYn9VbjLepGcDNYBFclqYouC25cVrAXaEKYTCft0JkknZkIJfRJfA4fwK0+gbgTwZXv4DTNohd/GPj5zjmcOX+QMCqVbX8YpbX1jc2t8ra5s7u3f2AdHrVknApMmjhmsegESBJGI9JUVDHSSQRBPGCkHQzvpvX2ExGSxtGjGifE46gf0ZBipDTyrWtz5NvQ5SiRKoaJb7uuJs4ccXJSmyM107cqdtXOBVeNU5gKKNTwrR+3F+OUk0hhhqTsOnaivAwJRTEjE9NNJUkQHqI+6WobIU6kl+XnTeC5Jj0YxkK/SMGczk9kiEs55oHu5EgN5HJtCv+rdVMV3noZjZJUkQjPFoUpg/rKaVawRwXBio21QVhQ/VeIB0ggrHSiC1tGmAqcUjXRyTjLOayaVq3qXFZrD1eV+kmRURmcgjNwARxwA+rgHjRAE2DwDF7BG3g3XoxP48v4nrWWjGLmGCzI+P0DYzGpEQ==</latexit>

Fig. 6: Example demonstrating local relaxation

Backtracking. If our constraints allow a number of swaps
n less than the diameter of the connectivity graph, then we
could generate unsatisfiable formulas for some slices. In such
cases, we backtrack to the previous slice and ask the MAXSAT
solver to generate a different final mapping. Backtracking from
a mapping involves adding the negation of its corresponding
satisfying assignment (previously returned by the MAXSAT
solver) as an additional hard constraint to ensure that the
MAXSAT solver does not return the same mapping. After this
additional constraint is added, backtracking is performed by
re-invoking the solver.

Example 10: Consider again the map on the bottom right
in Fig. 6. Let us suppose that we want to backtrack and find
a different mapping from this one for the first slice. In order
to guarantee that we do not return the same mapping again
when re-invoking the MAXSAT solver, we add the following
hard constraint:

¬
(
map(q0, p1,2)∧map(q1, p0,2)∧map(q2, p2,2)

)
This constraint is exactly the negation of the encoding of the
mapping that we wish to exclude.

VI. EXPLOITING CYCLIC CIRCUITS

For some quantum algorithms, the quantum circuits have a
repeated structure, applying the same subcircuit multiple times.
We call such circuits cyclic circuits.

The canonical algorithm that results in a cyclic circuit is the
quantum approximate optimization algorithm (QAOA). QAOA is
a general procedure for obtaining approximate solutions to NP-
hard combinatorial problems such as determining a maximum
cut in a graph. This is a promising near-term application since
it solves problems of general practical interest and can be
performed in the presence of noise without error-correction.
The general structure of a QAOA circuit is shown in Fig. 7.
Notice how the same subcircuit Cγ,β repeats.1

A relaxation for cyclic circuits. For cyclic circuits, instead
of solving a MAXSAT encoding for the entire circuit, we can
relax the problem and only consider the repeating subcircuit.
After finding an optimal solution for the subcircuit, we can
extend the solution to the entire circuit. This results in a smaller

1Every cycle uses different parameters, γ,β , but the structure of the circuit
remains the same, which is what matters for QMR. Also, the initial set of
one-qubit gates (H) is irrelevant for QMR.

q0 H

Cγ1,β1 Cγ2,β2

· · ·
Cγn,βnq1 H · · ·

q2 H · · ·

Fig. 7: The cyclic structure of a QAOA circuit

Cyclic circuit

p0 p1 p2 p3
<latexit sha1_base64="ct2x9Mr4/jUCbG2D0n1RrQGNZ84=">AAACjXicbVFNbxMxEHWWrxI+msIFiYtFhNTDNtpNW8GBoCIOcKkUCmkrJavIO/FuR/F6jT2LSFf5VfyaXuGP4E1zIC0j2Xp6M88z85wahY6i6KoV3Ll77/6DrYftR4+fPN3u7Dw7dWVlQY6gVKU9T4WTCrUcEZKS58ZKUaRKnqXzj03+7Ie0Dkv9jRZGJoXINWYIgjw17RxPUpmjrgnnlwaBKiuX7Uluh4Iuxsf+Cv1zGf4cmPDkwyDuHYYnXwd78X5SH/g6qWcbymmnG/WiVfDbIF6DLlvHcLrT2p3MSqgKqQmUcG4cR4aSWlhCUM0olZNGwFzkcuyhFoV0Sb3ae8lfe2bGs9L6o4mv2H8VtSicWxSpryz8Ku5mriH/lxtXlL1NatSmIqnhulFWKU4lb0zkM7QSSC08EGDRz8rhQlgB5K3e6ELzy71U2tyv0t5IfAe0UCEtG7LxUGFqhV3UpnTY/A3qPOQZUghCgVd7b+ObTt4Gp/1evN/rf+l3j16sXd5iL9krtsti9oYdsc9syEYM2C92xX6zP8F2cBi8C95flwatteY524jg01/cB8kj</latexit>

Physical qubit connectivity graph
MaxSAT constraints

for subcircuit
+ constraint

final map = initial map

p1 • • •
p0

p2 ⇥ ⇥
p3 • ⇥ ⇥

<latexit sha1_base64="7L4MMF1/wMG3ymLhG8tWXgNjYtw=">AAADlXicfVLbSiNBEO3MqOvGy0b3YQVfGoPig4aZCOpLIOCy+OYFo0ImhJ5OJzbpuaS7Rg3D/Mb+m1/gVyxsz2TGmCgWNJyqU3Wquig3FFyBZb2UDHNhcenb8vfyyura+o/KxuatCiJJWYsGIpD3LlFMcJ+1gINg96FkxHMFu3OHZyl/98ik4oF/A+OQdTwy8HmfUwI61N0o/XWuKJc04oCbZw2bebh53bBqxxqUcWYxdoQCTodx2LWTSWwPOxSkiLVfwHqi0egJFzbjTZPyuOOUC26qbmUsEDmYFfhauHC+EH5rWyTmPd51Sz1npJ5IOJ+UlRbEp/JH8/LTubNfH2ZrK+Q1+5w6xR/e5FMiV0+6lapVszLDH4GdgyrK7bJbeXV6AY085gMVRKm2bYXQiYnUMwqWlJ1IsZDQIRmwtoY+8ZjqxNkBJXhXR3q4H0j9fMBZ9H1FTDylxp6rMz0CD2qeS4Ofce0I+qedmPthBMynk0b9SGAIcHqNuMcloyDGGhAquZ4V0wciCQV9szNdRvmVppux5/fwEdzWa/ZRrX5Vrza38h0to220g/aRjU5QE52jS9RCtPTPqBoHxqH5y2yYv80/k1SjlNf8RDNmXvwHgGb95Q==</latexit>

 Sub-circuit with swaps
q0 7! p1

q1 7! p0

q2 7! p2

q3 7! p3
<latexit sha1_base64="2tEjP3ZSPLudgN30ES/9P/iWDK0=">AAACRXicbZDLSsNAFIYnXmu8Rd0IbgaL4KokqaDLggtdVrAXaEKYTCft0MmlMxOhhD6Sz+EDuBJ07cqduNVpmkXa+sPAz3fO4cz5/YRRIU3zTVtb39jc2q7s6Lt7+weHxtFxW8Qpx6SFYxbzro8EYTQiLUklI92EExT6jHT80e2s3nkiXNA4epSThLghGkQ0oBhJhTzjTh97JnRClAgZw8SzHEcRq0TMnNglYuekXiJ13TOqZs3MBVeNVZgqKNT0jE+nH+M0JJHEDAnRs8xEuhnikmJGprqTCpIgPEID0lM2QiERbpYfPIUXivRhEHP1IglzWp7IUCjEJPRVZ4jkUCzXZvC/Wi+VwY2b0ShJJYnwfFGQMqiunKUH+5QTLNlEGYQ5VX+FeIg4wlJlvLBljCnHKZVTlYy1nMOqads1q16zH66qjdMiowo4A+fgEljgGjTAPWiCFsDgGbyCd/ChvWhf2rf2M29d04qZE7Ag7fcP+y2vvA==</latexit>

Initial map

• • •

•
<latexit sha1_base64="R6JovD1THgpSytrUagRkEuTMdq8=">AAADC3iclZJLTsMwEIad8CrlVWCDxMaiArGhSooEbCpVYsMSEAWkpqoc1y0WzqP2BFRFPQIHYAtHYIfYcghOwDVw0gB9sGEkR5/+8W+PJ+OGgiuwrA/DnJqemZ3LzecXFpeWVwqra5cqiCRlNRqIQF67RDHBfVYDDoJdh5IRzxXsyr09TvJXd0wqHvgX0AtZwyMdn7c5JaCl5qqx6JxRLmnEAVePKzbzcPW8YpUONCQRp1+8gx0KUsR2/wfLKXbvf4T9b8Fx8vg7tAJEdjLUSfyLE8KYcSg5dEaK/7AOYVrm3uANI1Vl3n6zULRKVhp4EuwMiiiL02bh02kFNPKYD1QQpeq2FUIjJhI4FayfdyLFQkJvSYfVNfrEY6oRp7+tj7e10sLtQOrlA07VYUdMPKV6nqt3egRu1HguEf/K1SNoHzVi7ocRMJ8OLmpHAkOAkxnALS4ZBdHTQKjkulZMb4gkFPSkjNzSzWYj6Yw93odJuCyX7P1S+axcrG5kPcqhTbSFdpGNDlEVnaBTVEPUUMaj8WQ8mw/mi/lqvg22mkbmWUcjYb5/Aa5/2CY=</latexit>

…
q0 • • •
q1

q2

q3 •
<latexit sha1_base64="+pMnvf6N3c729p8pwigiLoFgBbE=">AAADPHicjZK7jtNAFIbHhoVsuGwCzUo0IyLQNkS2IwFNpEhpKBNELlIcRePJJDvK+JKZY1Bk5W14Dh5g26WhR6JYbUvN2HHuKTiSrU//ufr4eJHgCizrl2E+eHj26HHhvPjk6bPnF6Xyi64KY0lZh4YilH2PKCZ4wDrAQbB+JBnxPcF63qyZ+ntfmVQ8DL7AImJDn0wDPuGUgJZGZaPutimXNOaAG826zXzc+Fy3qu81pJZkb+wKBZzOkvnIWuK32KUgRWJv0clw/m0j1NaC6xYxPiyyygQip6m+CsRbPBJOFtn0XAfu1Mvw/8rUDsvsYPYp705Mm9dZjkoVq2plho/BzqGCcmuNSn/ccUhjnwVABVFqYFsRDBMi9TSCLYturFhE6IxM2UBjQHymhkn2n5f4jVbGeBJK/QSAM3U3IyG+Ugvf05E+gWt16EvFU75BDJOPw4QHUQwsoKtGk1hgCHF6NHjMJaMgFhoIlVzPiuk1kYSCPq29LvP8mNLN2Id7OIauU7VrVaftVBqX+Y4K6BV6ja6QjT6gBvqEWqiDqPHduDFujZ/mD/O3eWfer0JNI895ifbM/PsPVNztrg==</latexit>

Final map
Same as initial map

Fig. 8: Illustration of our cyclic circuit approach

MAXSAT problem that can generally be completed faster than
the entire circuit, at the expense of a loss in optimality.

Suppose we have a circuit ⟨C, . . . ,C⟩, where the same
subcircuit C is repeated a number of times, and a connectivity
graph G. We follow the following simple recipe for solving
the QMR problem; the key idea (step 2 below) is to ensure
that the final map, M|C|, is the same as the initial map, M1,
enabling us to stitch together two or more copies of C:

1) Let (Hard,Soft) be the MAXSAT constraints for (C,G).
2) For every pair of logical and physical qubits, q and p,

add the following constraint to Hard:

map(q, p,1)↔map(q, p, |C|)

3) Solve (Hard,Soft), generating a model I.
The resulting circuit, with the initial map and swaps from

I, can now be repeated an arbitrary number of times. This is
because the map of logical to physical qubits is the same at
the beginning and at the end.

Example 11: Fig. 8 revisits our running example, but with
the same circuit iterated a number of times. Our cyclic-circuit
approach in this case solves the same constraints as for Fig. 3,
except that we add the hard constraint that the initial and final
maps are the same. This results in the final circuit with two
SWAPs, where the final SWAP is inserted to reset the mapping
to its initial state (i.e., to swap back p2 and p3). Now this

subcircuit can be iterated any number of times on this physical
connectivity graph.

This cyclic relaxation can be profitably combined with our
local relaxation. Specifically, the MAXSAT constraints generated
in step 1 for subcircuit C may be those that result from slicing
it as described in Section V. Using such constraints, as we do
in our evaluation (Section VII), allows our approach to handle
larger subcircuits C.

VII. IMPLEMENTATION AND EVALUATION

Implementation. We implemented our approach in a tool we
call SATMAP.2 The value of n, the number of swaps allowed
before each two-qubit gate, is set to 1. We experimentally
determined n = 1 is sufficient for near-optimal solutions.
SATMAP generates MAXSAT constraints and calls the MAXSAT
solver Open-WBO-Inc-MCS [14] with default parameters. This
solver provides the best known solution if it is interrupted
before an optimal solution is found.

We convert all MAXSAT solutions to circuits. To ensure cor-
rectness of our QMR solutions, we implemented an independent
verifier. The verifier traverses a circuit, evaluating its effects
on an initial map and checking that all two-qubit gates act on
connected qubits.

Throughout this section, whenever we say SATMAP, we imply
that the locally optimal relaxation (Section V) is performed.
The cyclic relaxation is turned off by default and evaluated
later on cyclic circuits. The slice size refers to the number of
two-qubit gates to include in each slice in the local relaxation.
We always run SATMAP at four slice sizes, 10, 25, 50, and 100,
and report the solution with the best cost. Solution costs are in
terms of CNOT gates added (SWAP decomposes to 3 CNOTs).

Benchmarks. For evaluation, we used the set of benchmarks
collected in [10].3 These 160 circuits were derived from the
RevLib suite [15] and programs written in the Quipper [16]
and ScaffoldCC [17] quantum programming languages. They
cover a wide spectrum of circuit size, ranging in number of
qubits from 3 to 16, and in two-qubit gates from 5 to over
200,000. The median number of two-qubit gates among these
benchmarks is 123.

Except in the evaluation of Q4, the connectivity graph used
is the IBM Q20 Tokyo architecture with 20 qubits, depicted
in Fig. 9b. This connectivity graph was chosen as the largest
typically used for evaluation in related work [3], [18], [19].
Benchmarks were evaluated on a cluster of Intel® Xeon® and
AMD Opteron™ CPUs clocked an average of 2.5GHz.

Research questions. We designed a set of experiments to
answer the following research questions:

Q1 How does SATMAP compare to constraint-based
techniques?

Q2 How does SATMAP compare to heuristic approaches?
Q3 What is the impact of local relaxation and cyclic

circuit relaxation?

2https://github.com/qqq-wisc/satmap
3https://github.com/cda-tum/qmap/tree/main/examples

(a) Tokyo− (b) IBM Q20 Tokyo (c) Tokyo+

Fig. 9: Variations of the IBM Q20 Tokyo graph

miller_11 3_17_13 ham3_102 ex-1_166
circuit

10
1

10
3

tim
e

(s
) method

SATMAP
TB-OLSQ
EX-MQT

Fig. 10: Log-scale runtime comparison of EX-MQT, TB-
OLSQ, and SATMAP on the set of benchmarks EX-MQT
solved

Q4 How does architecture variation impact performance?
Q5 What is the scalability vs. optimality tradeoff?
Q6 Can we use SATMAP with noise models?

Q1: Constraint-based approaches

Experimental setup. To address Q1, we compared SATMAP to
the SMT-based tools EX-MQT [6] and TB-OLSQ [5]. The latter
tool takes the relative execution time of each gate as input and
can optimize several different objective functions. We set the
execution time of each gate to 1 and the objective function
to SWAP minimization to match our definition of QMR. For
each of the benchmarks, SATMAP was allotted 30 minutes of
compilation time and the other tools were each allotted 1 hour
of compilation time to be as fair as possible and account for
any potential hidden overheads. Each tool was allotted 5GB of
RAM for each of the benchmarks.

Results. None of the tools were able to provide a solution to
the QMR problem for all of the benchmarks within the time and
memory restrictions. However, as Table I indicates, SATMAP
handles a significantly higher proportion of the complete set,
solving 109/160 (68%) of the benchmarks as compared to 4/160
(2.5%) solved by EX-MQT and 38/160 (24%) solved by TB-
OLSQ. The additional benchmarks solved by SATMAP include
circuits with up to 598 two-qubit gates versus a maximum of
23 for EX-MQT and 90 for TB-OLSQ.

Since these tools are all designed to provide optimal solu-

Tool # Solved (out of 160) Largest circuit solved

EX-MQT 4 23
TB-OLSQ 38 90
SATMAP 109 598

TABLE I: Comparison against constraint-based tools. Size
of largest circuit solved is the number of two-qubit gates.

https://github.com/qqq-wisc/satmap
https://github.com/cda-tum/qmap/tree/main/examples

4g
t11

_8
2

4m
od

5-v
0_

19

4g
t11

_8
3

ex
1_

22
6

qe
_q

ft_
4

3_
17

_1
3

4m
od

5-v
0_

20

alu
-bd

d_
28

8

mod
5d

1_
63

4m
od

5-v
0_

18

alu
-v2

_3
3

4m
od

5-v
1_

22

mille
r_1

1

alu
-v3

_3
5

alu
-v0

_2
7

4g
t5_

75

qe
_q

ft_
5

rd3
2-v

1_
68

4g
t13

-v1
_9

3

mod
5m

ils
_6

5

ha
m3_

10
2

4g
t11

_8
4

alu
-v1

_2
8

alu
-v1

_2
9

gra
yc

od
e6

_4
7

isi
ng

_m
od

el_
10

de
co

d2
4-v

2_
43

4g
t13

_9
2

4m
od

5-b
dd

_2
87

alu
-v4

_3
7

rd3
2-v

0_
66

4m
od

5-v
1_

23

xo
r5_

25
4

alu
-v3

_3
4

ex
-1_

16
6

4m
od

5-v
1_

24

de
co

d2
4-v

0_
38

de
co

d2
4-v

1_
41

circuit

10
1

10
3

tim
e

(s
)

method
SATMAP
TB-OLSQ

Fig. 11: Log-scale runtime comparison of TB-OLSQ and SATMAP on the complete set of benchmarks TB-OLSQ solved

tions, there is no variation in quality of the solutions.4 Without
sacrificing optimality, SATMAP significantly outperformed the
two other tools in terms of runtime. The mean improvement
over EX-MQT was about 400x and the mean improvement over
TB-OLSQ was about 20x, as shown in Fig. 10 and Fig. 11.

Summary: SATMAP is significantly more scalable than
EX-MQT and TB-OLSQ. It finds solutions 400x and 20x
faster (respectively) and can be applied to much larger
circuits, up to 598 two-qubit gates.

Q2: Heuristic approaches

Experimental setup. To address Q2, we compared SATMAP
to the heuristic tools MQTH [10], SABRE [18], and TKET [3].
MQTH applies A∗ search to determine the optimal next mapping
given the current one. SABRE and TKET both use heuristic
“scores” to choose SWAPs to apply to the qubits relevant to
a particular topological layer or timestep of a circuit, with
SABRE applying a reversal procedure to determine a good
initial mapping. These three were chosen to represent the state-
of-the-art in terms of heuristic tools based on their widespread
use in practice. Each is relied upon as a part of industrial
quantum compilation toolkits. Since TKET and SABRE involve
some element of nondeterminism, we took the mean cost of
20 runs of the heuristic tools. As in the evaluation of Q1,
SATMAP was allotted 30 minutes of compilation time and 5GB
of RAM for each of the benchmarks. The heuristic tools are
less resource intensive, so they solved all of the instances well
within those runtime and memory bounds.

Results. For the 109 benchmarks solved within the timeout
by SATMAP, the resulting solutions were generally better than
the heuristic tools. Fig. 12 presents the cost ratio on each
benchmark: the total number of gates added by the heuristic
tools divided by the total number of gates added by SATMAP.
For each heuristic tool, there are rare instances (fewer than
10 benchmarks) when the heuristic outperforms SATMAP due
to application of the local relaxation or early termination of
the MAXSAT solver, resulting in ratios less than 1. On average,
SATMAP adds 5.2x, 7.0x, and 3.6x fewer gates than MQTH,
SABRE, and TKET, respectively. For all heuristic tools, there
was at least one instance where SATMAP produced a solution
with over 15x fewer gates. For about 14% of benchmarks,

4TB-OLSQ formulates QMR in terms of time coordinates, which treats a
broader class of circuits as equivalent, allowing solutions not considered by the
other tools. Additionally, a minor relaxation in TB-OLSQ produces suboptimal
solutions in rare cases. The difference in cost due to these considerations is
less than one SWAP in all cases.

SATMAP did not add any gates, compared to 0%, 3%, and 10%
for MQTH, SABRE, and TKET, respectively. Benchmarks where
SATMAP added no gates and a heuristic tool added some gates
are represented by the orange points at the top of the plot.
Benchmarks where neither tool added gates have a cost ratio
of 1.

Summary: when SATMAP terminates, it gives much
higher quality solutions than heuristic tools overall. It
almost always reduces the total cost—up to 6.97x on avg.

Q3: Impact of Relaxations

Local relaxation. We conducted experiments to determine
the effect of the locally optimal relaxation (Section V) on
performance in terms of execution time and cost. We tested the
slice sizes, 10, 25, 50, and 100, against NL-SATMAP, which is
SATMAP with local relaxation disabled.

Small slice sizes produce easier MAXSAT problems that can
each individually be solved faster. However, restricting the
“view” of the solver can lead to increased overall solve time
due to repeated backtracking. We can observe this tradeoff by
comparing the number of instances for which a solution was
found within the 30 minute timeout (shown in Table II).

The situation is similar in terms of solution quality. For
small slice sizes, local optima can diverge significantly from
global optima. However, for moderate slice sizes, this effect
is less pronounced. Fig. 13 presents the cost ratio of local
relaxation levels: the total number of gates added by the tool
with local relaxation divided by the total number of gates
added by NL-SATMAP. For a slice size of 10, NL-SATMAP
consistently produces better solutions, with an average cost
ratio of 2.69. For larger slice sizes, the benchmarks where
NL-SATMAP discovers better solutions are outnumbered by
the benchmarks where the slow rate of convergence in a large
solution space leads to worse solutions due to early termination.
For example, with a slice size of 25, NL-SATMAP produces a
better solution in 5 out of 70 cases, but a worse solution in 13
out of 70. This results in a mean ratio of less than 1 (0.92).

Summary: the local relaxation is a significant contributor
to the performance of SATMAP. Appropriate application of
local relaxation enables the use of constraint-based tools
on large benchmarks, with little loss in solution quality for
smaller ones.

Cyclic relaxation. To evaluate the cyclic relaxation, we
programmatically generated a standard QAOA circuit for solving
the maximum cut problem on 3-regular graphs, parameterized

0

5

10

15

20
C

os
t r

at
io

MQTH

Mean: 5.19
SATMAP

0

5

10

15

20

25

30

35

C
os

t r
at

io

SABRE

Mean: 6.97
SATMAP

0

5

10

15

20

25

C
os

t r
at

io

TKET

Mean: 3.64
SATMAP

Fig. 12: The cost of the solution produced by each heuristic tool divided by the cost of the solution produced by
SATMAP. Points at the top of the plot represent benchmarks where SATMAP added zero gates and the heuristic tool
added a positive number, resulting in an undefined ratio. They are not included in the listed mean ratio.

0.0

2.5

5.0

7.5

10.0

12.5

C
os

t r
at

io

10 gates per slice

Mean: 2.69
NL-SATMAP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
os

t r
at

io

25 gates per slice

Mean: 0.91
NL-SATMAP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
os

t r
at

io

50 gates per slice

Mean: 0.92
NL-SATMAP

0.0

1.0

2.0

3.0

C
os

t r
at

io

100 gates per slice

Mean: 1.02
NL-SATMAP

Fig. 13: The cost of the solution produced by the different
levels of local relaxation divided by the cost of the solution
produced by NL-SATMAP

Slice size # Solved (out of 160) Largest circuit solved

10 87 427
25 103 598
50 92 598

100 71 128
NL-SATMAP 70 128

TABLE II: Comparison of different levels of local relaxation
in terms of instances solved

by the number of qubits and the number of cycles (repetitions of
the subcircuit Cγ,β). We use CYC-SATMAP to denote SATMAP
with the cyclic relaxation enabled.

We tested SATMAP, CYC-SATMAP, and TKET on QAOA
circuits with 6, 8, 10, 12 and 16 qubits, each with two and
four cycles. The results are presented in Table IV. Missing
entries correspond to timeouts.

CYC-SATMAP solves all of the instances within the timeout,
while SATMAP cannot come up with a solution for circuits
with 10 qubits or 16 qubits. When it comes to cost, for 6 and 8
qubits, CYC-SATMAP outperforms SATMAP, whereas for 10 and

Tool Main Set (total 160) QAOA (total 10)
Solved Largest solved # Solved Largest solved

TB-OLSQ 38 90 0 –
NL-SATMAP 70 128 5 36

SATMAP 109 598 7 72
CYC-SATMAP – – 10 96

TABLE III: Comparison between TB-OLSQ, NL-SATMAP,
SATMAP, and CYC-SATMAP

12 qubits, the opposite is true.5 Additionally, except with 12
qubits, CYC-SATMAP determines a solution much more quickly
than SATMAP. Neither SATMAP nor CYC-SATMAP has a clear
advantage in terms of solution quality when both produce some
solution. In some cases, CYC-SATMAP enables us to find a
better solution than the best heuristic tool, TKET. For instance,
with 16 qubits, CYC-SATMAP solutions are > 3x better than
TKET.

Summary: the cyclic relaxation improves performance
of our approach on cyclic circuits in three respects: (1) it
renders larger circuits tractable (such as 16-qubit QAOA),
(2) it produces a solution faster, and (3) it produces better
solutions within a fixed timeout for some circuits.

Breakdown of effects. Table III summarizes the effects of our
encoding and relaxations, starting with TB-OLSQ as the baseline.
Without relaxations, NL-SATMAP can solve 70 benchmarks,
while TB-OLSQ only 38. With local relaxation, SATMAP can
solve 109 benchmarks, with a largest circuit of size 598,
compared to TB-OLSQ’s 90. We also see the same behavior
in QAOA benchmarks, with the local relaxation (SATMAP)
and cyclic relaxations (CYC-SATMAP) allowing us to solve
progressively more benchmarks. TB-OLSQ is unable to solve
any of our QAOA benchmarks within the allotted time.

Q4: Impact of Architecture

Experimental setup. Finally, we investigated the effectiveness
of SATMAP as compared to the best heuristic tool, TKET, when
varying the properties of the connectivity graph. We constructed

5Note that SAT solvers do not provide a monotonicity guarantee on
performance with respect to increasing circuit size—e.g., we can solve a
12-qubit circuit with SATMAP but not a 10-qubit circuit. This is due to the
search strategy employed by the underlying solver.

Qubits Cycles CYC-SATMAP SATMAP TKET

Cost Time Cost Time Cost Time

6
2 12 130 12 1800 12 < 0.1
4 24 130 60 203 42 < 0.1

8
2 12 361 18 954 21 < 0.1
4 24 361 63 372 30 < 0.1

10
2 84 253 54 1155 33 0.14
4 168 253 – – 102 0.24

12
2 84 1800 21 261 48 0.33
4 168 1800 105 1800 87 0.32

16
2 24 288 – – 78 0.30
4 48 288 – – 147 0.41

TABLE IV: Quality of solutions and runtime (s) of CYC-SATMAP, SATMAP, and TKET on QAOA circuits

0

10

20

30

40

50

C
os

t r
at

io

SATMAP vs TKET on Tokyo+

Mean: 5.77
SATMAP

0

5

10

15

20

25

C
os

t r
at

io

SATMAP vs TKET on Tokyo

Mean: 3.66
SATMAP

0

1

2

3

4

5

6

C
os

t r
at

io

SATMAP vs TKET on Tokyo-

Mean: 1.08
SATMAP

Fig. 14: The cost of the solution produced by TKET divided by the cost of the solution produced by SATMAP on three
different connectivity graphs: Tokyo+, Tokyo, and Tokyo−

two modified versions of the IBM Tokyo architecture: (1)
increasing sparsity of the graph by removing diagonal edges
(Tokyo−, Fig. 9a), and (2) increasing connectivity by adding
diagonal edges (Tokyo+, Fig. 9c). The average degree of
a vertex in Tokyo is exactly halfway between Tokyo+ and
Tokyo−. We applied the same procedure as in the evaluation
of Q2 with the use of these different architectures as the only
difference.

Results. In a similar manner to Q2, Fig. 14 shows the cost ratio
on each benchmark for the three architectures. On Tokyo−,
heuristic tools and SATMAP produce very similar solutions.
The difference between the cost of the solution produced
by TKET and SATMAP was less than 10 gates for 61 of the
85 benchmarks solved by SATMAP, with a mean cost ratio
near 1. Results on Tokyo+ are more in line with those on
Tokyo, but with more variance across the benchmark set. Again
comparing TKET to SATMAP, the standard deviation in cost ratio
on Tokyo+ is 9.09 as opposed to 3.92 on Tokyo (excluding
infinite ratios). These results suggest the existence of two
effects. First, heuristic solutions are well-suited to finding near
optimal solutions on sparse connectivity graphs. Second, the
success of SATMAP on Tokyo as compared to Tokyo− and
Tokyo+ may indicate constraint-based tools are better suited to
non-uniform architectures where the connectivity varies across
qubits. We observe the same behavior on SABRE and MQTH,
so we focus on TKET here since it’s the best-performing tool.

Summary: heuristic-based tools are not robust to varia-
tions in the connectivity graph, tending to produce better
results on sparse graphs (Tokyo−) than highly connected
ones (Tokyo+).

Q5: Scalability and Optimality

Time Limits. First, we study the impact of the time bound on
the number of benchmarks solved and the cost of the solution.
We consider the following time limits (in seconds): 100, 300,
600, 1800, 3600, 5400, and 7200. We compare each time limit
against the original 1800 seconds by computing the cost ratio
like in Q2. All other configurations are the same including
the architecture, Tokyo. As expected, the cost ratio decreases
exponentially as the time allotted increases meaning solution
quality improves with more time. Additionally, the number
of benchmarks solved and size of the largest circuit solved
both increase given more time. The change in the number of
benchmarks solved across time is less dramatic, increasing
from 103 to 111.

Cost vs Circuit Size. Second, we analyze the optimality of
the solution compared to circuit size. Since we do not have
ground truth optimal cost, we use the cost ratio data from
Q2 comparing SATMAP to the best performing heuristic tool,
TKET. We observe a downward trend in cost ratio as circuit
size increases, suggesting a loss in optimality as circuit size

0 2000 4000 6000
time allotted (s)

1.0

1.2

1.4

av
g

co
st

 ra
tio

525

598

598

598
1701 1701 1701

Average Cost Ratio vs Time Allotted

Fig. 15: Comparison of average cost ratio across different
time bounds with a baseline of 1800 seconds. Each point
is labeled with the size of the largest circuit solved.

0 100 200 300 400 500 600
Circuit size

0

5

10

15

20

25

C
os

t r
at

io

TKET Cost Ratio vs Circuit Size

Mean: 3.66
SATMAP

Fig. 16: Solution quality compared to TKET across different
circuit sizes.

increases. This is expected as the local relaxation creates more
slices for larger circuits.

Q6: Noise Models

To demonstrate the versatility of our approach, we also use
a weighted MAXSAT encoding to incorporate noise models,
with the aim of maximizing the fidelity of the output circuit.

Weighted MAXSAT is a generalization of MAXSAT where soft
constraints are assigned a positive weight, and the objective is
to maximize the sum of the weights of the satisfied soft clauses.
The MAXSAT problem as defined previously is equivalent to
weighted MAXSAT where all weights are 1.

Example 12: Consider the weighted MAXSAT problem with
one hard constraint and two soft constraints,

Hard = {a∨b}
Soft = {(¬a,weight : 5),(¬b,weight : 1)}

The solution is I = [a 7→ false,b 7→ true], with a weight of 5.
In the noise-aware version of SATMAP, we use soft-clause

weights to encode the fidelity of operations, e.g, a variable
swap(p1, p2,k) is assigned a weight (probability between 0
and 1) corresponding to the fidelity of performing a SWAP
on the edge (p1, p2). The result is an optimization objective
equivalent to TB-OLSQ’s. We used the error rates supplied by
the “FakeTokyo” backend from the IBM Qiskit development
kit.

Fidelity maximization is a more complex objective than
SWAP minimization, so both tools, SATMAP and TB-OLSQ,

solved fewer benchmarks from the set of 160 within the
same timeout from Q1. However, we observe an even bigger
gap between the two tools, with SATMAP solving ∼4x more
benchmarks: The fidelity maximization version of TB-OLSQ
was able to solve 23 benchmarks, whereas SATMAP was able
to solve 89. For the 23 benchmarks solved by TB-OLSQ, the
fidelity achieved by by SATMAP was the same except for 5
examples, which incur a small fidelity reduction of 0.004 to
0.09 due to relaxation.

VIII. RELATED WORK

Constraint-based Approaches. Many prior works utilize
constraint solvers for mapping and routing logical qubits.
Several tools leverage ILP solvers to minimize the number
of SWAPs and circuit depth [20], [21], [22]. At the same time,
several others translate QMR to Boolean constraints and use
SMT solvers [6], [23]. Besides restricted connectivity, mapping
logical qubits onto physical qubits can be challenging due to
non-uniform gate latency and error rates. To that end, Tan et al.
leverage SMT solvers to minimize the total circuit runtime [5]
whereas Murali et al. use SMT solvers to maximize success
probability by accounting for variability in gate errors [7].
Furthermore, some tools cast QMR as a path planning problem
and leverage temporal planners [24], [25]. However, most
constraint-based solvers face severe scalability issues due to
the exponential search space.

The closest work to ours is TB-OLSQ [5] which uses a
satisfiability modulo theories (SMT) encoding that is more
efficient than earlier work [6]. Our encoding is different in a
number of ways: (1) We restrict ourselves to fully Boolean
encoding, allowing us to sidestep the complexity of SMT vs SAT
solving. (2) We model SWAPs via Boolean variables in a view
that mimics sketch-based program synthesis. (3) We introduce
novel relaxations that increase scalability while maintaining
almost optimality.

Heuristic-based Approaches. Due to the limited scalability of
constraint-based tools, most industry compilers and open-source
quantum compiler projects use heuristic methods for performing
QMR. For example, IBM Qiskit uses SABRE, a bidirectional
local search algorithm that slices the circuit into subcircuits and
finds locally optimal mappings, similar to our locally optimal
relaxation [18]. In contrast, the MQT compiler uses a slow but
exhaustive A∗ search [10]; the approach is made feasible by
only applying A∗ between gates in consecutive topological
layers of the circuit. Furthermore, recent work combines A∗

with novel search space pruning techniques to enable time
optimal QMR solutions [26]. Tools like Enfield use subgraph
isomorphism and token swapping [19], whereas others use
hierarchical product algorithms for modular architecture [27]
and SWAP networks [28]. Majority of the heuristic methods try
to minimize the distance between logical qubits and use greedy
but efficient local search to reduce the number of gates and
circuit depth. For example, TKET heuristic performs a greedy
search to find an initial qubit mapping that results in the
least number of SWAPs and inserts routing gates by iteratively

permuting the logical to physical mapping [3], [29]. Similarly,
earlier work uses local permutations of physical to logical qubit
map and sub-graph isomorphism to solve the QMR problem [30].
A large body of work focuses on restricted qubit architectures
with 1D, and 2D nearest neighbor connectivity [31], [32],
[33], [34]. Whereas recent works focus on IBM machines and
develop greedy search strategies for IBM architectures [35],
[36]. While others develop application-specific [37], [38] and
noise-aware strategies that use hardware-level characteristics
to improve fidelity [39], [40], [41], [42], [43], [44], [45].

IX. DISCUSSION

Importance of optimality. Our results demonstrate a big
gap in terms of added SWAPs between heuristic-based QMR
algorithms and our constraint-based technique. For near-term,
noisy quantum computers, reducing the number of SWAPs
is critical for successfully executing quantum algorithms.
Therefore, our results indicate that, going forward, (1) we need
to improve existing heuristic algorithms to bring them closer
to optimal or (2) improve the scalability of constraint-based
techniques.

Scaling the MAXSAT approach. Our MAXSAT approach
produces significant improvements over existing optimal ap-
proaches. However, SAT solving is an NP-complete problem and
scalability remains an issue. We see two avenues for scaling our
MAXSAT approach to stay ahead of the growth in the number
of qubits: First, we can employ parallel SAT-solving strategies.
All of our experiments used a single-threaded solver. Today,
there are SAT solvers that can run on cloud infrastructure
with impressive improvements.6 Second, at the algorithmic
level, we can combine our MAXSAT approach with heuristic
approaches. For instance, we can only solve the mapping
constraints (optimally) and leave the routing process for a
heuristic approach or an approximation algorithm [23].

Future architectures. Quantum computing is a field in flux,
and there is no clear indication of how future connectivity
graphs will look like, as it depends on the underlying physical
substrate used and engineering advances. The ideal, of course,
is to build a device with as much connectivity and as little
cross-talk as possible. Our results demonstrate that for higher
connectivity, the performance of heuristic approaches diverges
from the optimal. So it is prudent to robustify heuristic ap-
proaches to changes in the connectivity graph to accommodate
the rapid developments NISQ computing hardware.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thoughtful
feedback and Rui Huang for providing scripts to generate
QAOA circuits. This work is supported by NSF grants #1652140
and #2212232 and awards from Meta and Amazon. This
research is also partially supported by the Vice Chancellor
Office for Research and Graduate Education at the University of
Wisconsin–Madison with funding from the Wisconsin Alumni
Research Foundation.

6https://satcompetition.github.io/2021/

REFERENCES

[1] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[2] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[3] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons,
and S. Sivarajah, “On the qubit routing problem,” arXiv preprint
arXiv:1902.08091, 2019.

[4] B. Tan and J. Cong, “Optimality study of existing quantum computing
layout synthesis tools,” IEEE Transactions on Computers, vol. 70, no. 9,
pp. 1363–1373, 2020.

[5] ——, “Optimal layout synthesis for quantum computing,” in 2020
IEEE/ACM International Conference On Computer Aided Design (IC-
CAD). IEEE, 2020, pp. 1–9.

[6] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits to
ibm qx architectures using the minimal number of swap and h operations,”
in 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE,
2019, pp. 1–6.

[7] P. Murali, J. M. Baker, A. J. Abhari, F. T. Chong, and M. Martonosi,
“Noise-adaptive compiler mappings for noisy intermediate-scale quantum
computers,” arXiv preprint arXiv:1901.11054, 2019.

[8] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. IOS
press, 2009, vol. 185.

[9] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. Luckow,
N. Rungta, O. Tkachuk, and C. Varming, “Semantic-based automated
reasoning for aws access policies using smt,” in 2018 Formal Methods
in Computer Aided Design (FMCAD). IEEE, 2018, pp. 1–9.

[10] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for
mapping quantum circuits to the ibm qx architectures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 7, pp. 1226–1236, 2018.

[11] A. Solar-Lezama, Program synthesis by sketching. University of
California, Berkeley, 2008.

[12] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint:1411.4028, 2014.

[13] I. P. Gent and P. Nightingale, “A new encoding of alldifferent into sat,”
in International Workshop on Modelling and Reformulating Constraint
Satisfaction, 2004, pp. 95–110.

[14] S. Joshi, P. Kumar, V. Manquinho, R. Martins, A. Nadel, and S. Rao,
“Open-WBO-Inc in MaxSAT Evaluation 2018,” in MaxSAT Evaluation
2018: Solver and Benchmark Descriptions, vol. B-2018-2. Department
of Computer Science, University of Helsinki, 2018, pp. 16–17.

[15] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “Revlib:
An online resource for reversible functions and reversible circuits,” in
38th International Symposium on Multiple Valued Logic (ismvl 2008),
2008, pp. 220–225.

[16] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron,
“Quipper: A scalable quantum programming language,” CoRR, vol.
abs/1304.3390, 2013. [Online]. Available: http://arxiv.org/abs/1304.3390

[17] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong,
and M. Martonosi, “Scaffcc: A framework for compilation and analysis
of quantum computing programs,” in Proceedings of the 11th ACM
Conference on Computing Frontiers, ser. CF ’14. New York, NY,
USA: Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2597917.2597939

[18] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for nisq-
era quantum devices,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 1001–1014.

[19] M. Y. Siraichi, V. F. d. Santos, C. Collange, and F. M. Q. Pereira,
“Qubit allocation as a combination of subgraph isomorphism and token
swapping,” Proceedings of the ACM on Programming Languages, vol. 3,
no. OOPSLA, pp. 1–29, 2019.

[20] D. Bhattacharjee, A. A. Saki, M. Alam, A. Chattopadhyay, and S. Ghosh,
“Muqut: Multi-constraint quantum circuit mapping on nisq computers,”
in 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2019, pp. 1–7.

[21] A. Chakrabarti, S. Sur-Kolay, and A. Chaudhury, “Linear nearest neighbor
synthesis of reversible circuits by graph partitioning,” arXiv preprint
arXiv:1112.0564, 2011.

[22] D. Bhattacharjee and A. Chattopadhyay, “Depth-optimal quantum circuit
placement for arbitrary topologies,” arXiv preprint arXiv:1703.08540,
2017.

https://satcompetition.github.io/2021/
http://arxiv.org/abs/1304.3390
https://doi.org/10.1145/2597917.2597939

[23] M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q. Pereira, “Qubit
allocation,” in Proceedings of the 2018 International Symposium on Code
Generation and Optimization. ACM, 2018, pp. 113–125.

[24] D. Venturelli, M. Do, E. G. Rieffel, and J. Frank, “Temporal planning
for compilation of quantum approximate optimization circuits.” in IJCAI,
2017, pp. 4440–4446.

[25] D. Venturelli, M. Do, E. Rieffel, and J. Frank, “Compiling quantum
circuits to realistic hardware architectures using temporal planners,”
Quantum Science and Technology, vol. 3, no. 2, p. 025004, 2018.

[26] C. Zhang, A. B. Hayes, L. Qiu, Y. Jin, Y. Chen, and E. Z. Zhang, “Time-
optimal qubit mapping,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 360–374.

[27] A. M. Childs, E. Schoute, and C. M. Unsal, “Circuit transformations for
quantum architectures,” arXiv preprint arXiv:1902.09102, 2019.

[28] B. O’Gorman, W. J. Huggins, E. G. Rieffel, and K. B. Whaley,
“Generalized swap networks for near-term quantum computing,” arXiv
preprint arXiv:1905.05118, 2019.

[29] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and
R. Duncan, “t|ket⟩: a retargetable compiler for nisq devices,” Quantum
Science and Technology, vol. 6, no. 1, p. 014003, 2020.

[30] D. Maslov, S. M. Falconer, and M. Mosca, “Quantum circuit placement:
optimizing qubit-to-qubit interactions through mapping quantum circuits
into a physical experiment,” in Proceedings of the 44th annual Design
Automation Conference. ACM, 2007, pp. 962–965.

[31] Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima, “An efficient
conversion of quantum circuits to a linear nearest neighbor architecture,”
Quantum Information & Computation, vol. 11, no. 1, pp. 142–166, 2011.

[32] M. Saeedi, R. Wille, and R. Drechsler, “Synthesis of quantum circuits for
linear nearest neighbor architectures,” Quantum Information Processing,
vol. 10, no. 3, pp. 355–377, 2011.

[33] A. Shafaei, M. Saeedi, and M. Pedram, “Optimization of quantum circuits
for interaction distance in linear nearest neighbor architectures,” in 2013
50th ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2013, pp. 1–6.

[34] R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and
R. Drechsler, “Look-ahead schemes for nearest neighbor optimization of
1d and 2d quantum circuits,” in 2016 21st Asia and South Pacific design
automation conference (ASP-DAC). IEEE, 2016, pp. 292–297.

[35] A. Zulehner and R. Wille, “Compiling su (4) quantum circuits to ibm qx
architectures,” in Proceedings of the 24th Asia and South Pacific Design
Automation Conference, 2019, pp. 185–190.

[36] A. Kole, S. Hillmich, K. Datta, R. Wille, and I. Sengupta, “Improved
mapping of quantum circuits to ibm qx architectures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 10, pp. 2375–2383, 2019.

[37] G. G. Guerreschi and J. Park, “Two-step approach to scheduling quantum
circuits,” Quantum Science and Technology, vol. 3, no. 4, p. 045003,
2018.

[38] M. Alam, A. Ash-Saki, and S. Ghosh, “Circuit compilation methodologies
for quantum approximate optimization algorithm,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2020, pp. 215–228.

[39] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: a case
for variability-aware policies for nisq-era quantum computers,” in Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2019, pp.
987–999.

[40] P. Das, S. Tannu, S. Dangwal, and M. Qureshi, “Adapt: Mitigating idling
errors in qubits via adaptive dynamical decoupling,” in MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, 2021,
pp. 950–962.

[41] P. Das, S. Tannu, and M. Qureshi, “Jigsaw: Boosting fidelity of nisq
programs via measurement subsetting,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
937–949.

[42] P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin,
M. Brink, L. Capelluto, O. Günlük, T. Itoko, N. Kanazawa et al.,
“Demonstration of quantum volume 64 on a superconducting quantum
computing system,” Quantum Science and Technology, vol. 6, no. 2, p.
025020, 2021.

[43] S. S. Tannu and M. Qureshi, “Ensemble of diverse mappings: Improving
reliability of quantum computers by orchestrating dissimilar mistakes,”

in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 253–265.

[44] T. Patel and D. Tiwari, “Veritas: accurately estimating the correct
output on noisy intermediate-scale quantum computers,” in 2020 SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). IEEE Computer Society, 2020, pp. 188–203.

[45] S. Stein, N. Wiebe, Y. Ding, P. Bo, K. Kowalski, N. Baker, J. Ang, and
A. Li, “Eqc: ensembled quantum computing for variational quantum
algorithms,” in Proceedings of the 49th Annual International Symposium
on Computer Architecture, 2022, pp. 59–71.

	Introduction
	An Illustrative Example
	Qubit Mapping and Routing
	 Optimal QMR via maxsat
	MaxSAT Background
	MaxSAT Encoding of Optimal QMR
	Mapping Constraints
	Routing Constraints
	Soft Constraints and Optimality

	A Locally Optimal Relaxation
	Exploiting cyclic circuits
	Implementation and Evaluation
	Related Work
	Discussion
	References

