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To evaluate a quantum circuit on a quantum processor, one must find a mapping from circuit qubits to processor
qubits and plan the instruction execution while satisfying the processor’s constraints. This is known as the
qubit mapping and routing (qmr) problem. High-quality qmr solutions are key to maximizing the utility of
scarce quantum resources and minimizing the probability of logical errors affecting computation. The challenge
is that the landscape of quantum processors is incredibly diverse and fast-evolving. Given this diversity, dozens
of papers have addressed the qmr problem for different qubit hardware, connectivity constraints, and quantum
error correction schemes by a developing a new algorithm for a particular context. We present an alternative
approach: automatically generating qubit mapping and routing compilers for arbitrary quantum processors.
Though each qmr problem is different, we identify a common core structure—device state machine—that we
use to formulate an abstract qmr problem. Our formulation naturally leads to a compact domain-specific
language for specifying qmr problems and a powerful parametric algorithm that can be instantiated for any
qmr specification. Our thorough evaluation on case studies of important qmr problems shows that generated
compilers are competitive with handwritten, specialized compilers in terms of runtime and solution quality.

1 Introduction

Quantum computation promises to surpass classical methods in important domains, potentially
unlocking breakthroughs in materials science, chemistry, machine learning, and beyond. Quantum
computing is at an inflection point: scientists are scaling quantum hardware [11, 20], demonstrating
practical quantum error correction protocols [15], and exploring promising application domains [29].
However, to fully realize the potential of quantum hardware available today and on the horizon,
we need optimizing quantum circuit compilers. A compiler must convert architecture-independent,
circuit-level descriptions of quantum programs to a form executable on a target quantum processing
unit (qpu). Inefficient compilation that induces significant runtime overhead is unacceptable. For
one, access to quantum compute is limited and costly. Further, quantum computation is error-prone,
and longer computations are associated with a higher probability of a logical error, even when
quantum error-correcting codes are applied.

To enable execution of a quantum circuit on a target qpu, a compiler must find a mapping from
circuit qubits to physical locations on the qpu and plan the routing of quantum instructions (gates)
in a way that is compliant with the qpu’s physical and logical constraints. This is known as the
qubit mapping and routing problem (qmr).
The challenge for compiler designers is that the landscape of target quantum architectures

is incredibly diverse and fast-evolving. First, there are several competing hardware realizations
of an individual physical qubit, such as superconducting circuits, neutral atoms, trapped ions,
and photons. Each physical realization of qubits imposes its own unique constraints on qmr. For
example, superconducting qubits are fixed in place, while neutral atom qubits can be shuttled in
physical space. Second, qubits can be arranged and connected in a variety of ways. For example,
superconducting circuits can be arranged in a linear array or a grid. Third, going up the abstraction
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Fig. 1. Overview of our approach to qmr compiler generation. Given a specification of a qmr problem in Marol,

we generate a compiler by instantiating our parametric solver. The generated compiler takes a quantum

circuit and target qpu graph as input and produces a mapping and routing solution.

ladder, quantum-error correction (qec) schemes encode a logical qubit using several physical qubits,
and each qec scheme imposes its unique architectural constraints.
The diversity in quantum architectures yields an array of qmr problems to tackle for different

qubit hardware, connectivity constraints, and quantum error correction schemes. A recent survey
[65] explicitly enumerates dozens of papers which address a variant of the qmr problem as their
primary focus. Table 1 shows a selection of qmr problems studied in the literature, highlighting
the diversity of the considered constraints. For each new set of mapping and routing constraints,
researchers establish hardness results, identify connections to graph-theoretic problems, and
develop specialized compilation algorithms. Ideally, we would prefer to avoid restarting this process
from scratch for each new emerging architecture.

Therefore, in this work we ask the following question:
Can we automatically synthesize a compiler from a specification of architectural constraints?

To this end, we construct a framework that unifies and generalizes qmr problems, illustrated in Fig. 1.
Though each qmr problem is different, we identify a common core structure that we use to define an
abstract qmr problem. Then, each architecture-specific problem is a different concrete instantiation
of the abstract problem. Our abstract qmr problem is based on the view of a mapping and routing
solution as a sequence of device states. A device state captures the current qubit mapping and which
gates are evaluated in parallel at a given execution time step. The architectural constraints dictate
which states and transitions between states are valid.

Our formulation of the abstract qmr problem naturally leads to a domain-specific language, Marol,
for specifying qmr problems. A program in Marol defines a device state machine that describes the
qpu’s physical and logical constraints. With a few lines of code, we can specify a new qmr problem
and automatically generate a compiler for it. For example, the definition of the most well-studied
qmr problem, for noisy intermediate-scale quantum (nisq) architectures, is just 12 lines of Marol
(Table 1 shows a selection of qmr problems that we use as case studies along with line counts).

We demonstrate that our abstract qmr problem can be solved with a simple parametric solver
that can be instantiated for any qmr problem. Given a specification of a qmr problem in Marol,
we automatically generate a compiler for it by instantiating the parametric solver. Generally, qmr
problems have been shown to be np-hard [38, 53] and constraint-based solutions have been shown
to be unscalable. Our solver, instead, is approximate in nature. It constructs the mapping and
routing solution by incrementally building a sequence of device states, attempting to maximize the
number of gates that can be executed in parallel. We call this approach maximal-state construction
and study the properties of qpus for which our solver can find maximal states. We identify two
desirable properties, monotonicity and non-interference. It turns out, for all practical qpus, we
can find maximal states (via monotonicity), and for some qpus (like in the nisq setting), we can
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Table 1. A selection of qmr problems that we use as case studies

Case study Marol LoC Prior work

Near-term superconducting (nisqmr) 12 [8, 34, 37, 50, 60]
Near-term superconducting with variable error (nisq-ve) 30 [39, 57]
Trapped-ion compilation (tiqmr) 51 [3, 40]
Reconfigurable atom array compilation (raa) 116 [54, 55, 59]
Surface code mapping and routing (scmr) 40 [19, 38]
Multi-qubit lattice surgery scheduling (mqlss) 56 [52]
Interleaved logical qubit compilation (ilq) 44 [58]

find maximum states without requiring search (via non-interference)—speeding up the algorithm.
For managing the combinatorial explosion, we use the classic and simple simulated annealing
algorithm [30]. Our solver is suitable for industrial-scale quantum circuit compilation because it is
simple, highly configurable, and amenable to parallelization.
We evaluate our approach with several case studies of important qmr problems considered

in prior work (see Table 1), including very recently introduced qmr problems for fault-tolerant
quantum computers [52, 58]. Qualitatively, our results demonstrate the generality and versatility
of our abstract qmr formulation and our specification language, Marol: we are able to concisely
specify qmr problems for noisy and fault-tolerant quantum architectures on a variety of hardware
realizations. Quantitatively, we perform an experimental evaluation on a comprehensive circuit
benchmark suite to assess the performance of our solver. Our results indicate that our generated
compilers are competitive with handwritten compilers in terms of runtime and solution quality
(details in Sec. 7). For example, our solver finds solutions with the same cost or better than the
leading industrial toolkit, qiskit [25], for half of our benchmarks. On some qmr domains, we
even outperform the prior state-of-the-art. For the case of interleaved logical qubits, our solutions
are strictly higher-quality than the baseline for 93% of cases. We envision that our approach will
simplify development of quantum compilers for the many new and emerging quantum architectures.

To summarize, our contributions are the following:

• An abstract formulation of themapping and routing problem, based on device statemachines,
that presents a uniform way of thinking of the zoo of qmr problems (Sec. 3).
• A specification language for qmr problems, called Marol, that enables concise expression of
the unique constraints of a particular architecture family. (Sec. 4)
• A powerful parametric solver that can be automatically instantiated into a compiler for a
given qmr problem from a specification written in Marol. (Sec. 5)
• An extensive empirical evaluation demonstrating the generality of our approach and the

quality of the synthesized compilers in comparison to handwritten compilers. (Secs. 6 and 7)

2 Background and Overview of our Approach

In this section, we begin by giving an overview of quantum circuits, providing the relevant back-
ground for this work to readers unfamiliar with quantum computing. We then introduce the qmr
problem through two key examples of target qpus. By studying these two examples, we highlight
the commonalities and motivate the abstract qmr problem and our specification language, Marol.
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2.1 Quantum Circuits

We give a brief overview of quantum circuits. Since we are interested in the mapping and routing
problem, it suffices to consider the structure of quantum circuits and not their full semantics. A
comprehensive introduction can be found in any standard quantum computing text (e.g., [42]).

Qubits. The unit of data in quantum computing is called the qubit. A qubit can be one of the
two computational basis states, 0 and 1, or a linear combination of the two, with complex-number
coefficients called amplitudes. The state of 𝑛 qubits is described by 2𝑛 amplitudes.

Gates. Quantum states are transformed by operations called quantum gates. In this work, we
focus on single-qubit and two-qubit gates. One important single-qubit gate is the𝑇 gate. The𝑇 gate
leaves the 0 state unchanged, and applies a phase-shift to the 1 state, multiplying its amplitude by
𝑒𝑖𝜋/4. The 𝑇 gate plays an important role in fault-tolerant quantum computation. While necessary
for universality—the ability to approximate any quantum computation to arbitrary precision—𝑇
gates are typically expensive to implement in the context of quantum error correction.

A common two-qubit gate is the cx gate. The cx gate is named for its action on the computational
basis states as a “conditional-not.” If the first argument, called the control, is 1, the cx applies a not
to the second argument, which is called the target. If the control is in the 0 state, the gate has no
effect. Another important two-qubit gate is the swap gate, which swaps the values of two qubits.

Circuits. Quantum gates can be composed to produce a quantum circuit. Fig. 2 shows a simple
quantum circuit. This example merely demonstrates the structure of circuits; the computation it
performs is not significant. Each horizontal wire represents a qubit—two qubits are present in this
example—and the circuit is read from left to right. In this circuit, we first apply a cx gate to the two
qubits (the top qubit is the control and the bottom qubit is the target), then a 𝑇 gate to each qubit.
Equivalently, this circuit can be written as a sequence of instructions: cx 𝑞1 𝑞2;𝑇 𝑞1;𝑇 𝑞2.

2.2 An Introduction to qmr Problems

T

T

Fig. 2. A simple

quantum circuit

In this section, we introduce qubit mapping and routing through two key ex-
amples of target qpus. We chose two ostensibly very different qmr problems,
one targeting noisy quantum computers and the other targeting fault-tolerant
quantum computers. In comparing these two problems, we highlight a shared
core structure with problem-specific parametric components.

Both qmr problems reduce to finding an execution plan for a given circuit on a
given qpu. We can express an execution plan as a sequence of device states of the
qpu. Intuitively, each state in the sequence represents a time step of execution.
The differences between qmr problems emerge as constraints that state sequences
must satisfy to be considered valid solutions and cost functions defining solution optimality.
We describe our two example qmr problems with an eye towards this unifying perspective,

summarizing each problem in terms of the constraints imposed on the state sequences.

2.2.1 Noisy-Intermediate Scale Quantum Computers. First, we consider mapping and routing for
noisy-intermediate scale quantum (nisq) architectures. These qpus consist of up to hundreds of
physical qubits and do not implement error-correction.Wewill call this the nisqmr problem. nisqmr
is well-studied with a variety of proposed solutions appearing in the literature, ranging from greedy
heuristic maximization [8, 34] to 𝐴∗ search [66] to reductions to satisfiability [35, 37, 64].

Mapping and Routing for nisq Devices. Because of spatial limitations, many nisq qpus, like the
devices developed by IBM [21] and Google [12, 14], only support two-qubit gates between certain
pairs of qubits. We can represent a particular qpu with a connectivity graph. The connectivity
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p0 p1 p2 p3

(a) Input: a four-qubit linear nisq qpu

g0

g1

g2

g3

(b) Input: a quantum circuit

Qubit Map Gates
𝑞0 ↦→ 𝑝0
𝑞1 ↦→ 𝑝1 𝑔0 ↦→
𝑞2 ↦→ 𝑝2 𝑔1 ↦→
𝑞3 ↦→ 𝑝3

q0 q2 q3q1

State 1
Qubit Map Gates
𝑞0 ↦→ 𝑝0
𝑞1 ↦→ 𝑝2 𝑔2 ↦→
𝑞2 ↦→ 𝑝1 𝑔3 ↦→
𝑞3 ↦→ 𝑝3

q0 q2 q3q1

State 2

swap 𝑝1, 𝑝2

(c) A nisqmr solution. A graphical depiction of each state is shown below its description

Fig. 3. Overview of the nisqmr problem

graph includes an edge between a pair of qubits if and only if the qpu supports a two-qubit gate
between them. A simple connectivity graph is shown in Fig. 3a (a linear graph where adjacent
physical qubits are connected by an edge). The goal of the compiler is to find a qubit map from the
qubits which appear in the circuit to the physical qubits of the qpu such that two-qubit gates are
executable, which is to say that the circuit qubits the gate acts on are mapped to adjacent qubits.
For example, suppose we wish to execute the circuit in Fig. 3b on this qpu. The first gate, 𝑔0, is
between qubits 𝑞0 and 𝑞1, so we choose a map that maps these to a pair of adjacent physical qubits,
such as 𝑝0 and 𝑝1. Likewise, to execute the second gate, 𝑔1, we map 𝑞2 and 𝑞3 to 𝑝2 and 𝑝3. However,
we cannot execute either of the remaining gates, 𝑔2 and 𝑔3, with this qubit map because there is no
edge between the qubits the gates act on.

Changing the Qubit Map via swap Gates. There is often no single static map such that all two-
qubit gates are executable. Instead, the map is transformed over the course of execution by the
insertion of swap gates. swap gates exchange the states of two adjacent qubits. In our example, to
execute the cx gates 𝑔2 and 𝑔3 (cx 𝑞1 𝑞3 and cx 𝑞0 𝑞2), we insert a swap operation swap 𝑝1 𝑝2.
A representation of our full mapping and routing solution is depicted in Fig. 3c. Each box

represents the device state of the qpu at a particular time step; each state is an assignment of some
subset of the gates of the circuit to an edge in the connectivity graph and has an associated qubit
map. For example, in state 1, gate 𝑔0 is assigned to the edge (𝑝0, 𝑝1) while gate 𝑔1 is assigned to the
edge (𝑝2, 𝑝3). The swap operations inserted between states dictate how the qubit map changes.

Each additional noisy gate increases the probability of error in the execution of the circuit, and
two-qubit gates like the swap gate are especially costly, with an error rate that is typically an
order of magnitude higher than single qubit gates. Therefore, the goal is to find a solution which
minimizes the number of inserted swap gates.
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In summary, the nisqmr problem consists of the following components.
• Input: a circuit and a nisq qpu (represented as a connectivity graph).
• Output: an execution plan for the circuit on the qpu as a sequence of states. Each state

consists of a map from circuit qubits to qpu physical qubits and a set of two-qubit gates
that are executed.
• Gate Realization: the plan associates each gate with a realization, the edge along which
it is implemented.
• Transitions: between states, the qubit map can be transformed by swap gates, which
define the valid transitions.
• Cost: the goal is to minimize the number of added swap operations.

2.2.2 Surface Code. Now we turn to processors implementing the surface code [10], a leading
approach for quantum error correction that has recently been demonstrated in hardware [5, 13, 15].
We refer to the qmr problem for surface code processors as scmr. In the surface code, a two-
dimensional array of physical qubits is used to encode a fault-tolerant logical qubit. A surface code
logical qubit is shown in the inset on the left of Fig. 4a. The large circles denote physical qubits which
carry the logical state, while the small circles denote physical qubits which are repeatedly measured
to detect errors. A surface code qpu consists of several surface code logical qubits embedded in
the same lattice of physical qubits. We can represent a qpu with a grid graph where each vertex
represents a logical qubit, and we include an edge between adjacent logical qubits, not including
diagonals, as shown on the right of Fig. 4a.

Two-Qubit Gates as Paths. Two-qubit gates between surface code logical qubits are implemented
via a procedure called lattice surgery [18]. To apply a lattice surgery cx gate, we need to find
a path of logical qubits on the grid from the control qubit to the target qubit (through ancilla
qubits). The path must connect a horizontal boundary of the control (the top or bottom edge) to a
vertical boundary of the target, making at least one “bend”. The paths for gates which are executed
simultaneously cannot cross. The challenge of scmr is thus to map circuit qubits to qpu logical
qubits and plan paths such that we avoid conflicts where one gate blocks another.

For example, say we wish to execute the circuit in Fig. 4b on our 3×3 qpu in Fig. 4a. Theoretically,
the two cx gates of the circuit can be executed in parallel. However, we need to choose the qubit
map carefully to enable parallel execution. Consider Fig. 4c. With this qubit map, there is no way
to simultaneously execute the two gates, resulting in a two-time-step solution because any paths
from 𝑞0 to 𝑞1 and 𝑞2 to 𝑞3 must cross. Note that, in this setting, the qubit map does not change
between states. On the other hand, Fig. 4d shows how a different qubit map yields a single-state
solution. Solutions with fewer states are preferable because they save quantum compute resources
at run time, and have a lower probability of logical error, which accumulates with each state.

Routing 𝑇 Gates. The surface code problem must also account for 𝑇 gates. While the 𝑇 gate is a
single-qubit gate, it cannot be applied directly to surface code logical qubits. The main proposal for
addressing this limitation is called magic state injection [6]. In this protocol, a𝑇 gate is implemented
via a lattice surgery cx gate between the input to the𝑇 gate and another logical qubit prepared in a
so-called “magic state.” Magic state qubits are stored in designated locations on the qpu, which we
represent with special distinguished vertices in our grid graph representation.
We provide an example in Fig. 4e. Since this circuit contains a 𝑇 gate, we need to define magic

state qubit locations. The 3 × 3 architecture has been extended with a column of magic state qubits
along the right side, indicated with orange vertices. An optimal mapping and routing solution
with one state is shown. We have two simultaneous connections: one between qubits 𝑞0 and 𝑞1
corresponding to the cx; the other between 𝑞2 and a magic state qubit, corresponding to the 𝑇 gate.
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l0 l1 l2

l3 l4 l5

l6 l7 l8

(a) A 3 × 3 surface code qpu with 9 logical qubits

g0

g1

(b) A quantum circuit

Qubit Map Gates
𝑞0 ↦→ 𝑙0
𝑞1 ↦→ 𝑙6 𝑔0 ↦→
𝑞2 ↦→ 𝑙2
𝑞3 ↦→ 𝑙8

q2q0

q1q3

State 1
Qubit Map Gates
𝑞0 ↦→ 𝑙0
𝑞1 ↦→ 𝑙6 𝑔1 ↦→
𝑞2 ↦→ 𝑙2
𝑞3 ↦→ 𝑙8

q2q0

q1q3

q0 : •

State 2

Id

(c) A suboptimal scmr solution that serializes the parallel gates

Qubit Map Gates
𝑞0 ↦→ 𝑙0
𝑞1 ↦→ 𝑙4 𝑔0 ↦→
𝑞2 ↦→ 𝑙1 𝑔1 ↦→
𝑞3 ↦→ 𝑙5

q2q0

q3q1

State 1

(d) An optimal scmr solution preserving parallelism

q1q0

q2

(e) SCMR with a 𝑇 gate

Fig. 4. Overview of the scmr problem (examples adapted from Molavi et al. [38])

In summary, the scmr problem consists of the following components.
• Input: a circuit and a surface code qpu (represented as a grid graph).
• Output: an execution plan for the circuit on the qpu as a sequence of states. Each state
consists of a map from circuit qubits to qpu logical qubits and a set of two-qubit gates
and 𝑇 gates that are executed.
• Gate Realization: the plan associates each gate with a realization, the path along which
it is implemented.
• Transitions: between steps, the qubit map remains constant; that is, the only valid
transition is the identity transformation.
• Cost: the goal is to minimize the number of time steps.

2.2.3 Abstracting the qmr Problem. As these two example problems illustrate, each qmr problem
can be seen as a specialization of the same abstract qmr problem. Specifically, a qmr problem specifies
a device state machine with constraints on the states and transitions between them. This observation
has two major consequences. First, we can specify a particular qmr problem succinctly by defining
only the unique components of the device state machine:
• the problem-specific constraints on valid states (which gates are realizable and how they
are realized),
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• the transition relation which describes how the qubit map can change between states,
including any additional data that the qpu graph carries, and
• the optimization objective defining the cost of a solution.

Our language Marol is designed to facilitate such a description. Second, we can define a generic
solver which is parameterized by these components and tries to find an optimal sequence of device
states that solves the qmr problem.

2.3 Marol: A Language for Specifying qmr Problems

To enable painless specification of new qmr problems, we design a domain-specific language
tailored to our abstract qmr problem, which we call Marol. In this subsection, we introduce the key
features of Marol through an example, with a detailed language definition to follow in Sec. 4. A
Marol program corresponds to a concrete qmr problem, like nisqmr or scmr. Through a sequence of
data and function definitions written in a simple functional expression language, a Marol program
defines a function from a circuit and a qpu (defined as a graph) to a set of mapping and routing
solutions (as sequences of states), each associated with a cost. A solver for Marol will have to find
one of the sequences that minimizes the cost.
For example, the Marol program for the nisqmr problem is shown in Fig. 5. Notice that since

Marol is purpose-built for specifying qmr problems, the programs are concise. Here, we fully specify
the nisqmr problem in 12 lines.

Program Structure. A Marol program takes as input a circuit, referred to implicitly using its
constituent gates (Instr variable), and a qpu represented as a graph of device qubits (Arch variable).
The program is divided into a “RouteInfo” block (delimited by RouteInfo:) and a “TransitionInfo”
block (delimited by TransitionInfo:). Together, these two blocks define the device state machine:
• The RouteInfo block specifies the constraints on a valid qpu state in terms of how a gate is
associated with its physical realization.
• The TransitionInfo block specifies the constraints on a valid transition between qpu states.

RouteInfo Block. For nisqmr, a qpu state associates a cx gate with a pair of qpu locations. The
first two lines of the RouteInfo block for this problem encode this information.

The first line defines the GateRealization datatype. In this case, the GateRealization datatype has
a field which is a pair of elements of type Loc. The built-in Loc type represents locations on a qpu.
Marol has a built-in notion of an abstract qpu as a graph over vertices of type Loc. The second line
specifies that cx gates are the gate type to route.

GateRealization{edge : (Loc, Loc)}
routed_gates = [CX]

The rest of the block defines a function realize_gate which says that a Loc pair is a valid realization
for a gate precisely when the pair is an edge between the gate’s qubits.

// realize_gate : (Arch, State, Gate) → List[GateRealization]
realize_gate = map(|x| → GateRealization{edge = x},

Arch.edges_between(State.map[Gate.qubits[0]], State.map[Gate.qubits[1]]))

The realize_gate function is included in every Marol file. It has three implicit parameters, a qpu
Arch, a state State, and a gate Instr. It returns all possible implementations of the gate which can be
added to State. The realize_gate definition and other mandatory function definitions in Marol omit
the fixed parameters from the left-hand side of the assignment for simplicity, and the parameters
appear as unbound variables in the expression on the right-hand side. In this case, realize_gate
calls the GateRealization constructor on each edge in the qpu Arch between the mapping locations
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RouteInfo:
GateRealization{edge : (Loc,Loc)}
routed_gates = [CX]
realize_gate = map(|x| → GateRealization{edge = x},

Arch.edges_between(State.map[Gate.qubits[0]], State.map[Gate.qubits[1]]))

TransitionInfo:
Transition{edge : (Loc,Loc)}
get_transitions = map(|x| → Transition{edge = x}, Arch.edges())
apply = value_swap(QubitMap, Trans.edge.(0), Trans.edge.(1))
cost = if Trans == IdTrans

then 0.0
else 1.0

Fig. 5. The Marol definition of the nisqmr problem

of the two arguments of the cx gate in a functional programming style, using the higher-order
function map.

TransitionInfo Block. The TransitionInfo block defines the transition relation between qubit maps
of adjacent states. The first line defines the Transition datatype. In this case, the transitions are
described by a pair of qpu locations to which a swap gate is applied, so once again the datatype
has one field which is a pair of elements of type Loc.

Transition{edge : (Loc,Loc)}

We constrain the pairs to be adjacent in the connectivity graph of the target qpu with the definition
of another mandatory function get_transitions. The function get_transitions has two implicit
parameters, a qpu Arch and a state State, and returns a list with elements of type Transition. In this
case, get_transitions constructs a Transition for each edge in the qpu Arch.

// get_transitions : (Arch, State) → List[Transition]
get_transitions = map(|x| → Transition{edge = x}, Arch.edges())

Then, the next line defines a function apply which describes the action of a transition on a qubit
map, which is to swap the circuit qubits mapped to those locations. The Marol standard library
function value_swap simplifies this definition.

// apply : (Transition, QubitMap) → QubitMap
apply = value_swap(QubitMap, Trans.edge.(0), Trans.edge.(1))

Finally, the cost definition says each non-trivial transition (i.e. inserted swap gate) has a cost of 1.

// cost : Transition → Real
cost = if Trans == IdTrans then 0.0 else 1.0

This simple example demonstrates the general structure of a Marol program: defining data
structures and functions which form an operational description of the constraints of a qmr problem.
Marol offers a few other features that were not needed here but do appear in other qmr problem
definitions. These include another optional block for defining the expected labels on the qpu graph
edges and vertices (e.g., to say which locations are reserved for storing magic states in scmr) and
built-in utilities for common graph algorithms like path-finding and Steiner tree construction.
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2.4 Generating a qmr Compiler from a Marol Program

Given a Marol program 𝑃 , we can generate a qmr compiler Comp𝑃 for the qmr problem it specifies
(recall Fig. 1). Specifically, given a circuit and a qpu graph, Comp𝑃 should construct a minimal cost
sequence of device states that solves the qmr problem. We generate the compiler by instantiating
a generic qmr solver, which we call MaxState, for the given Marol program 𝑃 . The algorithm
underlying MaxState iteratively constructs a sequence of device states satisfying the definitions in
𝑃—like the ones in Fig. 3 and Fig. 4—that execute all gates in a given circuit on the given qpu.

qmr problems are generally np-hard, and it has been shown that optimal approaches (e.g., using
sat solvers) do not scale to large circuits and devices. MaxState is an approximate algorithm: In
each iteration, MaxState constructs a maximal state, one in which no more gates can be executed
in parallel. The states depicted in Fig. 3 and Fig. 4 are all examples of maximal states.
We identify a key property of qpus, which we call monotonicity, that allows us to construct

maximal states without requiring search (all practical qpus are monotonic). We also identify the
non-interference property—executing one gate does not block another—which allows us to construct
maximum states without requiring search. By statically analyzing Marol programs, we can identify
non-interference and disable the search process, thus speeding up the solving. For example, nisqmr
is non-interfering while scmr is not, because the paths of one gate can block another gate’s paths.

As we demonstrate later, (1) we used MaxState to generate a diverse range of qmr compilers for
noisy and fault-tolerant qpus; (2) the generated compilers are competitive with specialized qmr
solvers in terms of solution quality and runtime.

3 The Abstract qmr Problem

In this section, we formally define the abstract qmr problem.

3.1 Circuits and qpus

We begin by defining the two inputs to the qmr problem: circuits and qpus. We view a circuit as a
sequence of applications of quantum gates. Throughout, we fix a universe of gates Gates that can
appear in a circuit and a universe of qubits Qubits that they can be applied to.

Definition 3.1 (Instruction). An instruction 𝑔(𝑞) is a quantum gate 𝑔 ∈ Gates acting on a list of
qubits 𝑞 drawn from Qubits. We denote the set of all instructions as Instrs.

Definition 3.2 (Quantum circuit). A circuit is an indexed sequence 𝑔1 (𝑞1), . . . , 𝑔𝑘 (𝑞𝑘 ) of instruc-
tions. (We will often drop the 𝑞𝑖 and refer to the instruction simply as 𝑔𝑖 .)

Gates in a circuit which act on the same qubit(s) must be executed in order. This naturally gives
us a partial order on circuit instructions and a notion of a topological layering of a circuit.

Definition 3.3 (Gate dependency). Instruction 𝑔 𝑗 (𝑞 𝑗 ) directly depends on instruction 𝑔𝑖 (𝑞𝑖 ) if 𝑖 < 𝑗

and some qubit appears in both—that is, 𝑞𝑖 ∩ 𝑞 𝑗 ≠ ∅. Dependency is the transitive closure of direct
dependency and is denoted 𝑔𝑖 < 𝑔 𝑗 .

Definition 3.4 (Circuit layer). A layer is a set of circuit instructions with no dependencies between
them. The front layer is the set of instructions that do not depend on any instruction in the circuit.

Example 3.5. Consider the circuit in Fig. 3b. The direct dependencies in this circuit—also the only
dependencies—are 𝑔0 < 𝑔2, 𝑔0 < 𝑔3, 𝑔1 < 𝑔2, and 𝑔1 < 𝑔3. This circuit has the front layer {𝑔0, 𝑔1}.

Next is the representation of a qpu. Our abstraction for a qpu is a set of locations Locs (typically
denoting device qubits) and device instructions DInstrs.
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Example 3.6. For the nisqmr problem, we represent a qpu with a connectivity graph. The set
Locs is the graph vertices, which represent physical qubits. The device instructions DInstrs are
the edges of the graph. For the scmr problem, we represent a qpu with a grid graph. The device
instructions DInstrs are (certain) paths in the graph.

3.2 Device State Machines

To model a time step of execution on a given device, we define the notion of a qpu state. In essence,
a qpu state is the implementation of a set of gates which can be executed in parallel while satisfying
the constraints of the device. We have seen examples of qpu states in Sec. 2.2. As seen in the
tabular representations in Figs. 3c, 4c and 4d, the state of a qpu consists of two parts. One piece of
a qpu state is a qubit map, which assigns circuit qubits to locations. The other is an assignment
of instructions in the circuit to device instructions—a set of gate routes. Note that these are both
partial functions. The qubit map is only defined on qubits that appear in the circuit, and the gate
route is only defined on a set of circuit instructions that can be executed in parallel.

Definition 3.7 (Device state). The state of a qpu is a pair of injective partial functions:
• map : Qubits ⇀ Locs
• routes : Instrs ⇀ DInstrs

Definition 3.8 (Device state machine). We call a tuple (Real,→𝑐 ) a qpu state machine, where
• Real is a predicate on device states which determines whether a state is a physically realizable
implementation of the circuit instructions in its gate routing.
• →𝑐 is a transition relation between states 𝑠 →𝑐 𝑠

′ where 𝑐 denotes the cost of the transition.

Example 3.9. For the nisqmr problem, a state is realizable if every two-qubit gate acts on adjacent
qubits. Let 𝑠 = (map, routes) be a state of a nisqmr qpu. The predicate Real(𝑠) holds if and only if
every circuit instruction cx 𝑞𝑖 𝑞 𝑗 in the domain of routes is assigned to the edge (map(𝑞𝑖 ),map(𝑞 𝑗 )).

For scmr, a state is realizable if gate routing paths are (vertex-)disjoint. Let 𝑠 = (map, routes) be
a state of an scmr qpu. The predicate Real(𝑠) holds iff the following three conditions are met
• every cx instruction cx 𝑞𝑖 𝑞 𝑗 in the domain of routes is assigned to a path from a vertical
neighbor of map(𝑞𝑖 ) to a horizontal neighbor of map(𝑞 𝑗 ).
• every𝑇 instruction𝑇 𝑞𝑖 in the domain of routes is assigned to a path from a vertical neighbor
of map(𝑞𝑖 ) to a horizontal neighbor of a magic state qubit.
• no vertex appears in two distinct paths

Example 3.10. For nisqmr, the transitions are swap operations between adjacent physical qubits
on the qpu, along with an identity transition which leaves the qubit map unchanged. The transition
relation→𝑐 relates any pair of states with qubit maps that differ by swapping the locations of a
pair of qubits along an edge of the device The cost of each nontrivial transition is 1.

For scmr, the qubit map is fixed throughout, so the only transition is the trivial identity transition.
We assign a constant transition cost of 1.

3.3 Mapping and Routing Solutions

The goal of qmr is to find a valid sequence of states that routes all the gates and minimizes cost.

Definition 3.11 (Mapping & Routing Solution). Given a circuit 𝐶 and qpu state machine
(Real,→𝑐 ), a mapping and routing solution is a sequence of states

𝑠1 →𝑐1 · · · →𝑐𝑘−1 𝑠𝑘

such that
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• Real(𝑠𝑖 ) holds for all 𝑖 ∈ [1, 𝑘];
• each instruction 𝑔 in 𝐶 appears in exactly one state, which we denote state(𝑔); and
• if 𝑔 and 𝑔′ are instructions s.t. 𝑔 < 𝑔′, then state(𝑔) appears before state(𝑔′) in the solution.

The cost of a mapping and routing solution is simply the sum of the transition costs,
∑𝑘−1

𝑖=1 𝑐𝑖 .
The goal is to find a mapping and routing solution of minimum cost.

Example 3.12. It is straightforward to verify the solution shown in Fig. 3c is a mapping and
routing solution for the input shown in Fig. 3 when Real and→𝑐 are chosen for the nisqmr problem
as described in Example 3.9 and Example 3.10. The cost of this solution is 1.

4 A Language for Specifying qmr Problems

In this section, we describe the design of Marol, our language for specifying qmr problems.

4.1 The Design of Marol

The goal of Marol is to define a qmr problem by specifying a family of similar qpus with related
constraints on their states and transitions. For example, the scmr problem is defined by grid graphs
of error-corrected qubits (refer to Fig. 4a), while the nisqmr problem is defined by noisy qubits
connected by edges (refer to Fig. 3a). Notice that we represent a target qpu with a graph in both
cases. Generally, graphs are the main abstraction of a quantum computer used in formulating qmr
problems. Consequently, graphs are a core primitive in Marol. A program in Marol defines a qmr
problem by describing how to interpret a graph as a qpu state machine, filling in the state predicate
Real and transition relation→𝑐 .

Solution Generation. Ultimately, we want to efficiently generate solutions for a given circuit and
qpu, not just verify that a solution is valid. With this aim in mind, Marol is designed such that
Real and→𝑐 are defined “constructively,” with functions like realize_gate and get_transitions that
output lists of valid options, as opposed to declaratively in terms of constraints. This design decision
enables a natural strategy to find a solution for a given circuit and qpu.
With the information in a Marol program, we can associate a circuit and graph with a set of

valid mapping and routing solutions and determine the cost of each solution. In other words, when
we write a program P in Marol, its semantics is treated as a set of tuples where

(𝐶,𝐴, Sol) ∈ JPK

means that circuit𝐶 has a mapping and routing solution Sol (Definition 3.11) for the qpu represented
by graph 𝐴.

4.2 The Marol Grammar

The syntax of Marol is presented in Fig. 6. Here, P is a Marol program, and the non-terminals with
“-Blk” names are the definition blocks which comprise a Marol program. There are four of these
blocks: the mandatory RouteInfo and TransitionInfo blocks and the optional ArchInfo and StateInfo
blocks. The ArchInfo block defines any labels on the qpu graph, such as the locations of magic
state qubits in scmr. The StateInfo block defines a cost function on states, for convenience when
assigning a cost to a step is a more natural formulation than a transition cost.1
Within each block are definition lines, which have a keyword on the left-hand side and one of

three options on the right. First, there is the routed_gates line, for which the right-hand side is a
list of gate identifiers (e.g. “cx” or “𝑇 ”) drawn from Gates. Second, there are data definition lines,
where the right-hand side is a list of field names (drawn from the set of identifiersV) and their
1Any qmr problem with costs on states can be expressed with transition costs alone, so this block is purely for ease of use.
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types, which define the datatype associated with the block. Finally, there are function definition
lines, where the right-hand side is an expression from a standard functional expression language
defining a function on fixed implicit arguments.

4.3 Marol Semantics

The semantics of Marol programs are presented in Fig. 7. Together, a Marol program P and a
labeled graph 𝐴 define a qpu state machine (Real,→𝑐 ). We use the judgement P, 𝐴 ⊢ 𝜓 to mean
the formula 𝜓 holds for the definitions of Real and →𝑐 given by P and 𝐴. The FullProg rule
defining the semantics of a full program just rephrases the definition of the abstract qmr problem
(Definition 3.11) for the qpu state machine defined by the program and graph.

Definition 4.1 (Marol semantics). The semantics of a Marol program P , written JPK, is the set of
all tuples satisfying the inference rules in Fig. 7.

The other rules use the semantics of expressions J𝑒K as functions. Formally, we equip the
Marol expression language with a standard deterministic small-step operational semantics. For an
expression 𝑒 with free variables 𝑥 = fv(𝑒), we define J𝑒K to be the partial function that, on inputs 𝑣 ,
evaluates 𝑒 [𝑥 ↦→ 𝑣] −→∗ 𝑤 and returns𝑤 . If 𝑒 [𝑥 ↦→ 𝑣] gets stuck, then J𝑒K(𝑣) is undefined.
We also equip Marol with a simple type system to ensure that the supplied code expects the

correct arguments and computes the correct types. Specifically, the expressions in the mandatory
function definitions have the following signatures:

P .realize_gate : ArchT, StateT, StateT→ List[GateRealization]
P .get_transitions : StateT, ArchT→ List[Transition]

P .apply : Transition, QubitMap→ QubitMap (where QubitMap = Qubit→ Loc)
P .cost : Transition→ Float

See Appendix C for more details on the Marol type system and semantics.
The RealEmpty and RealIns rules formalize the notion that a realizable state is the result of

inductive application of the realize_gate function. The set Locs is the vertices of𝐴 if not overridden
by a get_locations definition.

𝑔 ∈ Gates (gates)
𝑥 ∈ V (variables)
𝜏 F Loc | Int | Float | Bool |

| List[𝜏] | 𝜏 × 𝜏 | 𝜏 → 𝜏 | S
| ArchT | InstrT | Qubit | StateT

𝑃 F RBlk TBlk ABlk SBlk

RBlk F RouteInfo:
GateRealization{𝑥 :𝜏};
routed_gates = 𝑔;
realize_gate = 𝑒;

TBlk F TransitionInfo:
Transition{𝑥 :𝜏};
get_transitions = 𝑒;
apply = 𝑒;
cost = 𝑒

ABlk F 𝜀

| ArchInfo: Arch{𝑥 :𝜏} ; get_locations = 𝑒

SBlk F 𝜀 | StateInfo : cost = 𝑒

𝐹 F edges | all_paths | steiner_trees |
| push | map | fold | concat | · · ·

𝑣 F 𝑟 ∈ R | 𝑛 ∈ N | str | loc(𝑣) | (𝑣, 𝑣)
| |𝑥 | → 𝑒 | 𝑆{𝑥 = 𝑣} | [𝑣]

𝑒 F 𝑥 | Arch | Instr | State | Trans
| QubitMap | State.map | State.route
| Instr.gate_type | Instr.qubits
| loc(𝑒) | 𝑒 ⊗ 𝑒 | 𝑒.𝑥 | [𝑒] | 𝑒 [𝑒] | 𝑒 𝑒
| (𝑒, 𝑒) | proj𝑖 𝑒 | if 𝑒 then 𝑒 else 𝑒 | 𝐹 (𝑒)
| GateRealization{𝑥 = 𝑒}
| IdTrans | Transition{𝑥 = 𝑒}

Fig. 6. The grammar of Marol programs
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[FullProg]

Sol = 𝑠1 →𝑐1 . . .→𝑐𝑘−1 𝑠𝑘 P, 𝐴 ⊢ ∀𝑖 ∈ [1, 𝑘] .Real(𝑠𝑖 )
P, 𝐴 ⊢ ∀𝑖 ∈ [1, 𝑘 − 1] .(𝑠𝑖 →𝑐𝑖 𝑠𝑖+1) 𝐷𝑅(𝐶, Sol)

(𝐶,𝐴, Sol) ∈ JPK

[RealEmpty]
range(map) ⊆ Locs

P, 𝐴 ⊢ Real((map,∅))
[RealIns]

P, 𝐴 ⊢ Real((map, routes))
𝑟 ∈ JP .realize_gateK (𝐴, (map, routes), ins)

P, 𝐴 ⊢ Real((map, routes[ins ↦→ 𝑟 ]))

[Transition]

𝑠 = (map, routes) 𝑠′ = (map
′, routes′)

𝑡 ∈ JP .get_transitionsK (𝑠, 𝐴) map
′ = JP .applyK (𝑡,map) 𝑐 = JP .costK (𝑡)

P, 𝐴 ⊢ 𝑠 →𝑐 𝑠
′

Fig. 7. Marol semantics. The premise 𝐷𝑅(𝐶, Sol) is a predicate that checks that every instruction of the circuit

is in the step sequence and the dependencies are respected (latter two conditions of Definition 3.11).

The Transition rule relates the transition relation→𝑐 to the TransitionInfo block of the program.
A pair of states (𝑠, 𝑠′) satisfies the transition relation if the qubit map of 𝑠′ results from applying
one of the transitions returned by get_transitions. The cost of the transition is given by evaluating
the cost function from P on the transition.

5 Solving qmr Problems via Maximal-State Construction

In this section, we describe MaxState, our solver for the qmr problems defined in Marol. For a given
Marol program P , we instantiate the solver as MaxStateP . MaxStateP takes a circuit and graph, and
returns a valid mapping and routing solution of the form

𝑠1 →𝑐1 · · · →𝑐𝑘−1 𝑠𝑘

MaxState iteratively constructs a sequence of states while ensuring that each state is maximal,
meaning that it cannot be extended to a realizable state that routes any additional instructions.
Since different choices of initial map can yield solutions of differing costs, we repeat this iterative
construction with several different initial maps and return the best solution, as described in Sec. 5.3.
Given the general hardness of solving qmr problems, MaxState is not guaranteed to find an

optimal solution. Indeed, as we shall describe, we employ simulated annealing [30]—a classic
randomized search algorithm—in different parts of the algorithm to steer the search towards better
solutions, inspired by prior work in qmr and other quantum compilation problems [38, 44]. See
Appendix B for details on the parameters we choose to instantiate our simulated annealing search.

5.1 MaxState: A High-Level View

The high-level steps of MaxState are shown in Algorithm 1. The algorithm starts with an empty
solution, Sol. In each iteration, the algorithm constructs a state to add to the solution, Sol. The key
invariant MaxState maintains is that each state 𝑠𝑖 that is added to Sol is realizable and that every
consecutive pair of states 𝑠𝑖 , 𝑠𝑖+1 in Sol is such that 𝑠𝑖 →𝑐𝑖 𝑠𝑖+1.

Let us walk through MaxState step by step:
Line 3: MaxState begins by constructing an initial qubit mapmap; in principle, this can be a random
map. In Sec. 5.3, we discuss a more sophisticated strategy that converges on a suitable initial
map through repeated applications of Algorithm 1.
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Line 5: In each iteration, we get the front layer of instructions from the circuit (see Definition 3.4).
Recall that this is the set of all independent instructions in the prefix of the circuit; being
independent, these instructions can soundly be routed in parallel if the device permits.

Line 6: Next, the algorithm tries to route as many of the instructions in the front layer as possible.
This is done by a process we call maximal-state construction, which we describe in detail in
Sec. 5.2. The constructed maximal state is added to Sol and the routed instructions are removed
from the circuit.

Line 8: The next step is to update themap for the next state. This is done by calling the get_transitions
function, which returns a set of valid transitions from the current state. The algorithm then selects
one of the transitions and updates the map accordingly. We describe a strategy for selecting the
next transition in Sec. 5.3.
The process repeats until all instructions in the circuit have been routed.

Example 5.1. As an example, we walk through how this algorithm could be used to construct
the nisqmr solution from Sec. 2.2 (Fig. 3c). We begin by choosing the initial qubit map depicted,
which maps 𝑞𝑖 to 𝑝𝑖 . Then, we find the front layer of this circuit, which includes two instructions:
cx 𝑞0 𝑞1 and cx 𝑞2 𝑞3. Both of these instructions can be routed under our qubit map, and so they
are included in the maximal state. Routing the entire front layer is the best-case maximal state.

Next, we must choose from the set of four transitions–a swap along one of the three edges or the
identity. Not all choices are equal. If we choose the identity, we fail to make progress in executing
the circuit. At the next iteration of the loop, the front layer consists of the instructions cx 𝑞1 𝑞3 and
cx 𝑞0 𝑞2. Neither of these are executable, so the maximal state has an empty gate route. On the
other hand, if we choose to swap along the edge (𝑝1, 𝑝2) as depicted in Fig. 3c, we obtain another
maximum set containing both of the candidate instructions. At this point, the algorithm terminates
as the full circuit has been routed.

Correctness and Termination. Theorem 5.2 says that any solution returned by MaxState is a
valid mapping and routing solution. Moreover, MaxState terminates with a solution as long as
the input program and graph do not define sets of states closed under the transition relation that
cannot make progress in execution, as defined precisely in Theorem 5.3. This condition rules out
pathological examples like a realize_gate function that always returns an empty list. All of our
case study problem instances satisfy the termination condition. Nevertheless, despite the guarantee
of eventual termination, MaxState sometimes fails to find a solution within fixed resource bounds,
as shown in the plots in Sec. 7.

Theorem 5.2 (MaxStateP Soundness). Let Sol be the solution returned by MaxStateP on input
(𝐴,𝐶). Then, (𝐶,𝐴, Sol) ∈ JPK.

Theorem 5.3 (MaxStateP Termination). Let (Real,→𝑐 ) be the qpu state machine defined by a
Marol program P and graph 𝐴. Suppose that for any Real state 𝑠 and instruction 𝑔, there exists a Real
state 𝑠′ reachable from 𝑠 under→𝑐 such that 𝑔 is in the gate route of 𝑠′. Then, MaxStateP terminates
on input (𝐴,𝐶) for any circuit 𝐶 .

5.2 Maximal-State Construction

We now describe the MaxState strategy for constructing maximal states. In the process, we define
two conditions on qpu state machines: monotonicity and non-interference. In Theorem 5.7, we use
these definitions to classify the qpu state machines for which we can efficiently find a maximal
state and those for which the maximal state is unique.

First, we precisely define a maximal state.
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Algorithm 1 MaxStateP algorithm for finding mapping and routing solutions
1: procedureMaxStateP (graph 𝐴, circuit 𝐶)
2: Initialize an empty state sequence Sol
3: Create initial map, map ⊲ Sec. 5.3
4: while 𝐶 ≠ ∅ do ⊲ note we remove routed instructions from 𝐶

5: Compute 𝐸, the front layer of instructions in 𝐶
6: Construct a maximal state 𝑠 for map and 𝐸 ⊲ Sec. 5.2
7: Append 𝑠 to Sol and remove instructions routed in 𝑠 from 𝐶

8: Get the next map map
′ from the valid transitions given by 𝑠 , 𝐴 and P ⊲ Sec. 5.3

9: Set map← map
′

10: return Sol

Algorithm 2 Constructing a maximal state
procedure route-one-pass(graph 𝐴, program P , layer 𝐸, qubit map map)

Initialize the state 𝑠 with qubit map map and empty gate route set routes.
for each instruction 𝑔 in 𝐸 do

Let route-candidates = JP .realize_gateK(𝐴, 𝑠, 𝑔)
if route-candidates is non-empty then

Set routes(ins) = 𝑟 for some 𝑟 ∈ route-candidates
return 𝑠

Definition 5.4 (Maximal State). Consider the states routing instructions from a circuit layer 𝐸. A
realizable state 𝑠 = (map, routes) ismaximal if there is no realizable super-state 𝑠′ = (map, routes′)
such that routes ⊂ routes

′, where ⊂ denotes strict inclusion.

We observe that, for the qmr problems we consider, we can find a maximal state for a set of
parallel instructions with one pass through the instructions, as shown in Algorithm 2: the algorithm
simply iterates through the instructions, calls realize_gate for each, and if the result is a non-empty
set of gate realizations, chooses one to add to the gate route. Algorithm 2 is an efficient procedure
that always produces maximal states for “reasonable” settings like our case study problems, but
does not find a maximal state for any arbitrary qpu state machine.2

5.2.1 Monotonicity and Maximality. We define the notion of monotonic Real predicates as a condi-
tion that is strict enough to ensure Algorithm 2 finds a maximal state, but permissive enough to
include any realistic qpu state machine. Indeed, all of our case study problems are monotonic.

Definition 5.5. (Monotonicity) A predicate Real ismonotonic if whenever a state 𝑠 = (map, routes)
is realizable, so is any sub-state 𝑠′ = (map, routes′) with routes

′ ⊆ routes.

For some qmr problems, we reach the unique maximal state with Algorithm 2 regardless of
which order we iterate over the layer or which gate realization we select. We categorize these cases
as non-interfering. The intuition behind the definition of non-interference is that iteration order is
irrelevant when routing one instruction in a state does not prevent the routing of another. The
nisqmr problem is non-interfering, but scmr is not because the path of one instruction can occupy
vertices and prevent the routing of another.

2In fact, we cannot expect a tractable algorithm for finding maximal states without introducing restrictions on the Real
predicate. For a (contrived) example, we could define a family of qpus for the boolean satisfiability problem. In this family,
each qpu state machine corresponds to a boolean formula, and the Real predicate interprets a subset of the layer as a variable
assignment, returning true on a state if the routed instructions constitute a satisfying assignment to the formula.
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Algorithm 3 Search for the best maximal state
procedure route(graph 𝐴, program P , layer 𝐸, qubit map map)

Initialize the state 𝑠 with qubit map map and empty gate route set routes.
Let Σ be the set of all permutations of 𝐸
𝜎∗ ← argmax𝜎∈Σ |route-one-pass(𝐴, P, 𝜎,map) |
return route-one-pass(𝐴, P, 𝜎∗,map)

Definition 5.6. (Non-interference) A predicate Real is non-interfering if whenever 𝑠 = (map, routes)
and 𝑠′ = (map, routes′) are Real states with the same qubit map which route disjoint sets of in-
structions, the combined state (map, routes ∪ routes′) is also Real.

Theorem 5.7. The procedure route-one-pass produces a realizable state for any qpu state machine.
If the predicate Real is monotonic, the resulting state is maximal. If Real is also non-interfering, then
the maximal state is unique in terms of routed instructions.

If the predicate Real is not non-interfering, then maximal states can have different sizes. We
search for the iteration order which maximizes the number of routed instructions. The full maximal
step procedure with this case is shown in Algorithm 3. Notice how the algorithm is identical
to Algorithm 2 except for the addition of the search over permutations of the instructions. We
implement this search with simulated annealing. Each search step of simulated annealing randomly
swaps the position of two instructions in the order. The cost of a candidate permutation is the
number of routed instructions in the constructed maximal state.

5.3 Selecting an Initial Map and Transitions

Ultimately, the goal of MaxState is to find a low-cost solution. We now describe how we select the
initial qubit map and transitions with the goal of minimizing solution cost.

Initial Map. Our algorithm MaxState searches for the initial qubit map that yields the best
solution. Instantiatingmap with any qubit map will yield some valid mapping and routing solution.
However, different choice of initial qubit maps often lead to solutions of different cost, as we saw
with the two examples in Figs. 4c and 4d. We explore the space of possible initial qubit maps to find
the one which results in the lowest cost mapping and routing solution. The search for a minimum
cost solution over initial qubit maps is implemented via simulated annealing. Each search step of
simulated annealing modifies the initial qubit map by exchanging the mapping locations of two
qubits or moving a qubit into an unused location, then applies Algorithm 1 with this choice of map.
The cost of an initial qubit map in this simulated annealing search is the cost of the final mapping
and routing solution.

Transitions. Recall that the MaxState algorithm maintains a sequence of states Sol which is a
valid solution to the qmr problem. In each iteration, the algorithm constructs a state to add to the
solution, Sol, along with a transition to the next state. There are many ways to choose the next
transition; we simply choose a transition 𝑡 that maximizes the next state’s size in terms of number
of routed instructions:

max
𝑡
|route(𝐴, P, 𝐸′, JP .applyK(𝑡,𝑚)) | − JP .costK(𝑡) (1)

Here, 𝐸′ is the front layer of instructions in the circuit after removing instructions routed in the
current, as well as previous, states.

5.4 Key Optimizations

We now describe some of the key optimizations that improve the performance of MaxState.
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Static Analysis for Non-Interference. By Theorem 5.7, if Real is non-interfering, the search over the
space of maximal states in Algorithm 3 is unnecessary because there is a unique maximal state. We
identify non-inference in practice through a simple static analysis of the Marol program. We claim
that if the realize_gate definition does not contain the subexpression State.route, then the resulting
Real predicate must be non-interfering. Notice that a counterexample to non-interference implies
the existence of an instruction 𝑔 and two states 𝑠 = (map, routes) and 𝑠′ = (map, routes′) such that
JP .realize_gateK is nonempty for 𝑠 and empty for 𝑠′. However, if realize_gate definition does not
contain the subexpression State.route, then it must evaluate to the same result regardless of the
input gate route. Therefore, we can soundly over-approximate the property of non-interference
by traversing the ast of the realize_gate definition in search of the subexpression State.route. If
there is no match, we safely assume non-interference.

Transition Selection Optimizations. We close with some additional practical considerations in
transition selection. For one, there are some scenarios where no transition enables execution of
any instructions. For example, consider a nisqmr problem where the front layer cx instructions act
on qubits that are more than one swap away from adjacent. In order to continue to make progress,
we choose the transition that minimizes the distance between qubits acted upon by instructions in
the front layer. Second, we weigh routed instructions by criticality, following a strategy introduced
in prior qmr work [23, 38]. The criticality of an instruction is the length of the longest sequence of
dependent instructions which begins with 𝑔. We prioritize critical instructions to avoid a long “tail”
of sparse states as the instructions on the critical path are executed in sequence.

6 Qubit Mapping & Routing Case Studies

To demonstrate the practical utility and flexibility of our approach, we present seven case studies
that reflect real-world qubit mapping and routing challenges drawn from the literature. These
examples span different types of quantum hardware and programming models, each with unique
constraints. We select problems (described below) which demonstrate that our design supports:

(1) Diverse hardware: There are multiple competing implementations of the physical qubit
including superconducting circuits, Rydberg neutral atoms, and trapped ions. Physical
characteristics of underlying hardware impose constraints on mapping and routing.

(2) Devices with &without error correction: We are currently at an inflection point for quan-
tum error correction. Devices that are currently accessible to the public do not implement
error correction. However, in recent years we have seen early experimental demonstrations
of error correction. Emerging error-correcting codes bring new constraints that affect how
qubits can be moved, measured, and interacted with. Our framework is designed to han-
dle both modes—pre- and post-error correction—enabling developers to experiment with
evolving designs and co-optimize across hardware, qec strategies, and applications.

(3) Discrete & continuous cost functions: In some cases, the appropriate metric of solution
quality is discrete, like the number of added swap gates or the total number of time steps;
in others, the cost function is continuous, like the probability of successful computation.

6.1 Architectures without Error Correction

nisqmr. The first case study is the nisqmr problem described in Sec. 2.2. Two-qubit gates are
only allowed between physical qubits which are adjacent in the connectivity graph. swap gates are
inserted to transform the mapping. nisqmr is the relevant qmr problem when targeting hardware
with fixed position qubits (like superconducting circuits) and no error correction. This case models
today’s widely accessible superconducting hardware and reflects the default compilation mode in
most current quantum toolchains. The Marol description of nisqmr is the example shown in Fig. 5.
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RouteInfo:
...

TransitionInfo:
...
cost = if Trans = IdTrans

then 0.0
else Arch.edge_cost[Trans.edge.(0)][Trans.edge.(1)]

ArchInfo:
Arch{edge_cost : List[List[Float]]}

StateInfo:
cost=fold(0,

|acc,x| → acc+x,
map(|x| → Arch.edge_cost[State.map[x.qubits[0]]][State.map[x.qubits[1]]],

State.route))

Fig. 8. The Marol definition of the nisq-ve qmr problem

Variable-Error nisq (nisq-ve). On real quantum hardware, not every link is equally reliable. Error
rates between different two-qubit gates can differ by an order of magnitude [57]. When performing
mapping and routing, we should prefer to make use of the two-qubit gates with lower error rates.
When we take variation into account, the optimization objective changes to direct maximization of
the probability of successful computation, rather than minimization of the number of swap gates
We can easily capture this version of the problem, which we call nisq-ve (for variable error)

in the abstract qmr framework. The changes to the Marol definition are shown in Fig. 8. Lines
identical to the original nisq are elided. Note the addition of the nontrivial ArchInfo block, which
carries the data of the reliability of each edge. In order to use it as an additive cost, this reliability is
represented as − log(𝑝𝑠𝑢𝑐𝑐 ) where 𝑝𝑠𝑢𝑐𝑐 is the probability of error-free gate execution.

We use this data to redefine the cost of a swap by looking up the success rate of the corresponding
edge. Likewise, we add a StateInfo block to define the cost of a step as a sum over the success rates
of each of the implemented gates.

Trapped-Ions (tiqmr). Trapped-ions are an alternative candidate hardware platform. Each qubit
on a trapped-ion qpu is implemented as an atomic ion which is trapped with an electromagnetic
field [46]. Two-qubit gates can be performed between any pair of qubits in the same trap. However,
each trap is limited to 10s of qubits. Therefore, proposed trapped-ion architectures consist of several
interconnected traps. To perform a two-qubit gate between qubits in different traps, we need to use
shuttling operations to physically move qubits from one trap to another. The typical cost function
for trapped-ion qmr (tiqmr) is the total added time for shuttling operations [3, 40].

Reconfigurable Atom Arrays (raa). Another competing hardware platform is the neutral atom
quantum computer. Each qubit is a Rydberg neutral atom which is trapped in a two-dimensional
array of optical tweezers [5], enabling programmable qubit layouts. Two-qubit gates are executable
between qubits within a target radius of one another. For long-range interactions, atomic qubits
can be repositioned over the course of computation by modulating the tweezers. However, the
movements are slow and constrained in direction [54, 55]. An entire row or column of the qubit array
must be shifted in parallel, and the relative positions of rows and columns is fixed. In reconfigurable
atom array qmr, each movement operation is associated with an error rate, and the cost function
is the probability of successful execution. As in nisq-ve, we convert this to an additive cost by
assigning each operation a cost of − log(𝑝𝑠𝑢𝑐𝑐 ) where 𝑝𝑠𝑢𝑐𝑐 is the probability of error-free execution.
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6.2 Architectures With Error Correction

scmr. We begin our study of qmr in the presence of error correction with the scmr problem from
Sec. 2.2. In this setting, two-qubit gates and 𝑇 gates are implemented by routing paths between
locations on the architecture. Simultaneous paths cannot cross (must be vertex-disjoint). The cost
function for this problem is the total number of states.

Interleaved Logical Qubits (ilq). The flexibility of configuration in space for Rydberg atoms can
be used to implement an interleaved architecture where logical qubits are “stacked” on top of one
another [52]. In routing two-qubit gates, there is a distinction between two-qubit gates applied
to qubits in the same stack (intra-stack gates) and two-qubit gates applied to qubits in different
stacks (inter-stack gates). Inter-stack two qubit gates are implemented via lattice surgery and take
time that scales with the number of physical qubits used per logical qubit (i.e. the code distance),
whereas the intra-stack gate takes constant time, independent of the size of logical qubit. Therefore
the cost function assigns a cost of 1 to a state with only intra-stack gates and a cost equal to the
code distance to other states.

Multi-Qubit Lattice Surgery (mqlss). Some quantum computing models, such as Pauli-based
computation, require multi-qubit measurements involving arbitrary sets of qubits. The lattice
surgery procedure used to implement two-qubit gates on surface code logical qubits can be extended
to support multi-qubit measurements [36, 52]. Multi-qubit measurements are implemented using
branching lattice surgery paths, forming tree structures rather than linear routes. This case study
generalizes the routing model, helping developers prototype and evaluate alternative computational
models for fault-tolerant execution. The cost of a solution is the total number of states.

7 Implementation and Empirical Evaluation

We implemented our compiler generator framework based on the MaxState solver as a Rust library
(∼6500 LoC). A qmr problem P defined in Marol is translated to Rust and compiled with the
library, generating a binary MaxStateP .3 This binary takes a circuit and a qpu graph as input and
produces a mapping and routing solution. The generated compiler leverages parallelism by default,
instantiating one run of MaxState search per allotted CPU core and returning the best result.

We aim to answer the following empirical research question for each of our case studies:
Q1 How do our generated compilers compare to problem-specific state-of-the-art approaches in

terms of solution quality?
Q2 How long do our generated compilers take to converge to a solution?

We also evaluate the impact of individual algorithm choices in the MaxState solver.
Q3 How do initial qubit map search and maximal state search contribute to solution quality?

Benchmark circuits. For each case study, we benchmark compilers with the suite of 243 application
circuits collected by Molavi et al. [38], which subsumes that of Zulehner et al. [66]. This suite
contains arithmetic circuits derived from the RevLib suite [61], programs written in the Quipper
[16] and ScaffoldCC [24] quantum programming languages. It also includes implementations of
major quantum algorithms: Shor’s Algorithm [51], the Quantum Fourier Transform [7], Bernstein-
Vazirani [4], QAOA [9], and Grover’s Algorithm [17]. These circuits range in size from a few qubits
and gates to hundreds of qubits and tens of thousands of gates (see Fig. 18 in Appendix E).

3Alternatively, the Marol definition can be written directly in Rust. For cases where defining problem components requires
complex computation, this may be preferable.
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Global Experimental Setup. Unless otherwise noted, the following experimental conditions apply
to all empirical evaluations. All compiler runs are allotted a 1-hour timeout on 16 cores of an AMD
EPYC™ 7763 2.45 GHz Processor and 32GB of RAM accessed via a distributed research cluster.
We choose this fixed timeout to compare MaxState, which continuously produces solutions over
the course of a search, to a wide range of algorithms with different runtime characteristics. For
example, the heuristic nisqmr compiler qiskit can solve any instance within a minute, while the
tiqmr tool shaper fails to terminate within the hour for most benchmarks. The parameters of
MaxState are set to fixed default values for all case studies (see Appendix B).

7.1 Noisy-Intermediate ScaleQuantum (nisqmr)

Experimental setup. In the empirical evaluation for the nisq problem, we target three different
connectivity graphs from real qpus: Rigetti Aspen-M [47], Google Sycamore [12], and IBM Eagle
[21]. We compare against two state-of-the-art compilers. The first, qiskit [25], is an industrial
quantum programming toolkit which applies the sabre algorithm [34]. Like MaxState, it greedily
builds a solution by adding swap gates according to a heuristic scoring function. (We note that
qiskit has been in development for close to a decade and is heavily optimized for the nisqmr
problem.) The other tool, qsynth2 [50], attempts to find globally optimal solutions. It encodes the
qmr problem into a satisfiability problem and makes queries to an external sat solver.

Results. The results are shown in Fig. 9. In the left and middle plots, we compare the solution
quality of our approach to the baselines on the IBM Eagle architecture (results on other architectures
are similar and included in Appendix E). Each point in the scatter plots represents a circuit, and the
circuits are sorted by percent difference in cost. The percent difference is the quantity

MaxState cost − baseline cost
baseline cost

In this case, the cost is simply the number of added swap gates. Points below the dashed line at
𝑦 = 0 thus represent circuits where our approach produces a better solution. Benchmarks where
the baseline compiler, MaxState, or both fail to find a solution are indicated by black marks on
the bottom of the plot (baseline timeout), on the dashed line (both timeout), and on the top of
the plot (MaxState timeout). The bar plots shown under the scatter plots aggregate the number
of benchmarks below the dashed line of equivalent performance (labeled “MaxState”), on the line
(labeled “Match”), and above the line (labeled with the baseline), including timeouts.

Overall, MaxState is competitive with the specialized tools. For example, in the left plot we see
that MaxState matches or outperforms qiskit on roughly 48% of benchmarks, with qiskit strictly
outperforming MaxState on the remaining 52%, including one timeout.4 Though in the aggregate
the two tools have similar performance, there are outliers in both directions where one significantly
outperforms the other. The points near and above 400% difference all correspond to relatively wide
and shallow circuits, with over 100 qubits and under 300 cx gates. These are likely workloads where
specialized mapping algorithms can find a good initial qubit map among a large search space.

The comparison to qsynth2 in Fig. 9(middle). qsynth2 is optimal, so there are no cases where
MaxState finds a solution strictly lower in cost. MaxState solves 161 benchmarks where qsynth2
does not terminate. Excluding timeouts, MaxState matches the optimal solution in 66/74 cases.
The line plot on the right of Fig. 9 shows the rate at which MaxState converges to a solution.

We plot the number of circuits for which MaxState has found a solution which is close to the final
cost of the best solution found within the 1hr time out. Each line represents a different threshold
for “close.” The solid blue line is the strictest requirement—current solution is within 5% of the

48 circuits with too many qubits to be executed on this architecture are excluded from the total
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Fig. 9. nisqmr results

final solution cost—which is why it is the lowest line at any particular time point. In 80% of the
benchmarks, a solution meeting the 10% threshold is found within 492 seconds.

7.2 NISQ Variable Error (nisq-ve)

Experimental Setup. To evaluate performance on the nisq-ve problem, we augmented the three
connectivity graphs from nisqmr above with error rates for each coupling link between pairs of
qubits. These error rates were generated by sampling uniformly from the range [10−3, 10−1], to
match the scale of two-qubit errors observed on the actual hardware [14, 21, 47].

Results. The qiskit compiler can be configured to solve nisq-ve. We compare the success
probability of MaxState to qiskit in Fig. 10(left). Here, the y-axis represents the success probability
ratio which is the qiskit estimated success probability divided by the MaxState estimated success
probability. Note the logarithmic scale. Points below the dashed line at 𝑦 = 1 represent circuits
where our approach produces a better solution. We exclude benchmarks where one of the computed
success probabilities is extremely low, below 10−16, for numerical stability. We find that MaxState
and qiskit are essentially equivalent on average for the variation-aware variant of the nisq problem.
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Fig. 10. nisq-ve results

Even though qiskit produces so-
lutions with fewer swap gates (as
seen in the results for the nisq prob-
lem), this is counterbalanced in the
variation-aware setting by the fact
that MaxState chooses swap gates
with lower error rates. These results
suggest that MaxState is an appropri-
ate choice for compilation to nisq de-
vices in cases where accurate error-
rates are readily available. Moreover,
since there are cases where qiskit
significantly outperforms MaxState
and vice versa, a portfolio compila-
tion approach may be effective. The
convergence rate of MaxState for nisq-ve is in Fig. 10(right). Results are generally similar to nisqmr:
the time to reach the 10% threshold for 80% of circuits is 600s.
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Fig. 12. scmr results
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Fig. 13. raa results

7.3 Surface Code Mapping and Routing (scmr)

Experimental Setup. For the scmr problem, we compare our approach against the state-of-the-art
tool dascot [38]. We target the “Compact Architecture” used in the original evaluation of dascot.
We choose the Compact Architecture because it represents a challenging chase for scmr with
limited ancilla qubits available for routing. Logical qubits are arranged almost linearly, with a row
of logical qubits, a central routing row, then another row of logical qubits. Magic state qubits are
available along the perimeter of the qpu. An instance of the Compact Architecture with 6 qubits is
shown in Fig. 11 (blue and orange vertices denote map locations and magic states respectively). All
circuits are compiled for the smallest possible Compact Architecture qpu matching the experimental
setup originally used to evaluate dascot [38].

Fig. 11. 6-qubit

Compact Architecture

Results. Fig. 12(left) shows a comparison to dascot in terms of solution
quality—number of states in a solution. Overall, MaxState outperforms
dascot: dascot finds a better solution for 35% of cases, MaxState for 57%,
and the solutions have the exact same number of cost or both tools timeout
in the remaining 8%. Solutions are often close in quality when both tools
terminate, within 6% for half of the benchmarks. The two circuits with
percent difference over 100% are both large Grover’s algorithm circuits.
MaxState struggles on this relatively large application compared to dascot.
In Fig. 12(right), we plot the convergence rate for the scmr problem. Notice
that compared to the previous two problems, the first plotted point is higher

on the 𝑦-axis. That is, it is more likely that early candidate solutions will be strong choices that
are difficult to improve upon. The time to reach the 10% threshold on 80% of the circuits is slightly
lower at 324 seconds.

7.4 Reconfigurable Atom Arrays (raa)

Experimental setup. We compare against the state-of-the-art compiler enola [55]. We use the
same values for the empirically derived fidelity parameters (atom transfer fidelity, etc.) as in the
original evaluation of enola.

Results. MaxState is able to find slightly higher quality solutions in almost all cases. Fig. 13(left) is
the same type of plot as Fig. 10(left). The𝑦-axis is the success probability ratio—the enola estimated
success probability divided by the MaxState estimated success probability. MaxState produces a
better solution in about 97% of cases where at least one tool terminates, with a median percent
difference of 75%. In the convergence plot, Fig. 13(left), we see that the lines for the three thresholds
are completely overlapping. The overlap suggests that all benchmarks have a clear best solution
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Fig. 14. ilq results

−100

−50

0

50

100

%
 d

iff

SHAPER

0 100 200
# of benchmarks

SHAPER
Match

MaxState

0
62

181
0 1000 2000 3000

Time (secs)

0

50

100

150

200

#
 o

f c
ir

cu
its

 w
ith

in
 th

re
sh

ol
d

TIQMR Convergence rate 

Threshold
1.05
1.1
1.25

Fig. 15. tiqmr results

found by MaxState, and no alternative within 25% of its cost. The time to reach the 10% threshold
on 80% of the circuits is 304 seconds.

7.5 Multi-qubit Lattice Surgery (mqlss)

Experimental setup. To evaluate on the multi-qubit lattice surgery problem, we converted all
benchmark circuits to multi-body Pauli product rotation form [36]. The baseline approach presented
in Silva et al. [52] is not available for reuse, so we compare against a theoretical lower-bound. Any
solution for a circuit with depth 𝑑 must have at least 𝑑 states to respect the logical dependencies.

Results. MaxState is able to reach the theoretical lower-bound for most benchmarks within the
timeout, though no solution is found for 13. Except for these hard instances, MaxState converges
quickly for this problem, all best solutions (excluding timeouts) are found within the first 10 minutes
or so of the search. The time to reach the 10% threshold on 80% of the circuits is 44 seconds.

7.6 Interleaved LogicalQubits (ilq)

Experimental Setup. For this problem, we compared against the simple compilation workflow
used to evaluate the viability of the ilq architecture as compared to traditional surface code designs
[58]. This baseline compiler applies a simple greedy algorithm which tries to group interacting
qubits into the same stack, then routes instructions as soon as possible. We target the interleaved
version of the Compact Architecture with a stack depth of 4, chosen based on the observation by
Viszlai et al. [58] that this value is an inflection point, with diminishing returns for large stack sizes.

Results. MaxState outperforms the ilq baseline on the majority of benchmarks as shown in
Fig. 14(left). As a greedy algorithm, the baseline is able to solve more benchmarks. However,
MaxState finds a better solution in virtually all cases where it terminates, such that 76% of circuits fall
in the MaxState better category. The convergence data for the ilq problem is shown in Fig. 14(right).
Results are similar to raa, with no distinction between the three thresholds and requiring 303
seconds to reach the 10% threshold on 80% of benchmarks.

7.7 Trapped-ions (tiqmr)

Experimental Setup. For the trapped-ion problem, we compared against the shaper algorithm [3].
We target the G2x3 architecture [28, 40], which consists of 6 traps arranged in two rows with three
traps each. For each circuit, we assume the smallest trap size with capacity for all of the circuit
qubits (⌈𝑛/6⌉ where 𝑛 is the number of circuit qubits).

Results. As shown in Fig. 15(left), MaxState significantly outperforms shaper, always reducing
the cost by at least 50% when both tools terminate. It also finds solutions to 27 benchmarks where
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Fig. 16. Ablation study

shaper does not. The tiqmr problem is non-interfering, so here the search over maximal states is
not the source of the benefits. Instead, the results are sensitive to the choice of initial qubit map, and
MaxState searches over this space more comprehensively than shaper. The convergence results
for tiqmr, shown in Fig. 15(right) are similar to other problems, with a similar time of 352 seconds
to reach the 10% threshold on 80% of circuits. However, we note a less pronounced plateau at the
end of the timeout. This suggests a longer tail of hard instances for this problem.

7.8 Ablation Study

To address Q3, we isolate the effect of the two search subroutines of MaxState with an ablation
study, with the results shown in Fig. 16.
We evaluate the initial qubit map search by comparing to a version of MaxState that chooses a

single initial qubit map, rather than applying simulated annealing search to find the best initial
qubit map. Fig. 16(left) shows the percent increase in cost from this ablation for each case study,
averaged across the entire benchmark suite (for detailed results, see Appendix E). Here we see some
improvement in quality attributable to the initial map search in all but two case studies (on which
it has essentially no effect), including over 25% improvement in both variants of the nisq problem.
We also assess the gains from searching for the best maximal state. To this end, we evaluate

against a version of MaxState which iterates over a layer in a random order, rather than searching
for the best order. The results are in the right plot; case studies with non-interferences are excluded
because maximal state search is disabled. In this case, we see a more modest effect, with the scmr
case benefiting the most from maximal state search, at about an 8% average difference.

8 Related Work

Qubit mapping and routing. A large body of prior work has extensively explored qmr as a
manually engineered compiler pass [65], and we have discussed representative qmr algorithms
throughout this paper (see Table 1). Our solver shares some structure with the sabre algorithm for
nisqmr [34] which also constructs a single time step at a time, choosing the best transition at each
stage. We also borrow algorithmic insights from dascot [38], which applies simulated annealing
to scmr. However, dascot uses a two-phase search where the initial map is scored relative to a
heuristic function, as opposed to our joint optimization which explicitly computes a solution for
each candidate. Existing algorithms are typically specialized to the constraints of a particular qmr
problem; to our knowledge, this work is the first to automate synthesis of the qmr compiler pass.

Compiler Synthesis. We are inspired by efforts to automatically synthesize compilers in other
domains. A classical example is parser generators [27, 33, 45], which automatically produce a
parser from a grammar. Another line of work in this vein is automated program optimization via
rewrite-rule synthesis. Rather than relying on hand-crafted optimizations, rewrite rule synthesizers



26 Abtin Molavi, Amanda Xu, Ethan Cecchetti, Swamit Tannu, and Aws Albarghouthi

automatically generate sound substitutions. Rewrite rule synthesis has been applied to many do-
mains [26, 41, 43]. Within quantum computing, rewrite-rule synthesizers have also been developed
for quantum-circuit optimization [62, 63], a compiler pass that is typically distinct from qmr.

Combinatorial search in compilation. qmr is a compilation pass that requires a combinatorial
search to find the best solution satisfying constraints of the target hardware. In this way it is
related to other compiler problems like superoptimization [49] and fpga/vlsi routing [32]. qmr
even relies on some of the same subroutines as vlsi routing including path-finding and Steiner tree
construction [31, 56].

System-modeling DSLs. Finally, our use of a domain-specific language for describing the con-
straints of quantum hardware builds on a history of domain-specific languages for modeling
systems. Examples from software verification include the Spin/Promela model checking framework
[48] for concurrent systems and the Alloy Analyzer [22]. In electronic design analysis, hardware
description languages like Verilog [2] and vhdl [1] describe the structure of classical hardware just
as Marol describes the structure of quantum hardware.

9 Conclusion

There are numerous parallel attempts at building quantum computers using a dizzying array of qubit
hardware, physical layouts, and error-correction schemes. Each combination requires a carefully
constructed compiler to map quantum programs onto the quantum processor while satisfying
its idiosyncratic constraints. We have presented an approach for automatically constructing a
mapping and routing compiler for a given quantum processor. We started from the observation
that all mapping and routing problems share a similar structure, which we can define using a
simple domain-specific language. Using a generic solving algorithm, we demonstrated that we can
construct powerful mapping and routing compilers for a wide range of quantum processors. We see
two avenues for future research: (1) Improving the runtime and accuracy of the search algorithm,
perhaps using reinforcement learning to construct mapping and routing policies that can transfer
between qpus. (2) Combining mapping and routing with circuit-optimization synthesis [62, 63].
This allows us to generate compilers that co-optimize the circuit and its mapping onto the device.
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A Proofs

Theorem 5.7. It follows directly from the definition the Real predicate for a Marol program (the
RealEmpty and RealIns rules in Fig. 7) that route-one-pass produces a state satisfying Real.
Now assume that Real is monotonic and let 𝑠 = (map, routes) be a state produced by the

route-one-pass. Suppose, for the sake of contradiction that 𝑠 is not maximal, so there exists some
realizable state 𝑠′ = (map, routes′) where the domain of routes is a strict subset of the domain
of routes′. Let 𝑔 be an instruction in the domain of routes′ but not routes. Then, there is some
intermediate state 𝑠′′ = (map, routes′′) with 𝑑𝑜𝑚(routes′′) ⊆ 𝑑𝑜𝑚(routes) ∪ {𝑔} which is not
realizable corresponding to the loop iteration where 𝑔 was visited but not added to 𝑠 . But then 𝑠′′ is
a sub-state of 𝑠′ with routes

′′ ⊆ routes
′, violating the assumption of monotonicity.

Now assume that Real is monotonic and non-interfering and let 𝑠 = (map, routes) be a state
produced by the route-one-pass and 𝑠 = (map, routes′) be another maximal state. The combined
state (map, routes∪ routes′) is realizable by the definition of non-interference. Moreover, this state
cannot route any instructions not routed in 𝑠 since 𝑠 is maximal. The same reasoning holds with 𝑠′
in place of 𝑠 . Therefore, 𝑑𝑜𝑚(routes) = 𝑑𝑜𝑚(routes ∪ routes′) = 𝑑𝑜𝑚(routes′).

Theorem 5.2. Let Sol be the solution returned by MaxState on input (𝐴,𝐶, P). By Theorem 5.7,
every state in Sol is realizable. SinceMaxState only attempts to route instructions from the front layer
at each iteration, 𝐷𝑅(𝐶, Sol) holds. Finally, it follows directly from the transition inference rule in
Fig. 7, that choosing the next map according to line 8 in Algorithm 1 ensures that 𝑠𝑖 →𝑐𝑖 𝑠𝑖+1 for each
pair of consecutive states. Therefore, we can apply the full-prog rule to conclude (𝐶,𝐴, Sol) ∈ J𝑃K
as desired.

Theorem 5.3. We prove the loop in Algorithm 2 terminates by defining an appropriate termination
measure. The idea is that only finitely many states in a row can include no routed instructions
thanks to the assumption of reachability in the theorem. Let 𝜇 (𝑠) = (𝑖, 𝑗) where 𝑖 is the number of
unrouted instructions and 𝑗 is𝑀 −𝑘 where𝑀 is the total number of qubit maps for input (𝐴, P) and
𝑘 is the number of iterations since the last instruction was routed. Note that the value of 𝑗 is always
positive as long as no state is visited twice because of the assumption that at least one reachable
realizable state routes a gate. At each iteration, either an instruction is routed or a transition is
taken that visits a new state. In either case, the measure decreased under lexicographic comparison.
Thus, the loop terminates.

B Simulated annealing instantiation

Acceptance probability. We accept a new solution 𝑠new to replace a current solution 𝑠curr according
to the standard acceptance probability

exp
{
−𝑐 (𝑠new) − 𝑐 (𝑠curr )

𝜏

}
where 𝜏 is the current temperature.

Parameters. In our simulated annealing search, we initialize the temperature to a value 𝜏𝑖 , reduce
by a cooling rate 𝑟 at each iteration (i.e. multiply the current temperature by 1 − 𝑟 ), and terminate
the search when we reach a final temperature 𝜏𝑓 , or are interrupted by a timeout. For the mapping
search, we choose 𝜏𝑖 = 10, 𝑟 = 10−3 and 𝜏𝑓 = 10−5. These values were chosen by a grid search on
the nisqmr and scmr problems over the range [1, 103] for 𝜏𝑖 and [10−5, 1] for 𝑟 and 𝜏𝑓 .

For the maximal state search in Algorithm 3, we instantiate the search with the same parameters,
along with parallel reduced searches with 𝑟 = 10−2, 10−1, 1− 1010 log(0.9) and 1. Each of these in turn
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divides the number of iterations by an order of magnitude. The reduced searches are designed to
maximize the chance that at least one valid solution is found.

C Language Definition

Here we present the full type system and semantics for the Marol language.

C.1 Type System

[Var]
Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 : 𝜏
[Arch]

Γ ⊢ Arch : ArchT
[Gate]

Γ ⊢ Instr : InstrT

[State]
Γ ⊢ State : StateT

[Trans]
Γ ⊢ Trans : Transition

[Map]
Γ ⊢ QubitMap : Qubit→ Loc

[IdTrans]
Γ ⊢ IdTrans : Transition

[Float]
Γ ⊢ 𝑟 : Float

[Int]
Γ ⊢ 𝑛 : Int

[String]
Γ ⊢ str : String

[Loc]
Γ ⊢ 𝑒 : Int

Γ ⊢ loc(𝑒) : Loc
[Abs]

Γ, 𝑥 :𝜏1 ⊢ 𝑒 : 𝜏2
Γ ⊢ |𝑥 | → 𝑒 : 𝜏1 → 𝜏2

[App]
Γ ⊢ 𝑒1 : 𝜏1 → 𝜏2 Γ ⊢ 𝑒2 : 𝜏1

Γ ⊢ 𝑒1 𝑒2 : 𝜏2
[Pair]

Γ ⊢ 𝑒1 : 𝜏1 Γ ⊢ 𝑒2 : 𝜏2
Γ ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2

[Proj]
Γ ⊢ 𝑒 : 𝜏1 × 𝜏2
Γ ⊢ proj𝑖 𝑒 : 𝜏𝑖

[List]
Γ ⊢ 𝑒 : 𝜏

Γ ⊢ [𝑒] : List[𝜏]
[ListAccess]

Γ ⊢ 𝑒1 : List[𝜏] Γ ⊢ 𝑒2 : Int
Γ ⊢ 𝑒1 [𝑒2] : 𝜏

[If]
Γ ⊢ 𝑒1 : Bool Γ ⊢ 𝑒2 : 𝜏 Γ ⊢ 𝑒3 : 𝜏

Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏

[ArithFloat]
Γ ⊢ 𝑒1 : Float Γ ⊢ 𝑒2 : Float

Γ ⊢ 𝑒1 ⊗ 𝑒2 : Float
[ArithInt]

Γ ⊢ 𝑒1 : Int Γ ⊢ 𝑒2 : Int
Γ ⊢ 𝑒1 ⊗ 𝑒2 : Int

[Struct]
types(𝑆) = 𝑥 :𝜏 Γ ⊢ 𝑒 : 𝜏

Γ ⊢ 𝑆{𝑥 = 𝑒} : 𝑆
[StructAccess]

Γ ⊢ 𝑒 : 𝑆 types(𝑆) = 𝑥 :𝜏
Γ ⊢ 𝑒.𝑥𝑖 : 𝜏𝑖

[Fun]
funtype(𝐹 ) = 𝜏𝑎 → 𝜏 Γ ⊢ 𝑒 : 𝜏𝑎

Γ ⊢ 𝐹 (𝑒) : 𝜏

[RouteInfoOk]
𝑔 ⊆ Gates Arch :ArchT, State :StateT, Instr :InstrT ⊢ 𝑒 : List[GateRealization]

Gates ⊢ (GateRealization{𝑥 :𝜏}; routed_gates = 𝑔; realize_gate = 𝑒) rt-ok

[TransInfoOk]

Arch :ArchT, State :StateT ⊢ 𝑒1 : List[Transition]
𝑡 :Transition, State :StateT ⊢ 𝑒2 : StateT 𝑡 :Transition ⊢ 𝑒3 : Float

⊢ (Transition{𝑥 :𝜏}; get_transitions = 𝑒1; apply = 𝑒2; cost = 𝑒3) trans-ok

[ArchOkEmpty]
⊢ 𝜀 arch-ok

[ArchOk]
Arch :ArchT ⊢ 𝑒 : List[Loc]

⊢ (Arch{𝑥 :𝜏}; get_locations = 𝑒) arch-ok
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[StateOkEmpty]
⊢ 𝜀 state-ok

[StateOk]
State :StateT ⊢ 𝑒 : Float
⊢ (cost = 𝑒) state-ok

[ProgOk]

Gates ⊢ 𝑃 .RouteInfo rt-ok ⊢ 𝑃 .TransitionInfo trans-ok
⊢ 𝑃 .ArchInfo trans-ok ⊢ 𝑃 .StateInfo trans-ok

Gates ⊢ 𝑃 ok

C.1.1 Library function types. The auxiliary lookup function funtype is defined by the following
mappings.

List Functions.
• push : List[𝜏], 𝜏 → List[𝜏]
• concat : List[𝜏], List[𝜏] → List[𝜏]
• contains : List[𝜏] → Bool
• combinations : List[𝜏], Int→ List[List[𝜏]]
• map : (𝜏1 → 𝜏2), List[𝜏1] → List[𝜏2]
• fold : (𝜏1 → 𝜏2 → 𝜏2), 𝜏2, List[𝜏1] → 𝜏2
• combinations : List[𝜏], Int→ List[List[𝜏]]

Graph Functions.
• edges : ArchT→ List[Loc × Loc]
• edges_between : ArchT, Loc, Loc→ List[Loc × Loc]
• all_paths : ArchT, List[Loc], List[Loc], List[Loc] → List[List[Loc]]
• steiner_trees : ArchT, List[Loc], List[Loc] → List[List[Loc]]

Instruction Functions.
• qubits : InstrT→ Qubit
• gate_type : InstrT→ String

Other Utility Functions.
• horizontal_neighbors : Loc, Int→ List[Loc]
• vertical_neighbors : Loc, Int, Int→ List[Loc]
• to_2d : Loc, Int→ (Int, Int)
• value_swap : (Qubit→ Loc), Loc, Loc→ (Qubit→ Loc)

C.2 Semantics

The semantics of expressions are given by a small-step operational semantics. Since the language
is deterministic and terminating, we use a denotational shorthand of J𝑒K to be the partial function
that takes values 𝑣 for the free variables 𝑥 = fv(𝑒), evaluates 𝑒 [𝑥 ↦→ 𝑣] −→∗ 𝑤 and returns 𝑤 . If
𝑒 [𝑥 ↦→ 𝑣] gets stuck, then J𝑒K(𝑣) is undefined.

The small-step operational semantics are defined as follows.
𝐸 F [·] | loc(𝐸) | 𝐸.𝑥 | 𝐸 [𝑒] | 𝑣 [𝐸] | 𝐸 ⊗ 𝑒 | 𝑣 ⊗ 𝐸 | (𝐸, 𝑒) | (𝑣, 𝐸) | proj𝑖 𝐸
| if 𝐸 then 𝑒 else 𝑒 | [𝑣, 𝐸, 𝑒] | 𝐹 (𝑣, 𝐸, 𝑒) | 𝐸 𝑒 | 𝑣 𝐸 | 𝑆{𝑥𝑣 = 𝑣, 𝑥 = 𝐸, 𝑥𝑒 = 𝑒}

[E-Ctx]
𝑒 −→ 𝑒′

𝐸 [𝑒] −→ 𝐸 [𝑒′]
[E-Arith]

𝑣1 ⊗ 𝑣2 = 𝑤

𝑣1 ⊗ 𝑣2 −→ 𝑤
[E-App]

( |𝑥 | → 𝑒) 𝑣 −→ 𝑒 [𝑥 ↦→ 𝑣]

[E-Proj]
proj𝑖 (𝑣1, 𝑣2) −→ 𝑣𝑖

[E-IfT]
if true then 𝑒1 else 𝑒2 −→ 𝑒1



Generating Compilers for Qubit Mapping and Routing 33

[E-IfF]
if false then 𝑒1 else 𝑒2 −→ 𝑒2

[E-StructAccess]
𝑆{𝑥 = 𝑣}.𝑥𝑖 −→ 𝑣𝑖

[E-ListAccess]
1 ≤ 𝑖 ≤ 𝑛

[𝑣1, . . . , 𝑣𝑛] [𝑖] −→ 𝑣𝑖

Operational semantic rules for utility functions are defined below.
[E-Push]

push( [𝑣],𝑤) −→ [𝑣,𝑤]
[E-Concat]

concat( [𝑣], [𝑤]) −→ [𝑣,𝑤]

[E-ContainsT]
𝑣 = 𝑣𝑖

contains( [𝑣], 𝑣) −→ true
[E-ContainsF]

∀𝑖 ∈ [0, 𝑛] . 𝑣𝑖 ≠ 𝑣

contains( [𝑣1, . . . , 𝑣𝑛], 𝑣) −→ false

[E-Map]
map(( |𝑥 | → 𝑒), [𝑣1, . . . , 𝑣𝑛]) −→ [𝑒 [𝑥 ↦→ 𝑣0], . . . , 𝑒 [𝑥 ↦→ 𝑣𝑛]]

[E-FoldEmp]
fold(( |𝑥,𝑦 | → 𝑒), 𝑣, []) −→ 𝑣

[E-FoldV]
𝑛 ≥ 0

fold(( |𝑥,𝑦 | → 𝑒),𝑤, [𝑣0, . . . , 𝑣𝑛]) −→ fold(( |𝑥,𝑦 | → 𝑒), 𝑒 [𝑥 ↦→ 𝑣0, 𝑦 ↦→ 𝑤], [𝑣1, . . . , 𝑣𝑛])

[E-Combinations]
1 ≤ 𝑖 ≤ 𝑛

combinations( [𝑣1, . . . , 𝑣𝑛], 𝑖) −→ [𝑙], 𝑙𝑘 is a list of 𝑖 elements from 𝑣

[E-Edges]
edges((𝑉 , 𝐸)) −→ 𝐸

[E-EdgesBtwnT]
(𝑢, 𝑣) ∈ 𝐸

edges_between((𝑉 , 𝐸), 𝑢, 𝑣) −→ [(𝑢, 𝑣)]

[E-EdgesBtwnF]
(𝑢, 𝑣) ∉ 𝐸

edges_between((𝑉 , 𝐸), 𝑢, 𝑣) −→ []

[E-AllPaths]
all_paths(𝐴, 𝑠, 𝑡, 𝑏) −→ [𝑝], 𝑝𝑘 is a path from 𝑠𝑖 to 𝑡 𝑗 using no vertices in 𝑏

[E-SteinerTree]
steiner_trees(𝐴, 𝑠, 𝑏) −→ [𝑡], 𝑡𝑘 is a Steiner tree for 𝑠 assuming vertices in 𝑏 are blocked

[E-Qubits]
qubits(𝑔(𝑞)) −→ 𝑞

[E-GateType]
gate_type(𝑔(𝑞)) −→ 𝑔

[E-HorizE]
𝑣1 = 0, 𝑣2 = 1

horizontal_neighbors(loc(𝑣1), 𝑣2) −→ []

[E-HorizL]
𝑣1 mod 𝑣2 = 𝑣2 − 1, 𝑣2 ≠ 1

horizontal_neighbors(loc(𝑣1), 𝑣2) −→ [loc(𝑣1 − 1)]

[E-HorizR]
𝑣1 mod 𝑣2 = 0, 𝑣2 ≠ 1

horizontal_neighbors(loc(𝑣1), 𝑣2) −→ [loc(𝑣1 + 1)]

[E-HorizB]
0 < 𝑣1 mod 𝑣2 < 𝑣2 − 1

horizontal_neighbors(loc(𝑣1), 𝑣2) −→ [loc(𝑣1 − 1), loc(𝑣1 + 1)]
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[E-VertE]
𝑣1 = 0, 𝑣3 = 1

vertical_neighbors(loc(𝑣1), 𝑣2, 𝑣3) −→ []

[E-VertAb]
𝑣1/𝑣2 = 𝑣3 − 1, 𝑣3 ≠ 1

vertical_neighbors(loc(𝑣1), 𝑣2, 𝑣3) −→ [loc(𝑣1 − 𝑣2)]

[E-VertBe]
𝑣1/𝑣2 = 0, 𝑣3 ≠ 1

vertical_neighbors(loc(𝑣1), 𝑣2, 𝑣3) −→ [loc(𝑣1 + 𝑣2)]

[E-VertB]
0 < 𝑣1/𝑣2 < 𝑣3 − 1

vertical_neighbors(loc(𝑣1), 𝑣2, 𝑣3) −→ [loc(𝑣1 + 𝑣2), loc(𝑣1 − 𝑣2)]

[E-TwoD]
to_2d(loc(𝑣1), 𝑣2) −→ (𝑣1 mod 𝑣2, 𝑣1/𝑣2)

[E-ValSwapL]
𝑚(𝑞) = loc(𝑣1)

value_swap(𝑚, loc(𝑣1), loc(𝑣2)) (𝑞) −→ loc(𝑣2)

[E-ValSwapR]
𝑚(𝑞) = loc(𝑣2)

value_swap(𝑚, loc(𝑣1), loc(𝑣2)) (𝑞) −→ loc(𝑣1)

[E-ValSwapN]
𝑚(𝑞) ∉ {loc(𝑣1), loc(𝑣2)}

value_swap(𝑚, loc(𝑣1), loc(𝑣2)) (𝑞) −→𝑚(𝑞)

D Solver Optimization: Incremental Isomorphism

Here we describe another optimization in the implementation of MaxState. This is a generic
optimization which can be applied to all qmr problems, but it is especially useful for nisqmr. As a
“warm-start” for simulated annealing, we seed the search for a qubit map with a candidate which
places interacting qubits near one another. We call this the incremental isomorphism optimization
because it solves a sequence of subgraph isomorphism problems. To capture the interactions between
qubits in a circuit, we use a well-known data structure called an interaction graph [8, 19, 38]. The
interaction graph for a circuit includes a vertex for each qubit that appears in the circuit and an
edge for each pair of qubits to which the circuit applies a two-qubit gate. An example circuit and
its interaction graph are shown in Fig. 17.

The incremental isomorphism procedure, shown in Algorithm 4, tracks the interaction graph as it
iterates through the𝐶 . Each time an instruction adds a new edge, we check if the current interaction
graph can be embedded into the device graph 𝐴. If so, we set our candidate qubit map according to
this embedding. Otherwise, we stop iterating and return the current candidate. The result is a qubit
map such that some prefix of the circuit is likely to be easy to route. The incremental isomorphism
optimization is particularly useful for large circuits with a linear interaction graph, like Ising model
simulation circuits. For these circuits, there is often an embedding of the interaction graph of the
full circuit or a long prefix which leads to a low-cost solution. However, such an embedding is
difficult to discover with random search. See Fig. 22 for empirical results.

E Additional Plots
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q0

q1 q3

q2

Fig. 17. A circuit and corresponding interaction graph

Algorithm 4 Choosing a starting point for the qubit map search

procedure incremental-isomorphism(graph 𝐴, circuit 𝐶 , program P)
Initialize an empty interaction graph I over the qubits in 𝐶
for each two-qubit instruction in 𝐶 do

Update I with an edge between the qubits of the instruction
if 𝐴 has a subgraph 𝐻 isomorphic to I then ⊲ 𝐻 need not be an induced subgraph

Set map to an isomorphism from I to 𝐻
else

break
return map
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