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Abstract

Computational complexity theory aims to provide a mathematically rigorous understand-

ing of the resources necessary to solve computational problems. This dissertation develops

complexity lower bounds in three settings.

Polynomial Identity Testing. Given two arithmetic formulas, do they compute the same

multivariate polynomial? This basic problem has an efficient randomized algorithm

and plays a central role in the area of derandomization. We propose a pseudorandom

generator based on evaluations of univariate rational functions and characterize its

power through its vanishing ideal. We construct an explicit Groebner basis, yielding

tight bounds on the minimum sparsity, degree, and partition class size of set multi-

linearity in the vanishing ideal. We develop a membership test inspired by the theory of

alternating algebras and give a proof of concept of its usefulness in the model of read-

once oblivious algebraic branching programs. Via an equivalence with the Shpilka–

Volkovich generator, computational lower bounds for polynomials in the vanishing

ideal follow from existing derandomization results.

Circuit Minimization. Given a truth table, what is the minimum size of a Boolean circuit

computing it? This fundamental problem and a descriptive Kolmogorov variant known

as MKTP have thus far resisted classification as solvable in polynomial time or NP-

complete. We show that the complexity of MKTP is no less than that of isomorphism

problems with respect to zero-error randomized reductions. Our reduction is related to
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the known interactive proofs of nonisomorphism and hinges on a near-optimal encoding

for samples of flat, samplable distributions.

Inversion Minimization. Given a rooted tree and a ranking of its leaves, what is the minimum

number of inversions of the leaves that can be attained by ordering the tree? We study

the number of comparisons necessary to solve this problem by considering notions of

connectivity and sensitivity with respect to adjacent-rank transpositions. We show

that for many tree shapes the problem is essentially as hard as sorting.
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Chapter 1

Introduction

One of the most marvelous principles that every computer programmer learns is that simple

instructions can describe complex behavior. Computers are, at their most fundamental level,

simple: All data are represented as bits, there is a small set of simple instructions to operate

on those bits, and programs are just sequences of instructions from that set. The art of

computer programming lies in the arrangement of the simple instructions so that the effect

is interesting or useful. By arranging the simple instructions into complex and capable

algorithms, then arranging those algorithms into even more complex and capable algorithms,

and so on, programmers have created all the sophisticated software we know.

Part of the marvel in this principle is the empowerment that it entails. Through pro-

gramming, we can express how to do tedious work in the simple instructions of a computer,

after which the computer will perform the work for us, usually much faster, with fewer errors,

and while expending less energy. Expressing complex processes as computer instructions has

been a major throughline in humanity’s recent great accomplishments: setting foot on the

moon, sequencing genomes and producing vaccines, rendering life-like animations, as well as

connecting family, friends, and colleagues in real-time across disparate parts of the globe.

There is also the breadth of the principle: It applies to more than electronic computers.

From the construction of ancient wonders to the direction of armies in war, we see enor-
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mously complex undertakings reduced to instructions for laymen. According to free-market

economic theory, the comparatively complex outcome of social welfare follows from every

individual simply acting in their own self-interest. More fundamentally, Newton’s laws of

motion describe our everyday physics with profound concision. Even at scales where New-

ton’s laws break down, quantum mechanics and general relativity have predictive power far

surpassing their mathematical sophistication. Arguably, even human cognition is itself an

emergent behavior determined by the physics of the matter comprising the brain.

The power and breadth of the principle even lead some computer programmers to in-

ternalize its converse, that every complex behavior could be reduced to simple instructions.

Alas, in both theory and practice, there are limits. Solving the halting problem is a complex

behavior that, provably, no algorithm can exhibit. Factoring integers is a complex behavior

for which there are algorithms, but, even for integers with only a few hundred digits, all the

algorithms that we are physically capable of running require hundreds of thousands of years

to complete. It is not known with mathematical certainty that a faster algorithm does not

exist, but such an algorithm has eluded centuries of search by mathematicians and computer

scientists.

This leads us to consider the following questions, the guiding questions of this thesis:

What are the limits of algorithms? For a given complex behavior, can it be reduced to

simple instructions, and, more specifically, can it be realized without tremendous expense of

resources? Providing mathematically rigorous answers to these and related questions is the

quest of computational complexity theory.

Lower Bounds One way to answer the guiding question is to prove a lower bound. In a

lower bound, one establishes a model of computation that formalizes the simple instructions

and means of combining them into algorithms. Associated to the model are various resources,

such as how much time or memory space is necessary to execute an algorithm. The desired

complex behavior is then expressed as a formal specification, typically a mapping from input
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to outputs, for what the algorithm should do in the terms of the model. A lower bound states

that every algorithm in the model that behaves according to the specification requires at

least a certain amount of resources.

A lower bound constitutes a direct answer to the guiding question for the specific model

of computation and complex behavior studied. In addition to this intrinsic appeal, lower

bounds play key roles in other questions in computational complexity theory. A major

example concerns the utility of randomness as a computational resource: How useful are

coin flips? The answer to this question turns out to be equivalent to certain lower bounds.

In a similar vein, the mathematical security of cryptography rests on other lower bounds.

In both settings, the relevant lower bounds remain unproven.

The relationship between lower bounds and randomness as a computational resource

plays a significant role in some of the work in this thesis. The principle underlying the

relationship is that whether something looks random to you depends on your computational

resources. When a computation uses randomness and a limited amount of another resource,

the idea is to replace the randomness by pseudorandomness. Pseudorandomness differs from

true randomness in that it is constructed in a deterministic fashion from a comparatively

small seed of random bits; nevertheless, it looks like true randomness to any computation

with the resource limitation. Necessary for the effect is a lower bound, namely that no

computation with the resource limitation can distinguish the pseudorandomness from true

randomness. Conversely, it is possible to translate a variety of lower bounds into pseudo-

randomness.

This thesis presents three units of lower bounds. They relate to polynomial identity

testing in an algebraic model, minimizing circuits in a universal model of computation, and

minimizing inversions in a comparison-based model.
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1.1 Polynomial Identity Testing

The first unit concerns lower bounds related to the topic of polynomial identity testing. Here

the primary model of computation is algebraic: Inputs are scalars from a field (such as

the rational numbers), and computation consists of combining those inputs using addition,

subtraction, and multiplication. If we represent the inputs by variables, say x, y, z, then

computations are formulas that express polynomials in those variables. For example, the

formula

y ⋅ (x − 2z) − 2xz − yz (1.1)

expresses a polynomial using three additions/subtractions and five multiplications. A second

formula, this time with only two additions/subtractions and four multiplications, is the

following:

x ⋅ (y − 2z) − 3yz. (1.2)

As it turns out, (1.1) and (1.2), despite representing distinct computations, nevertheless

yield the same polynomial. To see this, we can use the distributive law to expand each as a

sum of monomials. The result in both cases is

xy − 2xz − 3yz. (1.3)

Polynomial identity testing is the general problem of deciding whether two formulas

compute the same polynomial. One way to solve the problem is as above: Expand both

formulas as a sum of monomials, and compare the coefficients of each monomial. This

algorithm can be quite slow in general, because the expansion can be much larger than the

size of the formula. For example, (1 + x1)(1 + x2)⋯(1 + x100) can be written on a single

sheet of paper, but there are more monomials in its expansion than there are atoms in a

single-sided printing of this dissertation.

A much faster—and even simpler—algorithm is to pick a random value for each variable,

substitute the values into each expression, and evaluate. If the polynomials are equal, then

the evaluations will necessarily coincide, but if the polynomials are not equal, then the
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evaluations will likely disagree. By repeating the test a few times, we will either find out

that the polynomials definitely differ, or else have very high confidence that the polynomials

are equal.

A major question in complexity theory is whether there is a fast deterministic algorithm

for polynomial identity testing. The standard approach to doing so is to derandomize the

above randomized algorithm: Instead of evaluating the given polynomials with a random

input, evaluate them with a pseudorandom input.

In the algebraic model, pseudorandom inputs take the following form: Instead of sub-

stituting each variable by a scalar, we substitute each variable by another polynomial. The

polynomials in the substitution, collectively called a generator, crucially use many fewer

variables than the original polynomials that we were given and have low degree. Because

the number of variables is so much smaller and the degree is low, it becomes efficient again to

check for equality by just expanding each of the resulting polynomials as a sum of monomials.

For example, we might substitute

x← (u − 4)(u − 3) y ← (u − 5)(u − 3) z ← (u − 5)(u − 4) (1.4)

into (1.1) and (1.2) in which case they expand to −4u4+68u3−428u2+1180u−1200. Plugging

(1.4) into xy+xz+yz, meanwhile, yields 3u4−48u3+285u2−744u+720. Since the two results

differ, we conclude that (1.1) and (1.2) are distinct from xy + xz + yz.

For any nontrivial generator, there exists a pair of polynomials that are distinct, but

plugging the generator into them yields the same result. For example, the polynomial −4yz

is distinct from (1.1) and (1.2), but plugging (1.4) into it nevertheless produces the same

−4u4+68u3−428u2+1180u−1200. To derandomize polynomial identity testing, however, we

can adapt the generator based on the polynomials we are given. The quest, therefore, is to

build a sufficiently diverse array of generators and to recognize when one of those generators

will work for the polynomials that are given.



6

Contributions In Chapter 2, we introduce a systematic approach to understanding the

power of a generator, namely studying its vanishing ideal, the set of polynomials into which

substituting the generator yields zero. For example, subtracting −4yz from (1.1) and (1.2)

[xy − 2xz − 3yz] − [−4yz] = xy − 2xz + yz (1.5)

yields a polynomial in the vanishing ideal of (1.4). Through the vanishing ideal we equate the

derandomization of polynomial identity testing with lower bounds for algebraic computation.

As another conceptual contribution, we demonstrate the utility of generators that are

rational functions rather than merely polynomials. Specifically, we introduce a generator

based on the evaluation of rational functions. We show that this generator is equivalent

to the commonly-used generator of Shpilka and Volkovich, and therefore inherits all its

derandomization results.

We give two characterizations of the vanishing ideal for our generator, and through

them, we capitalize on both directions of the derandomization–lower bounds equivalence.

The first characterization is a small and explicit set of polynomials that jointly produce

the vanishing ideal. As corollaries, we derive tight bounds for several parameters that are

of interest in the context of derandomization. The second characterization, inspired by an

alternating algebra representation, is a membership test for the vanishing ideal. Through

this characterization, we rederive known derandomization results based on the generator of

Shpilka and Volkovich. As a proof of concept of the vanishing ideal approach, we moreover

prove a new derandomization result for a class of polynomials at the frontier of polynomial

identity testing research.

Acknowledgement of Contributions The results in Chapter 2 will appear at ITCS

2022 [vMM22], and represent joint work with Dieter van Melkebeek.
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1.2 Circuit Minimization

In Chapter 3, we prove lower bounds related to the problem of circuit minimization. Circuits

model computation as a sequence of gates. The first few gates are set according to some

input bits, and every subsequent gate computes the logical AND, OR, or NOT of preceding

gates. Every circuit determines a function from the input gates to the output gates. In circuit

minimization, we are given a target function as an explicit list of input-output mappings and

must find a circuit of minimum size that computes it. More generally, there are a number of

variations on circuits, and each one determines a different variation on circuit minimization.

Circuit minimization has received much attention, in part due to the role of circuits

as a model for universal computation. Moreover, circuit minimization resists classification

by one of the most successful theories in computational complexity, namely the theory of

NP-completeness. Informally, a problem is an NP problem if it has solutions that can

be verified efficiently. For example, while solving a given Sudoku board is challenging,

verifying the validity of a completed board is easy. Similarly, circuit minimization is an

NP problem, because it is easy to check whether a given circuit realizes each given input-

output pair. In addition to logic puzzles and minimizing circuits, there are thousands of

naturally occurring NP problems. We say that an NP problem is NP-complete if solving

that problem would imply solving every NP problem. Among the naturally-occurring NP

problems, the overwhelming majority are known to either have efficient algorithms, or else

are NP-complete. Circuit minimization is among the few exceptions to this classification.

We call such exceptions NP-intermediate problems.

Contributions In Chapter 3, we show that a particular variant of circuit minimization is

at least as hard as another class of NP-intermediate problems, namely isomorphism prob-

lems. These include the most widely-recognized isomorphism problem, graph isomorphism,

but also more difficult isomorphism problems, including some for which the best known al-

gorithms require exponential time. The complexity of each of these isomorphism problems is
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a lower bound for the complexity of circuit minimization. This presents a rare link between

NP-intermediate problems.

Central to the improvement is a system for verifying nonisomorphism. We do so by

exhibiting high entropy in a particular probability distribution, in a manner inspired by the

theory of interactive proofs. We show how to validate the occurrence of this higher entropy

assuming an oracle for the particular variant of circuit minimization.

Along the way, we show how to efficiently encode a sequence of independent samples from

any probability distribution that is uniform on its support. The efficiency is best possible

up to an error term that becomes insignificant as the number of samples increases.

An efficient randomized reduction was already known, but it had a nonzero probability of

error. Our reduction has no such possibility of error. The improvement is interesting because

traditional approaches to eliminating the error can only be accomplished for problems whose

complements are also NP problems. Our approach circumvents this limitation.

Acknowledgement of Contributions The results in Chapter 3 appeared in ITCS 2018

[AGvM+18a] and in the SIAM Journal on Computing [AGvM+18b], and represent joint work

with Eric Allender, Joshua Grochow, Dieter van Melkebeek, and Cristopher Moore.

1.3 Inversion Minimization

In the final chapter, we present lower bounds for inversion minimization in the comparison

model. In this model, there is a set of items that are ranked in an unknown way, and

problems amount to the discovery of some information about the ranking. Information is

discovered by making comparison queries. These consist of selecting two distinct items, and

asking which one has the higher rank. We are interested in the number of queries that are

necessary to solve a given problem.

The comparison model is the standard model of computation for analyzing bread-and-

butter algorithms like sorting, selection, and heap construction. Widely known is the text-
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book result that sorting requires Ω(n logn) comparisons, as well as that selection and heap

construction can be done with O(n) comparisons.

Another problem is minimizing inversions in a tree. In this problem, the items are

arranged as the leaves of a rooted tree, and we want to order the tree so that the number

of inversions between the ranks of the items and their order in the tree is minimized. We

devised this problem for the undergraduate algorithms course at UW–Madison, and have

since discovered that it appeared in the psychology literature forty years ago. Finding the

minimizing order can be as hard as sorting, but finding the minimum number of inversions

does not seem to have been analyzed.

Contributions We show that computing the minimum number of inversions in a tree is,

in many cases, nearly as hard as sorting. In contrast to the well-known lower bounds in the

comparison model, these lower bounds do not follow from information theoretic arguments,

nor from a literal equivalence to sorting. Indeed, the complexity of the problem depends

on the shape of the tree. A critical consideration is whether there is a large subtree whose

leaves can be arranged in any order.

We introduce a lower bound framework based on a form of certificate complexity suited

to the comparison model. We use connectivity considerations to develop some intuition

about the nature of computation in the comparison model. We then import the notion of

sensitivity from the Boolean query model to the comparison query model and show that

sensitive functions require many queries to be computed.

Our lower bounds for minimizing inversions in a tree follow from lower bounds on the

problem’s sensitivity. We prove an unconditional lower bound that is tight to within a

factor of three, and we improve it to one that is tight up to a small additive term, based on

a combinatorial conjecture.

Acknowledgement of Contributions The results in Chapter 4 represent unpublished,

joint work with Dieter van Melkebeek.
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Chapter 2

Polynomial Identity Testing

2.1 Overview

Polynomial identity testing (PIT) is the fundamental problem of deciding whether a given

multi-variate arithmetic circuit formally computes the zero polynomial. PIT has a simple

efficient randomized algorithm that only needs black-box access to the circuit: Pick a random

point and check whether the circuit evaluates to zero on that particular point.

In spite of the fundamental nature of PIT and the simplicity of the randomized algorithm,

no efficient deterministic algorithm is known—even in the white-box setting, where the

algorithm has access to the description of the circuit. The existence of such an algorithm

would imply long-sought circuit lower bounds [HS80; Agr05; KI04]. Conversely, sufficiently

strong circuit lower bounds yield blackbox derandomization for all of BPP, the class of

decision problems admitting efficient randomized algorithms with bounded error [NW94;

IW97]. Although the known results leave gaps between the two directions, they suggest

that PIT acts as a BPP-complete problem in the context of derandomization, and that

derandomization of BPP can be achieved in a blackbox fashion if at all.

Blackbox derandomization of PIT for a class of polynomials C in the variables x1, . . . ,

xn is equivalent to the efficient construction of a substitution G that replaces each xi by a
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low-degree polynomial in a small, common set of fresh variables such that, for every nonzero

polynomial p from C, p(G) remains nonzero [SY10, Lemma 4.1]. We refer to G as a generator

and the fresh variables as the seed, and we say that G hits the class C. If p and G have

degree at most nO(1), the resulting deterministic PIT algorithm for C makes nO(l) black-box

queries.

Much progress on derandomizing PIT has been obtained by designing such substitutions

and analyzing their hitting properties for interesting classes C. Shpilka and Volkovich [SV15]

introduced a generator, by now dubbed the Shpilka–Volkovich generator or “SV-generator”

for short, and proved that it hits sums of a bounded number of read-once formulas for

l = O(logn), later improved to l = O(1) [MV18]. The generator for l = O(logn) has also been

shown to hit multi-linear depth-4 circuits with bounded top fan-in [KMS+13], multi-linear

bounded-read formulas [AvMV15], commutative read-once oblivious arithmetic branching

programs [FSS14], Σm⋀ΣΠO(1) formulas [For15], circuits with locally-low algebraic rank in

the sense of [KS17], and orbits of simple polynomial classes under invertible linear trans-

formations of the variables [MS21]. The generator is also an ingredient in other hitting set

constructions, notably constructions using the technique of low-support rank concentration

[ASS13; AGK+15; GKS+17; GKS17; ST21; BG21]. It also forms the core of a “succinct”

generator that hits a variety of classes including depth-2 circuits [FSV17].

Vanishing Ideal In this chapter a systematic study of the power of the SV-generator

is initiated. For any generator G, G hits a polynomial p if and only if the substitution

p(G) is nonzero. The power of G, therefore, is determined by the set of p such that p(G)

vanishes. This set, denoted Van[G], has the algebraic structure of an ideal, and is known

as the vanishing ideal of G. The results in this chapter can be understood as precisely

characterizing the vanishing ideal of the SV-generator for all choices of parameters.

There are two natural ways in which to apply a characterization of the vanishing ideal:

Derandomization To show that a generator G hits a class C of polynomials, it suffices (and
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is necessary) to prove that the intersection of C with Van[G] consists of at most the

zero polynomial. The vanishing ideal of SV tells us what polynomials we need to focus

on when designing other generators for derandomizing PIT in combination with SV.

Lower bounds If we know that the generator G hits a class C of polynomials, any expression

for a nonzero element of Van[G] yields an explicit polynomial that falls outside C.

Such a statement is often referred to as hardness of representation, and can be viewed

as a lower bound in the model of computation underlying C (provided the polynomial

can be computed in the model at all).

We will see both uses of this chapter’s characterizations of the SV-generator.

Rational Function Evaluations Another contribution of this chapter is the development

of an alternate view of the SV-generator, namely as evaluations of univariate rational func-

tions of low degree. In addition to its intrinsic appeal and its applicability, the perspective

facilitates the study of the vanishing ideal.

The transition goes as follows. The SV-generator takes as additional parameters a posi-

tive integer l, and a choice of distinct field elements ai for each of the original variables xi,

i ∈ [n]. We refer to the elements ai as abscissas, and denote the generator for a given value

of l by SVl (suppressing the choice of abscissas). SV1 uses two fresh variables, y and z, and

can be described succinctly in terms of the Lagrange interpolants Li for the set of abscissas:

xi ← z ⋅Li(y) ≐ z ⋅ ∏
i′∈[n]∖{i}

y − ai′

ai − ai′
. (2.1)

By rescaling, the denominators on the right-hand side of (2.1) can be cleared, resulting in

the following somewhat simpler substitution:

xi ← z ⋅ ∏
i′∈[n]∖{i}

(y − ai′). (2.2)

The vanishing ideals of (2.2) and SV1 are the same up to rescaling the variables to match

the rescaling from (2.1) to (2.2).
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More importantly, we apply the change of variables z ← z′/∏i∈[n](y − ai), resulting in a

substitution that now uses rational functions:

xi ←
z′

y − ai

. (2.3)

The notion of vanishing ideal naturally extends to rational function substitutions. The

change of variables from (2.2) to (2.3) establishes that any polynomial vanishing on (2.2) also

vanishes on (2.3). The change of variables is invertible (the inverse is z′ ← z∏i∈[n](y − ai)),

so any polynomial vanishing on (2.3) also vanishes on (2.2). Therefore the vanishing ideal

of (2.3) is the same as that of SV1 up to rescaling the variables.

Note that, for fixed y and z′, (2.3) may be interpreted as first forming a univariate rational

function f(α) = z′
y−α (depending on y and z′, but independent of i) and then substituting

xi ← f(ai). As y and z′ vary, f ranges over all rational functions with numerator degree

zero and denominator degree one. We thus denote (2.3) by RFE0
1, where RFE is a short-

hand for Rational Function Evaluation, 0 bounds the numerator degree, and 1 bounds the

denominator degree.

As a generator, RFE0
1 naturally generalizes to RFEk

l for arbitrary k, l ∈ N:

Definition 2.1 (RFE Generator). Let F be a field and X ≐ {xi ∶ i ∈ [n]} a set of vari-

ables. The Rational Function Evaluation (RFE) Generator for F[X] is parametrized by the

following data:

○ For each i ∈ [n], a distinct abscissa ai ∈ F.

○ A non-negative integer k, the numerator degree.

○ A non-negative integer l, the denominator degree.

The generator takes as seeds rational functions f ∈ F(α) such that f can be written g/h for

some g, h ∈ F[α] with deg(g) ≤ k, deg(h) ≤ l, and h(ai) ≠ 0 for all i ∈ [n]. From a seed f , it

generates the substitution xi ← f(ai) for each i ∈ [n]. ◂
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There are multiple ways to parametrize the seed of RFEk
l using scalars, such as by spec-

ifying coefficients, evaluations, or roots for each of the numerator and denominator. The

flexibility to choose is a source of convenience. Section 2.2 discusses different parametriza-

tions, as well as how to obtain deterministic black-box PIT algorithms from the generator,

and the required size of the underlying field F. As is customary in the context of black-box

derandomization of PIT, we will assume that F is sufficiently large, possibly by taking a field

extension.

The connection between RFE0
1 and SV1 extends as follows. For higher values of l, SVl

is defined as the sum of l independent instantiations of SV1. The same transformations as

above relate SVl and the sum of l independent instantiations of RFE0
1. The latter in turn

is equivalent to RFEl−1
l by partial fraction decomposition. The conclusion is that SVl is

equivalent, up to variable rescaling, to RFEl−1
l . Section 2.2 presents a formal treatment.

For parameter values k ≠ l − 1, there is no SV-generator that corresponds to RFEk
l ,

but SVmax(k+1,l) encompasses RFEk
l (up to rescaling) and uses at most twice as long of

a seed. Thus, the RFE-generator and the SV-generator efficiently hit the same classes of

polynomials. However, RFE’s simpler univariate dependence on the abscissas—as opposed to

SV’s multi-variate dependence—enables our approach for determining the vanishing ideal.

The moral is that, even though polynomial substitutions are sufficient for derandomizing

PIT, it nevertheless helps to consider rational substitutions. Their use may simplify analysis,

and arguably yield more elegant constructions.

Generating Set The first characterization of the vanishing ideal of RFE is a small and

explicit generating set for the vanishing ideal of RFE. It consists of instantiations of a single

determinant expression.

Theorem 2.2. Let k, l ∈ N, {xi ∶ i ∈ [n]} be a set of variables, and ai for i ∈ [n] be distinct

field elements. The vanishing ideal of RFEk
l over the given set of variables for the given

choice of abscissas (ai)i∈[n] is generated by the following polynomials over all choices of
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k + l + 2 variable indices i1, i2, . . . , ik+l+2 ∈ [n]:

EVCk
l [i1, i2, . . . , ik+l+2] ≐ det [al

ij
xij

al−1
ij
xij

. . . xij
ak

ij
ak−1

ij
. . . 1]

k+l+2

j=1
. (2.4)

Moreover, the polynomials EVCk
l [i1, i2, . . . , ik+l+2] form a generating set of minimum size

when {i1, i2, . . . , ik+l+2} ranges over all subsets of [n] of size k + l + 2 that contain a fixed set

C ⊆ [n] of k + 1 variable indices, and i1 < i2 < ⋅ ⋅ ⋅ < ik+l+2.

The name “EVC” is a shorthand for “Elementary Vandermonde Circulation”. Later

we shall see a representation of polynomials using alternating algebra, which connects with

notions from network flow. In this representation, polynomials in the vanishing ideal coincide

with circulations, and instantiations of EVC are the elementary circulations.

We call the set C in Theorem 2.2 a core. The core C plays a similar role as in a sunflower

except that, unlike the petals of a sunflower, the various sets S do not need to be disjoint

outside the core.

Example 2.3. Consider the special case where k = 0 and l = 1. The generator for RFE0
1

when i1 = 1, i2 = 2, and i3 = 3 is given by

EVC0
1[1,2,3] ≐

RRRRRRRRRRRRRRRRRRRRRRR

a1x1 x1 1

a2x2 x2 1

a3x3 x3 1

RRRRRRRRRRRRRRRRRRRRRRR

= (a1 − a2)x1x2 + (a2 − a3)x2x3 + (a3 − a1)x3x1. (2.5)

For any fixed i∗ ∈ [n], the polynomials EVC0
1[i1, i2, i3] form a generating set of minimum

size when {i1, i2, i3} ranges over all subsets of [n] that contain C = {i∗}, and i1 < i2 < i3. ◂

In general, the generators EVCk
l are nonzero multi-linear homogeneous polynomials of

degree l + 1 containing all multi-linear monomials of degree l + 1.

Each generating set of minimum size in Theorem 2.2 yields a Gröbner basis with respect

to every monomial order that prioritizes the variables outside C. A Gröbner basis is a

special basis that allows solving ideal-membership queries more efficiently as well as solving

systems of polynomial equations [CLO13]. Computing Gröbner bases for general ideals
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is exponential-space complete. Theorem 2.2 represents a rare instance of a natural and

interesting ideal for which we know an explicit Gröbner basis.

To gain some intuition about dependencies between the generators EVCk
l , note that

permuting the order of the variables used in the construction of EVCk
l yields the same

polynomial or minus that polynomial, depending on the sign of the permutation. This

follows from the determinant structure of EVCk
l , and is the reason why we need to fix the

order of the variables in order to obtain a generating set of minimum size. More profoundly,

the following relationship holds for every choice of k + l + 3 indices i1, i2, . . . , ik+l+3 ∈ [n] and

every univariate polynomial w of degree at most k:

det [w(aij
) al

ij
xij

al−1
ij
xij

. . . xij
ak

ij
ak−1

ij
. . . 1]

k+l+3

j=1
= 0. (2.6)

The determinant in (2.6) vanishes because the first column of the matrix is a linear com-

bination of the last k + 1. A Laplace expansion across the first column allows us to write

the determinant of the matrix as a linear combination of minors, and each minor is an in-

stantiation of EVCk
l . As the determinant vanishes, (2.6) represents a linear dependency for

every nonzero polynomial w of degree at most k. In fact, when {i1, . . . , ik+l+3} varies over

subsets of [n] containing a fixed core of size k + 1, the equations (2.6) generate all linear

dependencies among instances of EVCk
l .

As corollaries to Theorem 2.2 we obtain the following tight bounds on Van[RFEk
l ]. The

bounds hold for all choices of parameters, as long as the abscissas for different variables

remain distinct.

○ The minimum degree of a nonzero polynomial in Van[RFEk
l ] equals l + 1. This proves

a conjecture by Fournier and Korwar [FK18] (additional partial results reported in

[Kor21]) that there exists a polynomial of degree l + 1 in n = 2l + 1 variables that SVl

fails to hit. The conjecture follows because the generators for Van[SVl] have degree

l + 1 and use 2l + 1 variables.
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As none of the generators contain a monomial of support l or less, the same holds for

every nonzero polynomial in Van[RFEk
l ]. This extends the known property that SVl

hits every polynomial that contains a monomial of support l or less [SV15].

○ The minimum sparseness, i.e., number of monomials, of a nonzero polynomial in

Van[RFEk
l ] equals (k+l+2

l+1 ). The generators EVCk
l realize the bound as they exactly

contain all multi-linear monomials of degree l + 1 that can be formed out of their

k + l + 2 variables.

The claim that no nonzero polynomial in Van[RFEk
l ] contains fewer than (k+l+2

l+1 )

monomials requires an additional combinatorial argument. It is a (tight) quantita-

tive strengthening of the well-known property that SVl hits every polynomial with

fewer than 2l monomials [AvMV15; GKS+17; For15; FSV17]. Note that for k = l − 1

we have that (k+l+2
l+1 ) = (

2l+1
l+1 ) = Θ(22l/

√
l).

○ The minimum partition class size of a nonzero set-multi-linear polynomial of degree

l+1 in Van[RFEk
l ] equals k+2. Set-multi-linearity is a common restriction in works on

derandomizing PIT and arithmetic circuit lower bounds. A polynomial p of degree l+1

in a set of variables {x1, . . . , xn} is said to be set-multi-linear if [n] can be partitioned

as [n] =X1⊔X2⊔⋅ ⋅ ⋅⊔Xl+1 such that every monomial in p is a product xi1 ⋅xi2 ⋅ ⋅ ⋅ ⋅ ⋅xil+1 ,

where ij ∈ Xj. Note that set-multi-linearity implies multi-linearity but not the other

way around.

As the generators EVCk
l are not set-multi-linear, it is not immediately clear from Theo-

rem 2.2 whether Van[RFEk
l ] contains nontrivial set-multi-linear polynomials. However,

a variation on the construction of the generators EVCk
l yields explicit set-multi-linear

homogeneous polynomials in Van[RFEk
l ] of degree l + 1 where each Xj has size k + 2.

We denote them by ESMVCk
l , where ESMVC stands for “Elementary Set-Multi-linear

Vandermonde Circulation”. ESMVCk
l contains all monomials of the form xi1 ⋅xi2 ⋅⋅ ⋅ ⋅⋅xil+1

with ij ∈Xj. For any variable partition X1⊔X2⊔⋅ ⋅ ⋅⊔Xl+1 with ∣X1∣ = ⋯ = ∣Xl+1∣ = k+2,
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ESMVCk
l is the only set-multi-linear polynomial Van[RFEk

l ] with that variable parti-

tion, up to a scalar multiple.

Membership Test The second characterization of the vanishing ideal of RFE can be

viewed as a structured membership test. There is a generic way to obtain a deterministic

membership test for the vanishing ideal of any hitting set generatorG, namely the well-known

transformation of a hitting set generator into a deterministic blackbox PIT algorithm [Ore22;

DL78; Zip79; Sch80]. WhenG is a polynomial substitution using l seed variables that hits the

n-variate polynomials p in a class C, the deterministic black-box PIT algorithm for C makes

no more than nO(l) queries as long as p and G have degree nO(1). By clearing denominators,

the same follows for rational substitutions like RFEk
l , which can be parametrized to use only

k + l+ 1 seed variables. The resulting deterministic algorithm decides PIT for p ∈ C provided

RFEk
l hits C. Unconditionally, the algorithm decides membership of any p to the vanishing

ideal Van[RFEk
l ].

Capitalizing on the generating set of Theorem 2.2, we develop a more structured deter-

ministic membership test for Van[RFEk
l ]. In the important case of multi-linear polynomials,

the test takes the following form.

Theorem 2.4. Let k, l ∈ N, {xi ∶ i ∈ [n]} be a set of variables, ai for i ∈ [n] be distinct

field elements, and Z a set of at least n − k − l − 1 nonzero field elements. A multi-linear

polynomial p in those variables belongs to Van[RFEk
l ] if and only if both of the following

conditions hold:

1. p has no homogeneous components of degree l or less, nor of degree n − k or more.

2. For all disjoint subsets K,L ⊆ [n] with ∣K ∣ = k and ∣L∣ = l, and every z ∈ Z, ( ∂p
∂L
)∣

K←0

evaluates to zero upon the following substitution for each i ∈K ∪L

xi ← z ⋅ ∏i′∈K(ai − ai′)
∏i′∈L(ai − ai′)

. (2.7)
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The first part of condition 1 in Theorem 2.4 extends the well-known property that SVl hits

every multi-linear polynomial that contains a monomial of degree l or less. Combined with

the second part of the condition, it implies that all multi-linear polynomials on n ≤ k + l + 1

variables are hit by RFEk
l .

In condition 2, ( ∂p
∂L
)∣

K←0 denotes the polynomial obtained by taking the partial derivative

of p with respect to every variable in L, and setting all the variables in K to zero. (The order

of the operations does not matter, and the resulting polynomial depends only on variables

in K ∪L.)

Several prior papers demonstrated the utility of partial derivatives and zero substitutions

in the context of derandomizing PIT using the SV-generator, especially for syntactically

multi-linear models [SV15; KMS+13; AvMV15]. By judiciously choosing variables for those

operations, these papers managed to simplify p and reduce PIT for p to PIT for simpler

instances, resulting in an efficient recursive algorithm. In Section 2.4, a general framework

for such algorithms is developed, and correctness is proved directly from Theorem 2.4. For

every multi-linear polynomial p hit by RFEk
l , the sets K and L in Theorem 2.4 describe how

to choose k zero substitutions and l derivatives so that a recursive approach shows that p

is hit by RFEk
l . It follows that any argument that SV or RFE hit a class of multi-linear

polynomials can, in principle, be converted into one based on zero substitutions and partial

derivatives. Thus, Theorem 2.4 shows that these tools harness the complete power of SV

and RFE for multi-linear polynomials.

Applications We illustrate the utility of our characterizations of the vanishing ideal of

RFE in the two directions mentioned before.

Derandomization To start, we will see how Theorem 2.4 yields an alternate proof of

the result from [MV18] that every nonzero read-once formula F is hit by SV1, or equiva-

lently, by RFE0
1. Whereas the original proof hinges on a clever ad-hoc argument, the proof
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in this chapter (described in Section 2.4) is entirely systematic and amounts to a couple

straightforward observations in order to apply Theorem 2.4.

Next, as a proof of concept of the additional power of our characterization for derandom-

ization, we develop an improvement in the model of read-once oblivious algebraic branching

programs (ROABPs).

Theorem 2.5. For every l ∈ N, SVl hits the class of polynomials computed by read-once

oblivious algebraic branching programs of width less than 1 + (l/3) that contain a monomial

of degree at most l + 1.

To the best of our knowledge, Theorem 2.5 is incomparable to the known results for

ROABPs [RS05; JQS09; JQS10; FS13; FSS14; AGK+15; AFS+18; GKS+17; GKS17; GG20;

ST21; BG21]. Without the restriction that the polynomial has a monomial of degree at most

l + 1, Theorem 2.5 would imply a fully blackbox polynomial-time identity test for the class

of constant-width ROABPs. No such test has been proven to exist at this time; prior work

requires either quasipolynomial time or requires opening the blackbox, such as by knowing

the order in which the variables are read.

With the restriction, the known property that SVl+1 hits every polynomial containing

a monomial of support l + 1 or less [SV15] implies that SVl+1 hits the class C in Theo-

rem 2.5. The result can thus be viewed as an improvement from SVl+1 to SVl. Even though

the improvement is modest from this perspective, it is a substantial step toward a fully

polynomial-time identity test for constant-width ROABPs. This is because the vanishing

ideal of SVl contains—and is generated by—polynomials that satisfy the restriction, namely

instances of EVCl−1
l . Theorem 2.5 establishes that none of the generators, nor any nonzero

linear combination thereof, is computed by a small-width ROABP. If that can be extended

to combinations of generators with coefficients that are arbitrary polynomials, then Theo-

rem 2.5 would hold without the additional restriction, and a fully blackbox polynomial-time

test for constant-width ROABPs would follow.
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In addition, the method of proof of Theorem 2.5 diverges significantly from prior uses

of the SV-generator. Most prior uses of the SV-generator rely on combinatorial arguments,

i.e., arguments that depend only on which monomials are present in polynomials of C.

Theorem 2.5 necessarily goes beyond this, because there is a polynomial in Van[SVl] of

degree l + 1 that has the same monomials as a polynomial computed by an ROABP of

width 2. Namely, any instance of ESMVCl−1
l contains exactly all the monomials of the form

xi1 ⋅ xi2 ⋅ ⋅ ⋅ ⋅ ⋅ xil+1 with (i1, . . . , il+1) ∈ X1 × ⋯ ×Xl+1 for some disjoint sets Xj; the same goes

for ∏j∑ij∈Xj
xij

, which is computed by an ROABP of width 2.

Lower Bounds The argument in the previous paragraph also illustrates this direction:

the derandomization result for the class C implies that every ROABP computing EVCl−1
l ,

ESMVCl−1
l , or any other polynomial of degree l+ 1 in the vanishing ideal, has width at least

1 + (l/3). Other hardness of representation results follow in a similar manner from prior

hitting properties of SV in the literature. The following lower bounds apply to computing

both EVCl−1
l and ESMVCl−1

l :

○ Any syntactically multi-linear formula must have at least Ω(log(l)/ log log(l)) reads of

some variable [AvMV15, Theorem 6.3].

○ Any sum of read-once formulas must have at least Ω(l) terms [MV18, Corollary 5.2].

○ There exists an order of the variables such that any ROABP with that order must

have width at least 2Ω(l) [FSS13, Corollary 4.3].

○ Any Σm⋀ΣΠO(1) formula must have top fan-in at least 2Ω(l) [For15]. See [FSV18,

Lemma 5.12].

○ Lower bounds in characteristic zero for circuits with locally-low algebraic rank [KS17,

Lemma 5.2].
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Techniques A recurring tool is the analysis of the coefficients of the Laurent expansion of

p(RFEk
l ) around certain abscissas. The technique is captured in Lemma 2.17, which we call

the Zoom Lemma. A proof from first principles is provided that requires no knowledge of

Laurent expansions. The Zoom Lemma is used in the proofs of all of Theorems 2.2, 2.4, and

2.5, as well as several of the other results. The basic logic is to zoom in on the projection of

p onto certain monomials on a subset of the variables, and show that if the projection does

not vanish at a certain point, then a particular Laurent coefficient of p(RFEk
l ) is nonzero,

and therefore RFEk
l hits p.

Theorem 2.2 states the equality of two ideals: ⟨EVCk
l ⟩ = Van[RFEk

l ], where ⟨EVCk
l ⟩

denotes the ideal generated by all instantiations of EVCk
l , and Van[RFEk

l ] the vanishing

ideal of RFEk
l .

○ The inclusion ⊆ follows from linearizing the defining equations of RFEk
l . This is where

the univariate dependency on the abscissas comes into play.

○ To establish the inclusion ⊇ we first show that every equivalence class of polynomials

modulo ⟨EVCk
l ⟩ contains a representative p whose monomials exhibit the combinatorial

structure of a core. The structure enables the Zoom Lemma to exhibit a particular

Laurent coefficient of p(RFEk
l ) that receives a contribution from just a single monomial.

As there are no other contributions that can cancel out that one contribution, the

coefficient is nonzero, whence RFEk
l hits p.

The proof of Theorem 2.4 also relies on Laurent expansions through the Zoom Lemma.

Membership to the ideal is equivalent to the vanishing of all coefficients of the expansion. The

proof can be viewed as determining a small number of coefficients sufficient to guarantee that

their vanishing implies all coefficients vanish. The restriction to multi-linear polynomials p

allows us to express the projections of p as the result of applying partial derivatives and

zero-substitutions.
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Theorem 2.5 makes use of the characterization of the minimum width of a read-once

oblivious arithmetic branching program computing a polynomial p as the maximum rank of

the monomial coefficient matrices of p for various variable partitions [Nis91]. We reduce to

the case where p is homogeneous of degree l + 1, whence the monomial coefficient matrices

have a block-diagonal structure. An application of the Zoom Lemma in the contrapositive

yields linear equations between elements of consecutive blocks under the assumption that SVl

fails to hit p. When some block is zero, the equations yield a Cauchy system of equations

on the rows or columns of its neighboring blocks; since Cauchy systems have full rank,

we deduce severe constraints on the row-space/column-space of the neighboring blocks. A

careful analysis turns this observation into a rank lower bound of at least 1 + (l/3) for a

well-chosen partition of the variables.

In this application the Zoom Lemma is instantiated several times in parallel to form a

large system of equations on the coefficients of p, and the whole system is needed for the

analysis. This stands in contrast to most prior work using SV, which uses knowledge of how

p is computed to guide a search for a single fruitful instantiation of the Zoom Lemma.

Alternating Algebra Representation The inspiration for several of this chapter’s re-

sults stems from expressing the polynomials EVCk
l using concepts from alternating algebra

(also known as exterior algebra or Grassmann algebra). In fact, Theorem 2.4 hinges on the

relationship ∂2 = 0 from alternating algebra. An earlier form of the statement and proof

of the theorem made use of that framework, but we managed to eliminate the alternat-

ing algebra afterwards. Still, the perspective is insightful and potentially helpful for future

developments, so the connection is presented here. We shall see the intuition behind Theo-

rem 2.4 in the simple case where the degree of the polynomial p equals l+1. In that setting,

belonging to the ideal generated by the polynomials EVCk
l is equivalent to being in their

linear span.

The alternating algebra A of a vector space V over a field F consists of the closure of V
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under an additional binary operation, referred to as ‘wedge’ and denoted ∧, which is bilinear,

associative, and satisfies

v ∧ v = 0 (2.8)

for every v ∈ V . This determines a well-defined algebra. When the characteristic of F is not

2, this can equivalently be understood as

v1 ∧ v2 = −(v2 ∧ v1) (2.9)

for every v1, v2 ∈ V . In any case, for any v1, v2, . . . , vk ∈ V ,

v1 ∧ v2 ∧ ⋅ ⋅ ⋅ ∧ vk (2.10)

is nonzero iff the vi’s are linearly independent, and any permutation of the order of the

vectors in (2.10) yields the same element of A up to a sign. The sign equals the sign of

the permutation, whence comes the name “alternating algebra.” If V has a basis X of size

n, then a basis for A can be formed by all 2n expressions of the form (2.10) where the vi’s

range over all subsets of X, and are taken in some fixed order. Considering the elements

of X as vertices, the basis elements of A can be thought of as the oriented simplices of all

dimensions that can be built from X.

Anti-commutativity, the relation (2.9), arises naturally in the context of network flow,

where X denotes the vertices of the underlying graph, and a wedge v1 ∧ v2 of level k = 2

represents one unit of flow from v1 to v2. Equation (2.9) reflects the fact that one more unit

of flow from v1 to v2 is equivalent to one less unit of flow from v2 to v1. The adjacent levels

k = 1 and k = 3 also have natural interpretations in the flow setting: v1 (the element of A

of the form (2.10) with k = 1) represents one unit of surplus flow at v1 (the vertex of the

graph), and v1 ∧ v2 ∧ v3 abstracts an elementary circulation of one unit along the directed

cycle v1 → v2 → v3 → v1.

The different levels are related by so-called boundary maps. Boundary maps are lin-

ear transformations that map a simplex to a linear combination of its subsimplices of one
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dimension less. The maps are parametrized by a weight function w ∶X → F, and defined by

∂w ∶ v1 ∧ v2 ∧ ⋅ ⋅ ⋅ ∧ vm ↦
m

∑
i=1
(−1)i+1w(vi) v1 ∧ ⋅ ⋅ ⋅ ∧ vi−1 ∧ vi+1 ∧ ⋅ ⋅ ⋅ ∧ vm, (2.11)

an expression resembling the Laplace expansion of a determinant along a column [w(vi)]mi=1.

In the flow setting, using w ≡ 1, ∂1(v1∧v2∧v3) is the superposition of the three edge flows that

make up one unit of circulation along the directed cycle v1 → v2 → v3 → v1, and ∂1(v1 ∧v2) is

the superposition of surplus at v1 and demand at v2 corresponding to one unit of flow from

v1 to v2. A linear combination p of terms (2.10) with k = 2 represents a valid circulation iff it

satisfies conservation of flow at every vertex, which can be expressed as ∂1(p) = 0, i.e., p is in

the kernel of ∂1. An equivalent criterion is for p to be the superposition of circulations along

3-cycles, which can be expressed as p being in the image of ∂1. The relationship between

the image and the kernel of boundary maps holds in general:

Im (∂wm ○ ∂wm−1 ○ ⋅ ⋅ ⋅ ○ ∂w0) =
m

⋂
i=0

Ker (∂wi
) . (2.12)

In the context of the generators EVCk
l , the set X creates a vertex for each variable, and

simplices correspond to multi-linear monomials. The anti-commutativity of ∧ coincides with

the fact that swapping two arguments means swapping two rows in (2.4), which changes the

sign of the determinant. Using the above boundary maps, the right-hand side of (2.4) can

be viewed as ∂ω(vi1 ∧vi2 ∧ ⋅ ⋅ ⋅ ∧vik+l+2), where ∂ω ≐ ∂wk
○∂wk−1 ○ ⋅ ⋅ ⋅ ○∂w0 and wd(vi) ≐ (ai)d. By

(2.12), this means that EVCk
l is in the kernel of ∂wd

for each d ∈ {0,1, . . . , k}, or equivalently,

in the kernel of ∂w̃ for each w̃ ∶ X → F of the form w̃(vi) = w(ai) where w is a polynomial

of degree at most k. This is precisely the condition (2.6). In fact, (2.12) implies that the

linear span of the generators EVCk
l consists exactly of the polynomials of degree l+1 in this

kernel. The latter condition is precisely what the criterion in Theorem 2.4 expresses.

Organization Section 2.2 discusses details related to the use of RFE as a hitting set

generator and presents a formal treatment of the relationship between RFE and SV. The

generating set for the vanishing ideal (Theorem 2.2) is developed in Section 2.3, and the
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ideal membership test (Theorem 2.4) is developed in Section 2.4. The results on sparseness

are presented in Section 2.5, and the ones on set-multi-linearity are presented in Section 2.6.

Background on ROABPs and the result on derandomizing PIT for ROABPs (Theorem 2.5)

are covered in Section 2.7. We end this chapter in Section 2.8 with a further discussion of

the alternating algebra representation.

2.2 Rational Function Evaluation Generator

We introduced our generator RFE in Definition 2.1 in the overview. In this section we

discuss some details related to the use of RFE as a hitting set generator and its relationship

with SV.

RFE as a Hitting Set Generator An ambiguity in Definition 2.1 is how to parametrize

the seed by scalars. There are qualitatively distinct ways to go about this. They are all

equivalent over large enough fields, however, so the option to choose is a source of conve-

nience. Some natural parametrizations are the following:

Coefficients. Select scalars g0, . . . , gk, h0, . . . , hl ∈ F and set

f(α) = gkαk + gk−1αk−1 +⋯ + g1α + g0

hlαl + hl−1αl−1 +⋯ + h1α + h0
, (2.13)

ignoring choices of h0, . . . , hl for which the denominator vanishes on some ax.

Evaluations. Fix two collections, B = {b1, . . . , bk+1} and C = {c1, . . . , cl+1}, each of distinct

scalars from F. Then select scalars g1, . . . , gk+1 and h1, . . . , hl+1 and set

f(α) = g(α)
h(α) (2.14)

where g is the unique degree-k polynomial with g(b1) = g1, g(b2) = g2, . . . , g(bk+1) =

gk+1, and h is defined similarly with respect to C. Choices of h1, . . . , hl+1 that imply

h(ai) = 0 for some i ∈ [n] are ignored.



27

Note that an explicit formula for g and h in terms of the parameters can be obtained

using the Lagrange interpolants with respect to B and C.

Roots. Select scalars z, s1, . . . , sk′ , t1, . . . , tl′ ∈ F for some k′ ≤ k and l′ ≤ l and set

f(α) = z ⋅ (α − s1) ⋅ ⋯ ⋅ (α − sk′)
(α − t1) ⋅ ⋯ ⋅ (α − tl′)

, (2.15)

where {t1, . . . , tl′} is disjoint from {ai ∶ i ∈ [n]}.

In fact, it is no loss of power to restrict to k′ = k and l′ = l.

Hybrids are of course possible, too. For example, the equivalence between RFE and SV

(formalized in Lemma 2.8 in the next section) uses the evaluations parametrization for the

numerator and roots parametrization for the denominator.

Quantitative bounds on the number of substitutions to perform follow from the follow-

ing extension of the corresponding well-known result for polynomials [Ore22; DL78; Zip79;

Sch80]:

Lemma 2.6. Let F be field, and f = g/h ∈ F(τ1, . . . , τl) be a rational function in l variables

with deg(g) ≤ d and deg(h) ≤ d. Let S ⊆ F be finite. Then the probability that f vanishes

or is undefined when each τi is substituted by a uniformly random element of S is at most

2d/∣S∣.

If F is not large enough to allow making the probability bound in Lemma 2.6 sufficiently

small, we work with a sufficiently large extension field of F instead of F itself.

In this chapter, we analyze RFE by using fresh formal variables in the above parametriza-

tions of the seed, and calculate in the field of rational functions in those variables. Evaluating

p(RFEk
l ) for a polynomial p thus yields a rational function in those variables. Lemma 2.6

justifies that as long as F is large enough, this rational function is the zero rational function

if and only if for every choice of scalars for the seed parameters, p(RFEk
l ) is zero.
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Equivalence between RFE and SV The Shpilka-Volkovich generator can be defined as

follows in the format of our definition of RFE.

Definition 2.7 (SV Generator). The Shpilka–Volkovich (SV) Generator for polynomials

in the variables x1, . . . , xn is parametrized by the following data:

○ For each i ∈ [n], a distinct ai ∈ F.

○ A positive integer, l.

The generator takes as seed l pairs of scalars (y1, z1), . . . , (yl, zl) and substitutes

xi ←
l

∑
j=1

⎛
⎝
zj ⋅ ∏

i′∈[n]∖{i}

yj − ai′

ai − ai′

⎞
⎠
. (2.16)

◂

We abbreviate the generator to SVl or just SV.

Shpilka and Volkovich designed SVl so that any selection of l of the variables could remain

independent while the others were forced to zero. This can be viewed as an algebraic version

of l-wise independence. SV1 was realized with two seed variables, y and z, using Lagrange

interpolation. The fresh variable y enables selecting one of the original variables xi, namely

by setting y = ai. The selected variable xi is then set to z, while the other variables are set

to zero. For larger l, SVl is the sum of l independent copies of SV1.

As we sketched in Section 2.1, there is a close relationship between SVl and RFEl−1
l .

Lemma 2.8. Let {x1, . . . , xn} be a set of variables and l ≥ 1. There is an invertible diagonal

transformation A ∶ Fn → Fn such that, for any polynomial p ∈ F[x1, . . . , xn], p(SVl) = 0 if

and only if (p ○A)(RFEl−1
l ) = 0.

In particular, the vanishing ideals of RFEl−1
l and of SVl are the same up to the rescaling

of Lemma 2.8.
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Proof of Lemma 2.8. Let F̂ be the field of rational functions in indeterminates υ1, . . . , υl,

ζ1, . . . , ζl over F. A polynomial p ∈ F[x1, . . . , xn] has p(SVl) = 0 if and only if p vanishes at

the point
⎛
⎝

l

∑
j=1
ζj ∏

i′∈[n]∖{i}

υj − ai′

ai − ai′
∶ i ∈ [n]

⎞
⎠
∈ F̂n. (2.17)

Set A ∶ Fn → Fn to be the diagonal linear transformation that divides the coordinate for xi

by ∏i′∈[n]∖{i}(ai − ai′). It is invertible. Applying A−1 to (2.17) yields the point

⎛
⎝

l

∑
j=1
ζj ∏

i′∈[n]∖{i}
(υj − ai′) ∶ i ∈ [n]

⎞
⎠
=
⎛
⎝

l

∑
j=1

⎛
⎝
ζj ∏

i′∈[n]
(υj − ai′)

⎞
⎠

1
υj − ai

∶ i ∈ [n]
⎞
⎠
. (2.18)

p vanishes at (2.17) if and only if p ○A vanishes at (2.18). Now let F̂′ be the field of rational

functions in indeterminates τ1, . . . , τl, σ1, . . . , σl over F. After the invertible change of

variables

ζj ←
1

∏i′∈[n](τj − ai′)
⋅ −σj

∏j′≠j(τj − τj′)
and υj ← τj (2.19)

(2.18) becomes

⎛
⎝

l

∑
j=1

σj

(∏j′≠j τj − τj′)
1

ai − τj

∶ i ∈ [n]
⎞
⎠
=
⎛
⎜
⎝

∑l
j=1 σj∏j′≠j

ai−τj′
τj−τj′

∏l
j=1 ai − τj

∶ i ∈ [n]
⎞
⎟
⎠
∈ F̂′n. (2.20)

Since the change of variables is invertible, p ○A vanishes at (2.18) if and only if it vanishes

at (2.20).

Now, viewing σ1, . . . , σl, τ1, . . . , τl as seed variables, observe that the right-hand side

of (2.20) is RFEl−1
l (g/h) where g is parametrized by evaluations (g(τj) = σj) and h is

parametrized by roots (τ1, . . . , τl). It follows that p ○ A vanishes at (2.20) if and only if

(p ○A)(RFEl−1
l ) = 0. The lemma follows. ∎

2.3 Generating Set

In this section we establish Theorem 2.2, the characterization of the vanishing ideal of

RFE in terms of an explicit generating set. For every k, l ∈ N, we develop a template,
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EVCk
l , for constructing polynomials that belong to the vanishing ideal of RFEk

l such that

all instantiations collectively generate the vanishing ideal.

We start by deriving the template. The seeds f of RFEk
l are of the form f = g/h,

where g, h ∈ F[α] with deg(g) ≤ k, deg(h) ≤ l, and h(ai) ≠ 0 for each i ∈ [n]. By definition,

RFEk
l (f) substitutes each variable xi by f(ai) = g(ai)/h(ai). In particular, the equation xi =

g(ai)/h(ai) becomes satisfied for each i ∈ [n], or, equivalently, h(ai)xi−g(ai) = 0. Organizing

the coefficients of the monomial expansions of h(α) = ∑l
d=0 hdαd and g(α) = ∑k

d=0 gdαd into

column vectors h⃗ ≐ [hl hl−1 . . . h1 h0]
⊺

and g⃗ ≐ [gk gk−1 . . . g1 g0]
⊺
, we can rewrite

these equations as the following system of linear equations in the k + l + 2 coefficients of g

and h combined:

[al
ixi al−1

i xi . . . xi ak
i ak−1

i . . . 1]
i∈[n]
⋅
⎡⎢⎢⎢⎢⎢⎢⎣

h⃗

−g⃗

⎤⎥⎥⎥⎥⎥⎥⎦
= 0. (2.21)

Note that the system’s coefficient matrix has no dependence on the seed f . Consider any

square subsystem of (2.21), formed by choosing k + l + 2 indices i1, i2, . . . , ik+l+2 ∈ [n] and

looking at the corresponding rows. After substitution by RFE(f) for any fixed seed f , the

subsystem has a nonzero solution (namely the vector in (2.21)) and therefore the determinant

of its coefficient matrix vanishes.

Before the substitution by RFE(f), the determinant of the subsystem’s coefficient matrix

is a polynomial in xi1 , xi2 , . . . , xik+l+2 , independent of the seed f :

p = det [al
ij
xij

al−1
ij
xij

. . . xij
ak

ij
ak−1

ij
. . . 1]

k+l+2

j=1
. (2.22)

As p vanishes after substitution of the variables by RFEk
l (f) for every seed f , by definition p

belongs to the vanishing ideal of RFEk
l . Recalling that p is identically EVCk

l [i1, i2, . . . , ik+l+2],

we have established:

Claim 2.9. For every k, l ∈ N and i1, i2, . . . , ik+l+2 ∈ [n], EVCk
l [i1, . . . , ik+l+2] ∈ Van[RFEk

l ].

Before moving on, we point out the following properties.
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Proposition 2.10. If any of i1, . . . , ik+l+2 coincide, EVCk
l [i1, . . . , ik+l+2] is zero. Otherwise,

it is nonzero, multi-linear, and homogeneous of total degree l + 1, and every multi-linear

monomial of degree l + 1 in xi1 , . . . , xik+l+2 appears with a nonzero coefficient. EVCk
l is skew-

symmetric in that, for any permutation π of i1, . . . , ik+l+2,

EVCk
l [i1, . . . , ik+l+2] = (−1)sign(π) ⋅EVCk

l [π(i1), . . . , π(ik+l+2)]. (2.23)

The coefficient of xi1 ⋅ ⋯ ⋅ xil+1 is the product of Vandermonde determinants
RRRRRRRRRRRRRRRRRRRRRRR

al
i1
⋯ 1

⋮ ⋱ ⋮

al
il+1

⋯ 1

RRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRR

ak
il+2

⋯ 1

⋮ ⋱ ⋮

ak
il+k+2

⋯ 1

RRRRRRRRRRRRRRRRRRRRRRR

. (2.24)

Proof. All the assertions to be proved follow from elementary properties of determinants,

that Vandermonde determinants are nonzero unless they have duplicate rows, and the fol-

lowing computation: After plugging in 1 for xi1 , . . . , xil+1 , and 0 for xil+2 , . . . , xil+k+2 , the

determinant has the form RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

al
i1
⋯ 1 ∗ ⋯ ∗

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

al
il+1

⋯ 1 ∗ ⋯ ∗

0 ⋯ 0 ak
il+2

⋯ 1

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 ⋯ 0 ak
il+k+2

⋯ 1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

, (2.25)

which equals the product of Vandermonde matrices in the statement. ∎

Claim 2.9 shows that the polynomials EVCk
l [i1, . . . , ik+l+2] belong to the vanishing ideal

of RFEk
l . To prove that they collectively generate the vanishing ideal, we use a two-phase

approach:

1. First, we show that every polynomial is equal, modulo the ideal ⟨EVCk
l ⟩ generated by

the instantiations of EVCk
l , to a polynomial with a particular combinatorial structure

(Lemma 2.12).
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2. Then we show that every nonzero polynomial with that structure is hit by RFEk
l

(Lemma 2.14).

Together, these show that every polynomial in the vanishing ideal of RFEk
l is equal, mod-

ulo ⟨EVCk
l ⟩, to the zero polynomial. It follows that the vanishing ideal is generated by

instantiations of EVCk
l .

The combinatorial structure is that of a core, which is the set C in the following definition.

Definition 2.11 (Cored polynomial). For c, t ∈ N, a polynomial p is said to be (c, t)-cored

if there exists a set of at most c variables such that every monomial of p depends on at most

t variables outside that set. ◂

Lemma 2.12. For every k, l ∈ N, and any (k + 1)-subset C ⊆ [n], every polynomial is equal

to a (k + 1, l)-cored polynomial with core {xi ∶ i ∈ C} modulo the ideal generated by the

polynomials EVCk
l [S] where S ranges over all sets of size k + l + 2 satisfying C ⊆ S ⊆ [n].

Proof of Lemma 2.12. Fix k, l, and C as in the statement, and let I be the ideal in the lemma

statement. Every monomial m can be uniquely factored as m0m1, where m0 is supported

on variables indexed by C and m1 involves no variable indexed by C. Call m1 the non-core

of m. We show the following:

Claim 2.13. Every monomial with more than l variables in its non-core is equivalent, modulo

I, to a linear combination of monomials that all have non-cores of lower degree.

This lets us prove Lemma 2.12 as follows. Claim 2.13 implies that, for any polynomial p,

we may, without changing p mod I, eliminate any monomial in p that violates the (k + 1, l)-

cored condition, while possibly introducing monomials with lower non-core degree. Thus we

can systematically eliminate all monomials that violate the cored condition by eliminating

them in order of decreasing non-core degree. After that, p is (k + 1, l)-cored with core

{xi ∶ i ∈ C}, and the lemma follows.
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It remains to show Claim 2.13. Letm be a monomial with more than l variables in its non-

core. Let L ⊆ [n] index a set of l+1 of the variables in the non-core, let m′ be their product,

and let m′′ satisfy m = m′m′′. Combined, L and C have size exactly k + l + 2. Consider

q ≐ EVCk
l [L ∪C], where the variables in L ∪C are ordered arbitrarily. By Proposition 2.10,

m′ appears in q, and every other monomial in q has lower non-core degree than m′. It follows

that every monomial in m′′ ⋅ q either is m, or else has lower non-core degree than m. By the

definitions of I and q, m′′ ⋅ q is in I, so rearranging the equation m′′ ⋅ q ≡ 0 (mod I) to isolate

m gives the desired equivalence. ∎

The following lemma completes the proof of the main part of Theorem 2.2, that the

polynomials EVCk
l generate the vanishing ideal of RFEk

l .

Lemma 2.14. Suppose p is nonzero and (k + 1, l)-cored. Then RFEk
l hits p.

Before proving Lemma 2.14, let us see how the “moreover” part of Theorem 2.2 also

follows. The combination of Claim 2.9, Lemma 2.12, and Lemma 2.14 shows that, for every

core C ⊆ {x1, . . . , xn} of k+1 variables, each instance p of EVCk
l that does not use all variables

in C lies in the ideal generated by those instances that do use all of C. Since all polynomials

of the form EVCk
l have the same degree, this implies that p is actually linearly dependent

on the latter instances. Meanwhile, instances of EVCk
l with distinct variable sets that use

all of C are linearly independent, because they each have a distinct monomial. This shows

that the instances in the “moreover” part of Theorem 2.2 form a linearly independent set

that generate all the instances of EVCk
l . This completes the proof of Theorem 2.2 modulo

the proof of Lemma 2.14.

The proof of Lemma 2.14 involves a key technical analysis that we will repeatedly invoke

throughout the chapter. It is abstracted into Lemma 2.17 below. In order to state the

lemma, we first define the following notions.

Definition 2.15 (Projection of a polynomial). Let X ⊆ [n], let p ∈ F[x1, . . . , xn], and

consider the expansion of p as a sum of monomials in {xi ∶ i ∈ X} with coefficients in
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F[xi ∶ i /∈ X]. For any monomial m supported in {xi ∶ i ∈ X}, the X-projection of p onto m,

denoted ⟨m ∣p⟩X , is the coefficient of m in the aforementioned expansion of p. ◂

Note that m need not use every variable indexed by X, and in any case ⟨m ∣p⟩X depends

on no variables indexed by X. The notation in Definition 2.15 is inspired by the bra-ket

notation from physics.

Definition 2.16 (Minorization). Let K,L ⊆ [n], p ∈ F[x1, . . . , xn], and m∗ a monomial

supported in {xi ∶ i ∈K∪L}. We say that m∗ is (K,L)-unminored in p if, for every monomial

m in p, at least one of the following holds:

○ degxi
(m) = degxi

(m∗) for every i ∈K ∪L,

○ degxi
(m) > degxi

(m∗) for some i ∈K, or

○ degxi
(m) < degxi

(m∗) for some i ∈ L.

◂

Equivalently, m∗ is (K,L)-unminored in p if ⟨m ∣p⟩K∪L = 0 for every monomial m ≠ m∗

supported in {xi ∶ i ∈ K ∪ L} with degxi
(m) ≤ degxi

(m∗) for all i ∈ K, and degxi
(m) ≥

degxi
(m∗) for all i ∈ L.

The above notation enables a succinct statement of this chapter’s key technical lemma.

We refer to it as the Zoom Lemma because it lets us zoom in on particular monomial parts

of the polynomial p, namely the (K ∪L)-projection onto a (K,L)-unminored monomial m∗.

Lemma 2.17 (Zoom Lemma). Let K,L ⊆ [n] be sets of variables. Let p ∈ F[x1, . . . , xn],

and m∗ a monomial supported in {xi ∶ i ∈K∪L} that is (K,L)-unminored in p. If ⟨m∗ ∣p⟩K∪L

is nonzero at the point

xi ← z ⋅
∏

i′∈K∖L
(ai − ai′)

∏
i′∈L∖K

(ai − ai′)
∀i ∈ [n] ∖ (K ∪L), (2.26)

for some z ∈ F then RFEk
l hits p with k = ∣K ∣ and l = ∣L∣.
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Note that since the (K ∪ L)-projection of p depends on no variable indexed by K ∪ L,

the result of the substitution (2.26) is simply a scalar in F.

Most of our uses of the Zoom Lemma will moreover have K and L be disjoint, but

disjointness is not necessary for the lemma to hold.

Let us first see how the Zoom Lemma allows us complete the proof of Theorem 2.2.

Proof of Lemma 2.14 from the Zoom Lemma. Let C ⊆ [n] denote a core for p. Without loss

of generality, C is nonempty. Let M denote the set of monomials with nonzero coefficients

in p. Let m1 be a monomial supported in {xi ∶ i /∈ C} that is of maximum degree subject to

dividing some monomial of p. Let L ⊆ [n] be the indexes of the variables appearing in m1;

since p is cored, L has size at most l. Fix i∗ ∈ C arbitrarily, and let K = C ∖{i∗}; K has size

at most k and is disjoint from L. Finally, among the choices for a monomial m0 supported

on K such that ⟨m0m1 ∣p⟩K∪L ≠ 0, choose one of minimum degree.

The choice of m1 ensures that every m ∈ M either has degxi
(m) < degxi

(m1) for some

i ∈ L, or else degxi
(m) = degxi

(m1) for all i ∈ L. In turn, the choice of m0 ensures that every

m in the latter case has degxi
(m) > degxi

(m0) for some i ∈K, or else degxi
(m) = degxi

(m0)

for all i ∈K. In the latter of those cases, m must be m0m1 ⋅ xd
i∗ for some d. In other words,

if we set m∗ =m0m1, then every m ∈M satisfies at least one of the following:

○ m =m∗ ⋅ xd
i∗ for some d,

○ degxi
(m) > degxi

(m∗) for some i ∈K, or

○ degxi
(m) < degxi

(m∗) for some i ∈ L.

In particular, m∗ is (K,L)-unminored in p, and ⟨m∗ ∣p⟩K∪L is a nonzero univariate polyno-

mial in xi∗ . It follows that for all but finitely many z ∈ F, substituting (2.26) into ⟨m∗ ∣p⟩K∪L

has a nonzero result. By the Zoom Lemma, RFEk
l hits p. ∎

Finally, we establish the Zoom Lemma. Below we provide a proof from first princi-

ples. However, we take intuition from thinking in terms of Laurent expansions, which are
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like power series, except that the exponents may go negative. We describe the underlying

intuition for readers familiar with the notion.

Consider RFEk
l in the roots parametrization, where the seed f = g/h is specified by the

k roots of the numerator g, the l roots of the denominator h, and an additional scaling

parameter ζ (cf. Section 2.2, or (2.27) below). We match each of the roots of g to a unique

index in K, and each of the roots of h to a unique index in L. For each i ∈ [n], f(ai) is

a rational function in the root parameters and ζ, and moreover is a product of univariate

rational functions. For each i and root parameter σ with matching index i, we can expand

the univariate rational function in σ to its Laurent series about σ = ai. Then we carry these

expansions into p(RFEk
l (f)) and expand fully, collecting terms according to the powers of

the various σ − ai. The result is a multivariate Laurent expansion of p(RFEk
l (f)) with

respect to the root parameters around their matching abscissas, with coefficients that are

polynomials in ζ. According to our matching between the root parameters and the variables

in K and L, we can index the coefficients in the Laurent expansion of p(RFEk
l ) by the

monomials supported in {xi ∶ i ∈ K ∪ L}. The point is that, since m∗ is (K,L)-unminored

in p, the only contribution to the coefficient indexed by m∗ comes from the constant term

in the corresponding Laurent expansion of q(RFEk
l ), where q is the (K ∪L)-projection of p

onto m∗. Since q does not depend on any variable indexed by K ∪L, this Laurent expansion

of q(RFEk
l ) has no terms of negative exponent, so the constant term may be computed

by substituting σ ← ai into q(RFEk
l ) for each root parameter σ with matching index i.

After moreover substituting ζ ← z, this equals the substitution of (2.26) into q. Since the

substitution of (2.26) into q is nonzero, we conclude that p(RFEk
l ) is a nonzero function of

the parameters, and so RFEk
l hits p.

Proof of the Zoom Lemma. Let ζ, σi for each i ∈ K, and τi for each i ∈ L be fresh, dis-

tinct indeterminates. Let F̂ be the field of rational functions in those indeterminates with

coefficients in F, and let

f̂(α) ≐ ζ ⋅ ∏i∈K(α − σi)
∏i∈L(α − τi)

∈ F̂(α). (2.27)
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Let RFEk
l (f̂) ∈ F̂n be the point (f̂(ai) ∶ i ∈ [n]), and consider p(RFEk

l (f̂)) ∈ F̂. Any

substitution of ζ, σi, and τi by scalars in F such that each τi /∈ {a1, . . . , an} sends f̂ to some

f in the domain of RFEk
l , and p(RFEk

l (f̂)) to p(RFEk
l (f)). If p(RFEk

l (f̂)) is nonzero, then

a random such substitution will have nonzero outcome. So if we can show that p(RFEk
l (f̂))

is nonzero, then p is hit by RFEk
l .

Recall m∗ and z from the lemma statement, and consider the following process Φ. Given

an element of F̂, first multiply it by

∏i∈L(ai − τi)degxi
(m∗)

∏i∈K(ai − σi)degxi
(m∗) , (2.28)

then cancel any common factors in the numerator and denominator, and then substitute

σi ← ai for i ∈K

τi ← ai for i ∈ L

ζ ← z

. (2.29)

For any monomial m such that both

degxi
(m) ≥ degxi

(m∗) for all i ∈K, and

degxi
(m) ≤ degxi

(m∗) for all i ∈ L,
(2.30)

applying Φ to m(RFEk
l (f̂)) yields a defined result, which is just a scalar in F. (For other

monomials the result has a division by zero, but this will not matter.) If any of the inequal-

ities in (2.30) is strict, the result is zero. Otherwise, m = m∗ ⋅m′ for some monomial m′

supported on {xi ∶ i /∈K ∪L}, and the result is
⎡⎢⎢⎢⎢⎢⎢⎢⎣

∏
i∈K∪L

⎛
⎜⎜
⎝
ζ ⋅

∏
i′∈K∖{i}

ai − ai′

∏
i′∈L∖{i}

ai − ai′

⎞
⎟⎟
⎠

degxi
(m∗)⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅m′(xi ← f∗(ai)) (2.31)

where f∗(α) is f̂(α) with each occurrence of σi and τi substituted by the corresponding ai,

and ζ replaced by z. Note that m′ is supported on {xi ∶ i ∈ [n] ∖ (K ∪ L)}, and f∗(ai) is

well-defined for all i ∈ [n] ∖ (K ∪L). Note also that the first factor in (2.31) is nonzero and

independent of m′.
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Our hypothesis that m∗ is (K,L)-unminored in p implies that p is a linear combination

of monomials that satisfy (2.30). Thus applying Φ to p(RFEk
l (f̂)) has a defined output.

This output is precisely the first factor in (2.31) times the evaluation of ⟨m∗ ∣p⟩K∪L at

(f∗(ai) ∶ i ∈ [n] ∖ (K ∪L)). Meanwhile, (f∗(ai) ∶ i ∈ [n] ∖ (K ∪L)) is identically (2.26), and

we have hypothesized that ⟨m∗ ∣p⟩K∪L does not vanish there. It follows that applying Φ to

p(RFEk
l (f̂)) has a nonzero outcome. On the other hand, if p(RFEk

l (f̂)) were zero, applying

Φ would result in zero. It follows that p(RFEk
l (f̂)) ≠ 0, proving the lemma. ∎

2.4 Membership Test

In this section we develop the structured membership test for the vanishing ideal Van[RFEk
l ]

given in Theorem 2.4. We start by observing that it suffices to establish the following simpler

version of Theorem 2.4 for the case where p is homogeneous.

Lemma 2.18. A nonzero homogeneous multi-linear polynomial p in the variables x1, . . . , xn

belongs to Van[RFEk
l ] if and only if both of the following conditions hold:

1. The degree of p satisfies l < deg(p) < n − k.

2. For all disjoint subsets K,L ⊆ [n] with ∣K ∣ = k and ∣L∣ = l, ( ∂p
∂L
)∣

K←0 evaluates to zero

upon substituting for each i ∈ [n] ∖ (K ∪L)

xi ←
∏i′∈K(ai − ai′)
∏i′∈L(ai − ai′)

. (2.32)

To see why the general case reduces to the homogeneous case, we make use of the following

property, well-known in the context of SV. We include a proof for completeness.

Proposition 2.19. For any polynomial p, p vanishes at RFE if and only if every homoge-

neous part of p vanishes at RFE.

Proof of Proposition 2.19. For any seed f for RFE and ζ ∈ F, ζ ⋅ f is another seed for

RFE over the extended field F(ζ) of rational functions in ζ. Write p = ∑d pd as a sum of
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homogeneous polynomials, where pd has degree d. Since pd is homogeneous, pd(RFE(ζ ⋅f)) =

ζd ⋅ pd(RFE(f)). Thus for every f ,

p(RFE(ζ ⋅ f)) = ∑
d

pd(RFE(ζ ⋅ f)) = ∑
d

ζd ⋅ pd(RFE(f)) (2.33)

is a polynomial qf(ζ) ∈ F[ζ]. If, for all f and d, pd(RFE(f)) = 0, then qf is the zero

polynomial for all f , so p(RFE(f)) = qf(1) = 0 for all f . Conversely, if p(RFE(z ⋅ f)) =

qf(z) = 0 for all f and z ∈ F, then qf is the zero polynomial for all f , so pd(RFE(f)) = 0 for

all f and d. ∎

Here is how Theorem 2.4 follows from Lemma 2.18.

Proof of Theorem 2.4 from Lemma 2.18. Write p = ∑d pd as a sum of homogeneous parts.

By Proposition 2.19, p ∈ Van[RFEk
l ] if and only if every pd ∈ Van[RFEk

l ]. The degree

constraints in Lemma 2.18 show that condition 1 in Theorem 2.4 is necessary. Thus, in

order to establish Theorem 2.4, we only need to consider polynomials p for which pd = 0 for

d ≤ l and d ≥ n − k, and show that for any such p, all the evaluations (2.7) of p are zero if

and only if for all d, all the evaluations (2.32) of pd are zero.

FixK,L,Z as in the statements of Theorem 2.4 and Lemma 2.18, and let Y = [n]∖(K∪L).

Let λ ∈ FY be the point (2.32), and for z ∈ Z, let z ⋅ λ denote the point (2.7). We claim

( ∂p
∂L
)∣

K←0 vanishes at zλ for all z ∈ Z if and only if (∂pd

∂L
)∣

K←0 vanishes at λ for all d. Let ζ

be an indeterminate. We have

( ∂p
∂L
)∣

K←0
(ζλ) = ∑

l<d<n−k

(∂pd

∂L
)∣

K←0
(ζλ) = ∑

l<d<n−k

ζd−l (∂pd

∂L
)∣

K←0
(λ). (2.34)

This is a polynomial in ζ, say q(ζ). Evaluating q at ζ ← z coincides with evaluating ( ∂p
∂L
)∣

K←0

at zλ, while the coefficient of ζd−l coincides with evaluating (∂pd

∂L
)∣

K←0 at λ. q factors as ζ ⋅q′

where q′ has degree at most n − k − l − 2. Therefore q vanishes on any fixed set of at least

n− k − l − 1 nonzero field elements—in particular Z—if and only if it is the zero polynomial.

Theorem 2.4 follows. ∎
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It remains to prove Lemma 2.18. For this we once again make use of the Zoom Lemma

(Lemma 2.17). Note that for multi-linear polynomials and disjoint K and L, ( ∂p
∂L
)∣

K←0

coincides with the projection ⟨m∗ ∣p⟩K∪L where m∗ = ∏i∈L xi. Moreover, since p is multi-

linear, the condition that m∗ be (K,L)-unminored in p is automatically satisfied: the only

multi-linear monomial m supported in K ∪ L with degxi
(m) ≤ degxi

(m∗) for all i ∈ K and

degxi
(m) ≥ degxi

(m∗) for all i ∈ L is m = m∗. This leads to the following specialization of

the Zoom Lemma for multi-linear polynomials with disjoint K and L:

Lemma 2.20. Let K,L ⊆ [n] be disjoint, and let p ∈ F[x1, . . . , xn] be a multi-linear polyno-

mial. If ⟨∏i∈L xi ∣p⟩K∪L is nonzero at the point

xi ← z ⋅
∏

i′∈K
(ai − ai′)

∏
i′∈L
(ai − ai′)

∀i ∈ [n] ∖ (K ∪L), (2.35)

for some z ∈ F then RFEk
l hits p with k = ∣K ∣ and l = ∣L∣.

In proving Lemma 2.18, we will apply Lemma 2.20 only to homogeneous polynomials,

in which case we can take z = 1 without loss of generality. With that in mind, observe

that (2.32) in Lemma 2.18 coincides with the substitution (2.35) from Lemma 2.20. So

Lemma 2.18 amounts to saying that a homogeneous multi-linear polynomial p is hit by

RFEk
l if and only if its degree is too low, its degree is too high, or else there is a way to

apply Lemma 2.20 to prove that p is hit by RFEk
l .

Proof of Lemma 2.18. Suppose that deg(p) ≤ l. Set L to be the indices of the variables

appearing in some monomial with nonzero coefficient in p, and set K ← ∅. ⟨∏i∈L xi ∣p⟩K∪L

is a nonzero constant. Lemma 2.20 applies, concluding that RFE0
l , and hence RFEk

l , hits p.

Suppose now that deg(p) ≥ n−k. Set K to be the indices of the variables not appearing in

some monomial with nonzero coefficient in p, and set L← ∅. ⟨1 ∣p⟩K∪L is a single monomial,

namely the product of the variables indexed by [n] ∖ (K ∪ L). Lemma 2.20 applies. Since

none of the substitutions in (2.35) is zero, we conclude that RFEk
0, and hence RFEk

l , hits p.
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Now consider the case l < deg(p) < n−k. We start by writing p as a multi-linear element

of Van[RFEk
l ] plus a structured remainder term. It can be shown similarly to Lemma 2.12;

we include a proof below.

Claim 2.21. Let l < d < n − k. Every homogeneous degree-d multi-linear polynomial can

be written as p0 + r where p0 and r are degree-d homogeneous multi-linear polynomials,

p0 ∈ Van[RFEk
l ] and r is (d + k − l, l)-cored.

Let p0, r be the result of applying the claim to p. By the contrapositive of Lemma 2.20, it

holds that for every pair of disjoint subsets K,L ⊆ [n] of sizes k and l respectively, the pro-

jection ⟨∏i∈L xi ∣p0⟩K∪L evaluates to zero at (2.32). Since ⟨∏i∈L xi ∣p⟩K∪L = ⟨∏i∈L xi ∣p0⟩K∪L +

⟨∏i∈L xi ∣ r⟩K∪L, it follows that evaluating ⟨∏i∈L xi ∣p⟩K∪L at (2.32) has the same result as

evaluating ⟨∏i∈L xi ∣ r⟩K∪L. In light of this, Lemma 2.18 follows from the following claim,

proven below:

Claim 2.22. Let l < d < n − k. Let r be a nonzero degree-d homogeneous multi-linear

polynomial that is (d + k − l, l)-cored. There are disjoint sets K,L ⊆ [n] with ∣K ∣ = k and

∣L∣ = l so that ⟨∏i∈L xi ∣ r⟩K∪L is a single monomial.

Substituting (2.32) into a single monomial yields a nonzero value. ∎

We complete the argument by proving Claims 2.21 and 2.22. Claim 2.21 is similar to

Lemma 2.12, and is obtained using a variant of polynomial division suited to multi-linear

polynomials:

Proof of Claim 2.21. Let C ⊆ [n] have size d + k − l. Every multi-linear monomial m can

be uniquely factored as m0m1, where m0 and m1 are multi-linear monomials supported in

{xi ∶ i ∈ C} and {xi ∶ i /∈ C} respectively. Call m1 the non-core of m. We show the following:

Claim 2.23. Every multi-linear monomial with more than l variables in its non-core is

equivalent, modulo a multi-linear element of Van[RFEk
l ], to a linear combination of multi-

linear monomials that all have non-cores of lower degree.
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This lets us prove Claim 2.21 as follows. Claim 2.23 implies that, for any multi-linear

polynomial p, we may, without changing p modulo multi-linear elements of Van[RFEk
l ],

eliminate any monomial in p that violates the (d + k − l, l)-cored condition, while possibly

introducing multi-linear monomials with lower non-core degree. Thus we can systematically

eliminate all monomials that violate the cored condition by eliminating them in order of

decreasing non-core degree. After that, p is (d + k − l, l)-cored (with core {xi ∶ i ∈ C}), and

Claim 2.21 follows.

We now show Claim 2.23. Factor m =m0m1 as above, and suppose there are more than

l variables in m1. Let L index some l + 1 of the variables in m1, let m′ be their product,

and let m′′ satisfy m = m′m′′. There are at most d − l − 1 variables in m0; let K be any

k + 1 elements of C that index variables not in m0. Combined, L and K have size exactly

k + l + 2. Consider q = EVCk
l [L ∪K], where the variables in L ∪K are ordered arbitrarily.

By Proposition 2.10, m′ appears as a monomial in q; moreover, every other monomial in q

has lower non-core degree. It follows that every monomial in m′′ ⋅ q either is m, or else has

lower non-core degree. Moreover, every such monomial is multi-linear and is supported in

{xi ∶ i ∈K ∪L}, which is disjoint from the support of m′′. As q is in Van[RFEk
l ], rearranging

the equation m′′ ⋅ q ≡ 0 (mod Van[RFEk
l ]) to isolate m gives the desired equivalence. ∎

Claim 2.22 is similar to the proof of Lemma 2.14:

Proof of Claim 2.22. Let C ⊆ [n] be the indices of variables that form a core for r. Recall

that l < d < n−k. By shrinking C if need be, we can assume there is a multi-linear monomial

m with nonzero coefficient in r that involves exactly l variables not indexed by C. Let L

be the variables appearing in m that are not indexed by C. Now extend C to have size

d + k − l while remaining disjoint from L. There are precisely k variables indexed by C that

do not appear in m; let K be this set. Since r is multi-linear, homogeneous of degree d, and

(d + k − l, l)-cored with core C, there is exactly one monomial with nonzero coefficient in r

that is divisible by ∏i∈L xi and by no variable in K: it is precisely m. It follows that the
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projection ⟨∏i∈L xi ∣ r⟩K∪L is a single monomial. ∎

We conclude this section by detailing the connection between Theorem 2.4 and some

prior applications of the SV-generator.

Application to Read-Once Formulas We start with the theorem that SV1 hits read-

once formulas. The original proof in [MV18] goes by induction on the depth of F , showing

that F (SV1) is nonconstant whenever F is nonconstant, or, equivalently, that SV1 hits

F + c for every c ∈ F whenever F is nonconstant. The inductive step consists of two cases,

depending on whether the top gate is a multiplication gate or an addition gate. The case of

a multiplication gate follows from the general property that the product of a nonconstant

polynomial with any nonzero polynomial is nonconstant. The case of an addition gate, say

F = F1 + F2, involves a clever analysis that uses the variable-disjointness of F1 and F2 to

show that F1(SV1) and F2(SV1) cannot cancel each other out.

The case of an addition gate F = F1 +F2 alternately follows from Theorem 2.4 with k = 0

and l = 1 and the following two observations, each corresponding to one of the conditions

in Theorem 2.4. Both observations are immediate because of the variable-disjointness of F1

and F2:

1. If at least one of F1 of F2 has a homogeneous component of degree 1 or at least n, then

so does F .

2. If for L = {i} ⊆ [n] at least one of the derivatives ∂F1
∂xi

or ∂F2
∂xi

is nonzero at some point

(2.7), then the same goes for ∂F
∂xi

.

In particular, under the hypothesis that F1 + c is hit by RFE0
1 for all c ∈ F, F1 must violate

one of the conditions of Theorem 2.4 besides the one that requires F1 have no constant term.

Similarly for F2. By the above observations, any such a violation is inherited by F , and the

inductive step follows.
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As mentioned in the overview, Theorem 2.4 was originally proved from a perspective that

carries a geometric interpretation. The case of an addition gate in the above proof takes a

particularly clean form in that perspective, which we shall see now.

Recall from the overview that we can think of the variables as vertices, and multi-linear

monomials simplices made from those vertices. A multi-linear polynomial is a weighted

collection of such simplices with weights from F. In this view, Theorem 2.4 translates to the

following characterization: a weighted collection of simplices corresponds to a polynomial in

the vanishing ideal of RFE0
1 if and only if there are no simplices of zero, one, or all vertices,

and the remaining weights satisfy a certain system of linear equations. Crucially, for each

equation in the system, there is a vertex such that the equation reads only weights of the

simplices that contain that vertex. Meanwhile, the sum of two variable-disjoint polynomials

corresponds to taking the vertex-disjoint union of two weighted collections of simplices. It

follows directly that if either term in the sum violates a requirement besides the “no simplex

of zero vertices” requirement, then the sum violates the same requirement.

Zero-Substitutions and Partial Derivatives As mentioned in the overview, several

prior papers demonstrated the utility of partial derivatives and zero substitutions in the

context of derandomizing PIT using the SV-generator, especially for syntactically multi-

linear models. By judiciously choosing variables for those operations, these papers managed

to simplify p and reduce PIT for p to PIT for simpler instances, resulting in an efficient recur-

sive algorithm. Such recursive arguments can be naturally reformulated to use Theorem 2.4,

according to the following prototype.

Let C be a family of multi-linear polynomials, such as those computable with some

bounded complexity in some syntactic model. For the argument, we break up C = ⋃k,l Ck,l

such that for every k, l and p ∈ Ck,l, at least one of the following holds:

○ k = l = 0 and p is either zero or hit by RFE0
0.

○ k > 0 and there is a zero substitution such that the result is in Ck−1,l.
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○ l > 0 and there is a derivative such that the result is in Ck,l−1.

We also make the mild assumption that each Ck,l is closed under rescaling variables. With

these hypotheses in place, we establish the following claim through direct applications of

Theorem 2.4:

Claim 2.24. Under the above hypotheses, RFEk
l hits Ck,l for every k, l.

Proof. The proof is by induction on k and l. The base case is k = l = 0, where the claim is

immediate. When k > 0 or l > 0, our hypotheses are such that p either simplifies under a zero

substitution xi∗ ← 0 or a derivative ∂
∂xi∗

. We analyze each case separately. By condition 1 of

Theorem 2.4, we may assume that p only has homogeneous parts with degrees in the range

l + 1, . . . , n − k − 1.

○ If p simplifies under a zero substitution xi∗ ← 0, then let p′ ∈ Ck−1,l be the simplified

polynomial where moreover the remaining variables have been rescaled according to

xi ← xi ⋅ (ai∗ − ai). That is, write p as p = qxi∗ + r where q and r are polynomials that

do not depend on xi∗ , and set p′(. . . , xi, . . . ) ≐ r(. . . , xi ⋅ (ai∗ − ai), . . . ). By induction,

p′ is hit by RFEk−1
l . We apply Theorem 2.4 to p′ with respect to the set of variables

{x1, . . . , xi∗−1, xi∗+1, . . . , xn} and k replaced by k − 1. As p only has homogeneous parts

with degrees in the range l+1, . . . , n−k−1, so does p′, and condition 1 of Theorem 2.4

fails. By condition 2, there must be z ∈ Z and disjoint K,L ⊆ [n] ∖ {i} with ∣K ∣ = k − 1

and ∣L∣ = l so that substituting (2.7) yields a nonzero value. It follows directly that,

with respect to the same z, K ′ =K ∪{i}, and the same L, the substitution (2.7) yields

a nonzero value when applied to p.

○ If p simplifies under a partial derivative ∂
∂xi∗

, then a similar analysis works. Set p′ ∈

Ck,l−1 to be the simplification with variables rescaled according to xi ← xi/(ai∗ − ai).

That is, write p as p = qxi∗+r where q and r are polynomials that do not depend on xi∗ ,

and set p′(. . . , xi, . . . ) ≐ q(. . . , xi/(ai∗ −ai), . . . ). By induction, p′ is hit by RFEk
l−1. We
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apply Theorem 2.4 to p′ with respect to the set of variables {x1, . . . , xi∗−1, xi∗+1, . . . , xn}

and l replaced by l − 1. As p′ has homogeneous parts of degrees one less than p

does, condition 1 of Theorem 2.4 fails. By condition 2, there is z ∈ Z and disjoint

K,L ⊆ [n] ∖ {i} with ∣K ∣ = k and ∣L∣ = l − 1 so that substituting (2.7) yields a nonzero

value. It follows directly that, with respect to the same z, the same K, and L′ = L∪{i∗},

the substitution (2.7) yields a nonzero value when applied to p. ∎

2.5 Sparseness

By Proposition 2.10, the generators EVCk
l contain exactly (k+l+2

l+1 ) monomials. The following

result shows that no nonzero polynomial in the vanishing ideal of RFEk
l has fewer monomials.

Lemma 2.25. Suppose p ∈ F[x1, . . . , xn] is nonzero and has only s monomials with nonzero

coefficients. Then, for any k, l such that (k+l+2
l+1 ) > s, RFEk

l hits p.

The tactic here is to show that if p has too few monomials appearing in it, then there is

necessarily a way to instantiate the Zoom Lemma where ⟨m∗ ∣p⟩X is just a single monomial,

and therefore nonzero at one of the requisite points in the Zoom Lemma.

Proof. Let M be a set of monomials. For i ∈ [n], let ↓i be the operation mapping M to

its subset consisting of those monomials in which xi appears at its lowest degree. Let ↑i be

similar, except we select the monomials in which xi appears at its highest degree. We make

the following claim:

Claim 2.26. For any nonempty set of monomials with fewer than (k+l+2
l+1 ) monomials, there

is a sequence of ↓ and ↑ operations, with at most k ↓ operations and at most l ↑ operations,

such that the resulting set of monomials has exactly one element.

The claim implies the lemma as follows. Let M be the set of monomials with nonzero

coefficient in p. Apply the claim to M to get a sequence of ↓ and ↑ operations resulting in a

single monomial m0. Let K denote the set of variables used for the ↓ operations, L the set of
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variables used for the ↑ operations, and X = K ∪L. Let m∗ be the monomial supported on

{xi ∶ i ∈X} where each variable xi appears with same degree as in m0. By how the operators

are defined, every monomial m in M satisfies either

○ degxi
(m) > degxi

(m∗) for some i ∈K (m was removed by ↓xi
),

○ degxi
(m) < degxi

(m∗) for some i ∈ L (m was removed by ↑xi
), or

○ degxi
(m) = degxi

(m∗) for every i ∈K ∪L, in which case m =m0.

Therefore, m∗ is (K,L)-unminored in p and the Zoom Lemma applies. ⟨m∗ ∣p⟩X is a single

monomial, so it does not vanish at the required point. We conclude that p is hit by RFE∣K∣∣L∣ ,

and therefore by RFEk
l .

It remains to prove Claim 2.26. We do this by induction on ∣M ∣. In the base case,

∣M ∣ = 1, in which case the empty sequence suffices. Otherwise, ∣M ∣ > 1, in which case there

is a variable xi that appears with at least two different degrees in monomials in M . The

sets ↓i (M) and ↑i (M) are nonempty and disjoint. Since M has size less than (k+l+2
l+1 ) =

(k+l+1
l+1 ) + (

k+l+1
l
), either ↓i (M) has size less than (k+l+1

l+1 ), or ↑i (M) has size less than (k+l+1
l
).

Whichever is the case, the claim follows by applying the inductive hypothesis to it. ∎

2.6 Set-Multi-Linearity

Although the generators EVCk
l provided by Theorem 2.2 are not set-multi-linear, the van-

ishing ideal of RFEk
l does contain set-multi-linear polynomials. In this section, we construct

some of degree l + 1 with partition classes of size k + 2. In fact, we argue that all set-multi-

linear polynomials in Van[RFEk
l ] of degree l+1 are in the linear span of the ones we construct,

and conclude that no polynomial of degree l + 1 in Van[RFEk
l ] can be set-multi-linear with

partitions of size less than k + 2.

The construction is a modification of the one for EVCk
l .
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Definition 2.27. Let k, l ∈ N be parameters, and let X1, . . . ,Xl+1 ⊆ [(l + 1)(k + 2)] be l + 1

disjoint subsets of k + 2 variables each. The polynomial ESMVCk
l is an (l + 1) × (l + 1)

determinant where each entry is itself a (k + 2) × (k + 2) determinant. We index the rows in

the outer determinant by i = 1, . . . , l + 1, and the columns by d = l, . . . ,0. In each (i, d)-th

inner matrix, there is one row per j ∈Xi; it is

[ad
jxj ak

j ak−1
j ⋯ a1

j a0
j
] . (2.36)

◂

The name “ESMVC” is a shorthand for “Elementary Set-Multi-linear Vandermonde Cir-

culation”.

Similar to EVC, the precise instantiation of ESMVC requires one to pick an order for

the sets X1, . . . ,Xl+1 (up to even permutations) and an order within each set (again up to

even permutations). Changing any of those orders by an odd permutation causes the sign

of ESMVC to flip, but otherwise it is unchanged.

Example 2.28. When k = 1 and l = 2, ESMVC uses three sets of three variables each.

To help convey the structure of the determinant, we name the variable-sets {x1, x2, x3},

{y1, y2, y3}, and {z1, z2, z3}, and denote the abscissa of xi by ai, the abscissa of yi by bi, and
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the abscissa of zi by ci. With this notation, ESMVC is the following:
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

a2
1x1 a1

1 a0
1

a2
2x2 a1

2 a0
2

a2
3x3 a1

3 a0
3

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

a1
1x1 a1

1 a0
1

a1
2x2 a1

2 a0
2

a1
3x3 a1

3 a0
3

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

a0
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. (2.37)

◂

Proposition 2.29. For any k, l ≥ 0 and variable-index sets X1, . . . ,Xl+1 as in Defini-

tion 2.27, ESMVC is nonzero, homogeneous of degree l + 1, and set-multi-linear with re-

spect to the partition X1 ⊔ ⋯ ⊔ Xl+1. Moreover, every monomial consistent with that ap-

pears with a nonzero coefficient. ESMVC is skew-symmetric with respect to the order of the

sets X1, . . . ,Xl+1, and the choice of order within each set, in that any permutation thereof

changes the construction by merely multiplying by the sign of the permutation. When the

sets are ordered as X1, . . . ,Xl+1 and their members are ordered as Xi = {xi,1, . . . , xi,k+2} for

i = 1, . . . , l + 1, the coefficient of x1,1 ⋅ ⋯ ⋅ xl+1,1 is the product of Vandermonde determinants

RRRRRRRRRRRRRRRRRRRRRRR

al
1,1 ⋯ a0

1,1

⋮ ⋱ ⋮

al
l+1,1 ⋯ a0

l+1,1

RRRRRRRRRRRRRRRRRRRRRRR

⋅
l+1
∏
i=1

RRRRRRRRRRRRRRRRRRRRRRR

ak
i,2 ⋯ a0

i,2

⋮ ⋱ ⋮

ak
i,k+2 ⋯ a0

i,k+2

RRRRRRRRRRRRRRRRRRRRRRR

. (2.38)
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Proof. All assertions to be proved follow from elementary properties of determinants, that

Vandermonde determinants are nonzero unless they have duplicate rows, and the following

computation: the result of plugging 1 into xi,1 for i = 1, . . . , l + 1 and 0 into the remaining

variables is the product of Vandermonde matrices in the statement. ∎

The following theorem formalizes the role ESMVC plays among the degree-(l+1) elements

of Van[RFEk
l ].

Theorem 2.30. Let k, l ∈ N be parameters, and let X1, . . . ,Xl+1 be l + 1 disjoint sets of

variable-indices (of any size). Let ESMVCk
l (X1, . . . ,Xl+1) be the collection of polynomials

formed by picking a (k + 2)-subset of each of X1, . . . ,Xl+1 and instantiating ESMVCk
l with

respect to those sets. The linear span of ESMVCk
l (X1, . . . ,Xl+1) equals the set-multi-linear

polynomials in Van[RFEk
l ] with variable partition X1 ⊔⋯ ⊔Xl+1.

Theorem 2.30 immediately implies that there are no set-multi-linear polynomials of de-

gree l + 1 in Van[RFEk
l ] that have at least one partition Xi of size less than k + 2.

Proving Theorem 2.30 involves two steps, similar to Theorem 2.2:

1. Show that any instantiation of ESMVCk
l is in Van[RFEk

l ].

2. Show that, modulo instantiations of ESMVCk
l , every set-multi-linear polynomial with

variable partition X1, . . . ,Xl+1 takes a particular form such that RFEk
l hits every

nonzero polynomial of that form.

Step 1 is the following claim:

Claim 2.31. For every k, l ∈ N, and every choice of l + 1 disjoint sets X1, . . . ,Xl+1 of k + 2

variable-indices each, ESMVCk
l vanishes at RFEk

l .

Proof. Let g/h be a seed for RFEk
l . Let A be the (l + 1) × (l + 1) outer matrix defining

ESMVC, so that ESMVC ≐ det(A). Recall that the columns of A are indexed by d = l, . . . ,0.

Let h ∈ Fl+1 be the column vector where the row indexed by d is the coefficient of αd in
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h(α). We show that, after substituting RFEk
l (g/h), the matrix-vector product Ah ∈ Fl+1

yields the zero vector. It follows that evaluating ESMVC at RFEk
l (g/h) vanishes, as it is

the determinant of a singular matrix.

Fix i ∈ {1, . . . , l + 1}, and focus on the i-th coordinate of Ah. The (i, d) entry of A is a

determinant; let Bi,d be the inner matrix as in Definition 2.27. As d varies, only the first

column of Bi,d changes. Thus, by multi-linearity of the determinant, the i-th entry of Ah is

itself a determinant. Recalling that the rows of Bi,l, . . . ,Bi,0 are indexed by j ∈ Xi, the j-th

row of this determinant is

[h(aj)xj ak
j ⋯ a0

j
] . (2.39)

After substituting RFEk
l (g/h), it becomes

[g(aj) ak
j ⋯ a0

j
] . (2.40)

Since g is a degree-k polynomial, the columns are linearly dependent, so the determinant is

zero. ∎

For step 2, we need a suitable replacement for being (c, t)-cored. The following adaptation

of that to the set-multi-linear setting suffices.

Definition 2.32. Let X1 ⊔⋯ ⊔Xd ⊆ [n] be disjoint sets of variable-indices. For parameters

k, l ≥ 0, a polynomial p that is set-multi-linear with respect to the sets X1, . . . ,Xd is (c, t)-

multi-cored if there are subsets Ci ⊆Xi for i = 1, . . . , d, each of size at most c, such that every

monomial of p involves at most l variables not indexed by C1 ∪⋯ ∪Cd. ◂

Claim 2.33. Let k, l ≥ 0 be parameters, and let X1⊔⋯⊔Xl+1 ⊆ [n] be disjoint sets of variable-

indices. Let ESMVCk
l (X1, . . . ,Xl+1) be the collection of polynomials formed by picking a

(k + 2)-subset of each of X1, . . . ,Xl+1 and instantiating ESMVCk
l with respect to those sets.

Every set-multi-linear polynomial with variable partition X1, . . . ,Xl+1 equals a (k+1, l)-multi-

cored polynomial modulo the linear span of ESMVCk
l (X1, . . . ,Xl+1).
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Claim 2.33 follows from a monomial elimination argument as in Lemma 2.12. A formal

proof is omitted. From there, Theorem 2.30 follows from the following claim:

Claim 2.34. Let k, l ≥ 0 be parameters, and let X1 ⊔ ⋯ ⊔ Xl+1 ⊆ [n] be disjoint sets of

variable-indices. Every degree-(l + 1) polynomial that is set-multi-linear with respect to the

partition X1, . . . ,Xl+1 and that is (k + 1, l)-multi-cored is hit by RFEk
l .

Proof. Let p satisfy the hypotheses of the claim, and let C1, . . . ,Cl+1 be the sets witnessing the

(k + 1, l)-multi-core structure on p. Every monomial m factors as m0m1 with m0 supported

on {xi ∶ i ∈ C1 ∪ ⋯ ∪ Cl+1} and m1 supported on {xi ∶ i /∈ C1 ∪ ⋯ ∪ Cl+1}. Call m1 the non-

core of m. Fix m = m0m1 to be a monomial in p so that the non-core is maximal under

divisibility. The multi-core structure on p implies the non-core has at most l < l+1 variables,

so m0 contains at least one variable, xj. Let i such that xj ∈ Xi. Refactor m = xj ⋅m∗. Let

L index the variables in m∗ and set K = Ci ∖ {j}. The set-multi-linear structure implies

that ⟨m∗ ∣p⟩K∪L uses only variables indexed by Xi. By how we chose m and the multi-core

structure, it must use variables indexed by Ci. By how we chose K, it must use only xj. It

follows that ⟨m∗ ∣p⟩K∪L is just a nonzero scalar times xj. The Zoom Lemma applies, and we

conclude that p /∈ Van[RFEk
l ]. ∎

2.7 Read-Once Oblivious Arithmetic Branching

Programs

In this section we provide some background on ROABPs and establish Theorem 2.5.

2.7.1 Background

Algebraic branching programs are a syntactic model for algebraic computation. One forms

a directed graph with a designated source and sink. Each edge is labeled by a polynomial

that depends on at most one variable among x1, . . . , xn. The branching program computes
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a polynomial in F[x1, . . . , xn] by summing, over all source-to-sink paths, the product of the

labels on the edges of each path.

A special subclass of algebraic branching programs are read-once oblivious algebraic

branching programs (ROABPs). In this model, the vertices of the branching program are

organized in layers. The layers are totally ordered, and edges exist only from one layer to

the next. For each variable, there is at most one consecutive pair of layers between which

that variable appears, and for each pair of consecutive layers, there is at most one variable

that appears between them. In this way, every source-to-sink path reads each variable at

most once (the branching program is read-once), and the order in which the variables are

read is common to all paths (the branching program is oblivious). We can always assume

that the number of layers equals one plus the number of variables under consideration.

The number of vertices comprising a layer is called its width. The width of an ROABP

is the largest width of its layers. The minimum width of an ROABP computing a given

polynomial can be characterized in terms of the rank of coefficient matrices constructed as

follows.

Definition 2.35. Let U ⊔V = [n] be a partition of the variable indices, and let MU and MV

be the sets of monomials that are supported on variables indexed by U and V , respectively.

For any polynomial p ∈ F[x1, . . . , xn] define the matrix

CMatU,V (p) ∈ FMU×MV (2.41)

by setting the (mU ,mV ) entry to equal the coefficient of mUmV in p. ◂

CMatU,V (p) is formally an infinite matrix, but it has only finitely many nonzero entries.

When p has degree at most d, one can just as well truncate CMatU,V (p) to include only rows

and columns indexed by monomials of degree at most d.

Lemma 2.36 ([Nis91]). Let p ∈ F[x1, . . . , xn] be any polynomial. There is an ROABP of

width w computing p in the variable order x1, . . . , xn if and only if, for every s ∈ {0, . . . , n},
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with respect to the partition U = {1, . . . , s} and V = {s + 1, . . . , n}, we have

rank(CMatU,V (p)) ≤ w. (2.42)

Lemma 2.36 applies to other variable orders by renaming the variables.

We group the monomials in MU and MV by their degrees, and order the groups by

increasing degree. This induces a block structure on CMatU,V (p) with one block for every

choice of r, c ∈ N; the (r, c) block is the submatrix with rows indexed by degree-r monomials in

MU and columns indexed by degree-c monomials in MV . In the case where p is homogeneous,

the only nonzero blocks occur for r + c equal to the degree of p. In this case the rank of

CMatU,V (p) is the sum of the ranks of its blocks.

In general, the rank of CMatU,V (p) is at least the rank of CMatU,V (p↓), where p↓ denotes

the homogeneous part of p of the lowest degree, d↓. This follows because the submatrix of

CMatU,V (p) consisting of the rows and columns indexed by monomials of degree at most d↓

has a block structure that is triangular with the blocks of CMatU,V (p↓) on the hypotenuse.

The observation yields the following folklore consequence of Lemma 2.36.

Proposition 2.37. Let p ∈ F[x1, . . . , xn] be any nonzero polynomial, and let p↓ be the nonzero

homogeneous part of p of least degree. If p can be computed by an ROABP of width w, then

so can p↓.

2.7.2 Proof of Theorem 2.5

We now prove that SVl, or equivalently RFEl−1
l , hits every polynomial computed by an

ROABP of width less than 1 + (l/3) that contains a monomial of degree at most l + 1

(Theorem 2.5). The novelty lies in the special case where p is homogeneous of degree l + 1

and multi-linear.

Theorem 2.38. Let l ≥ 1 a parameter. For any nonzero, multi-linear, homogeneous poly-

nomial p of degree l + 1, if p is computable by an ROABP of width less than 1 + (l/3), then

RFEl−1
l hits p.
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Theorem 2.5 follows from Theorem 2.38 in a standard way. We provide a proof for

completeness.

Proof of Theorem 2.5 from Theorem 2.38. Fix p satisfying the hypotheses of Theorem 2.5.

We show that RFEl−1
l hits p; this implies SVl hits p because RFEl−1

l and SVl are equivalent

up to variable rescaling, and rescaling variables does not affect ROABP width. Let p↓ be the

nonzero homogeneous part of p of least degree. We show that RFEl−1
l hits p↓; this implies

RFEl−1
l hits p by Proposition 2.19.

Suppose first that p↓ contains a monomial m∗ depending on at most l variables. It is

well-known that SVl hits any such polynomial. Here is an argument based on the Zoom

Lemma. Set K = ∅ and L to be the set of variables appearing in m∗ The homogeneity of p↓

ensures that m∗ is (K,L)-unminored. Meanwhile, the (K ∪L)-projection of p onto m∗ is a

nonzero constant. By the Zoom Lemma, RFEl−1
l hits p↓.

Since deg(p↓) ≤ deg(p) ≤ l+1, the remaining possibility is that p↓ is multi-linear of degree

exactly l+1. By Proposition 2.37, p↓ is computable by an ROABP of width less than 1+(l/3).

That RFEl−1
l hits p↓ then follows from Theorem 2.38. ∎

In the remainder of this section we establish Theorem 2.38. Toward this end, fix l ≥ 1

and fix a variable order. Without loss of generality, the variable order is x1, . . . , xn. Our

strategy is to show that, for every p that is nonzero, multi-linear, and homogeneous of

degree l + 1, and that moreover belongs to the vanishing ideal of RFEl−1
l , there is some

s ∈ {0, . . . , n} so that, with respect to the partition U = {1, . . . , s}, V = {s + 1, . . . , n}, it holds

that rank(CMatU,V (p)) ≥ 1 + (l/3). This suffices to prove Theorem 2.38 by Lemma 2.36.

Let C ≐ CMatU,V (p). As p is multi-linear, we only need to consider monomials of the

form ∏i∈I xi for I ⊆ U as row indices, and monomials of the form ∏j∈J xj for J ⊆ V as column

indices. This allows us to index rows by subsets I ⊆ U and columns by subsets J ⊆ V .

For d ∈ {0, . . . , l + 1}, let Cd denote the (d, l + 1 − d) block of C, i.e., the submatrix of C

corresponding to the rows indexed by subsets I ⊆ U of size ∣I ∣ = d, and the columns indexed
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by subsets J ⊆ V of size ∣J ∣ = l + 1 − d. As p is homogeneous of degree l + 1, those are the

only blocks that can be nonzero, and rank(C) = ∑l+1
d=0 rank(Cd).

If many of the blocks Cd are nonzero, it immediately follows that rank(C) is high. Thus,

we can focus on cases where a lot of the blocks Cd are zero. In that case we’ll make use of

linear equations given by Lemma 2.18 and, more generally, the Zoom Lemma to argue that,

for an appropriate choice of the partition index s, rank(C) is high.

First consider Lemma 2.18 applied to p. Note that the evaluation of ( ∂p
∂L
)∣

K←0 at the

points (2.32) in condition 2 can be expressed as a linear function of the coefficients of p.

As the coefficients of p are the entries of C, Lemma 2.18 gives us a homogeneous linear

equation in the entries of C for each choice of K and L. Note also that, since ∣L∣ = l and p is

homogeneous of degree l + 1, the only monomials m that contribute to ( ∂p
∂L
)∣

K←0 are of the

form m = xi ⋅ ∏j∈L xj for some i ∈K ∪L. It follows that the only entries of C that appear in

the corresponding linear equation reside in the two adjacent blocks C∣L∩U ∣+1 (for i ∈ U) and

C∣L∩U ∣ (for i ∈ V ). As a consequence, we obtain the following:

Proposition 2.39. Let p ∈ Van[RFEl−1
l ] be multi-linear, and homogeneous of degree l + 1,

let U ⊔ V be a partition of [n], and let C ≐ CMatU,V (p). Suppose that for some d1, d2 ∈

{0, . . . , l+1} with d1 ≤ d2, Cd1 = 0 and Cd2 = 0. Then setting the blocks Cd with d < d1 or d > d2

to zero and keeping all the other blocks the same yields another polynomial p′ ∈ Van[RFEl−1
l ].

Proof. We only need to consider the case where p′ is nonzero. It suffices to show that

whenever p satisfies the two conditions in Lemma 2.18, then so does p′.

Condition 1 holds for p′ as it holds for p and p′ has the same degree as p.

Consider the equations in condition 2 of Lemma 2.18 for the membership of p′ to

Van[RFEl−1
l ]. Those that only involve block Cd with d ≤ d1 are met as the equations are

homogeneous and the blocks involved are all zero. The same holds for the equations that

only involve blocks Cd with d ≥ d2. The remaining equations only involve blocks Cd with

d ∈ {d1, . . . , d2}, on which p and p′ agree; since those equations hold for p, they also hold for

p′. ∎
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We will also make use of the following specific linear equations that follow from the Zoom

Lemma. For I ⊆ U and J ⊆ V we denote by C(I, J) the entry of C in the row indexed by

I (corresponding to the monomial ∏i∈I xi) and the column indexed by J (corresponding to

the monomial ∏j∈J xj).

Lemma 2.40. Let p ∈ Van[RFEl−1
l ] be multi-linear, and homogeneous of degree l + 1, let

U ⊔ V be a partition of [n], and let C ≐ CMatU,V (p). For every I ⊆ U and J ⊆ V with

∣I ∣ + ∣J ∣ = l, and for every i∗ ∈ I ∪ J ,

∑
i∈U∖I

C({i} ∪ I, J)
ai − ai∗

+ ∑
i∈V ∖J

C(I,{i} ∪ J)
ai − ai∗

= 0. (2.43)

Proof. Set L ≐ I ∪ J , K ≐ L∖ {i∗}, and m∗ ≐ ∏i∈L xi. As p is multi-linear, it follows that m∗

is (K,L)-unminored in p. Since p ∈ Van[RFEl−1
l ], the contrapositive of the Zoom Lemma

tells us that the (K ∪L)-projection of p onto m∗ vanishes at the point (2.26) for each z ∈ F.

We will use z = 1.

The multi-linear monomials m of degree l + 1 with nonzero (K ∪ L)-projection onto m∗

are of the form m =m∗ ⋅ xi for i ∈ [n] ∖ (K ∪L). Thus, we can write the (K ∪L)-projection

of p onto m∗ as

⟨m∗ ∣p⟩K∪L = ∑
i∈U∖I

C({i} ∪ I, J) ⋅ xi + ∑
i∈V ∖J

C(I,{i} ∪ J) ⋅ xi. (2.44)

Note that the component xi corresponding to i ∈ [n]∖(K ∪L) in the evaluation point (2.26)

for z = 1 equals 1/(ai − ai∗). Plugging the latter expression into our expression (2.44) for

⟨m∗ ∣p⟩K∪L, the above application of the Zoom Lemma yields equation (2.43). ∎

Recall that we can focus on the case where a lot of the blocks Cd are zero. The equations

given by Lemma 2.40 allow us to derive a good lower bound on rank(C) in case all the

extreme blocks (those with d close to zero or close to l + 1) all vanish.

Lemma 2.41. Let p ∈ Van[RFEl−1
l ] be nonzero, multi-linear, and homogeneous of degree

l + 1, let U ⊔ V be a partition of [n], and let C ≐ CMatU,V (p). If every monomial in p
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depends on at least d∗ variables indexed by U and at least d∗ variables indexed by V , then

rank(C) ≥ d∗ + 1.

Before proving Lemma 2.41, we first show how it allows us to prove Theorem 2.38.

Combining Lemma 2.41 with Proposition 2.39 and the simple rank bound based on the

number of nonzero blocks yields the following:

Claim 2.42. Suppose that, for some d ∈ [l], Cd−1 = 0 and Cd ≠ 0. Then rank(C) ≥ min(l −

2d + 3, d + 1).

Proof. We consider two cases.

Case 1: Cd′ ≠ 0 for each d′ ∈ {d + 1, . . . , l − d + 2}.

As Cd ≠ 0 also holds, C has at least l − 2d + 3 nonzero blocks, so rank(C) ≥ l − 2d + 3.

Case 2: There exists d′ ∈ {d + 1, . . . , l − d + 2} such that Cd′ = 0.

Consider the polynomial p′ that agrees with p on the blocks Cd′′ with d′′ ∈ {d, . . . , d′−1}

and has all its other blocks zero. By Proposition 2.39 with d1 = d − 1 and d2 = d′,

p′ ∈ Van[RFEl−1
l ]. The polynomial p′ is nonzero since its d-th block is nonzero. It is

homogeneous of degree l + 1 and multi-linear as all of its monomials also occur in the

homogeneous multi-linear polynomial p of degree l+1. By construction, every monomial

in p′ contains at least d variables indexed by U , and at least l+1−(d′−1) = l−d′+2 ≥ d

variables indexed by V . Thus, p′ satisfies the conditions of Theorem 2.38 with d∗ = d.

It follows that rank(C) ≥ rank(CMatU,V (p′)) ≥ d + 1.

As at least one of the two cases applies, we conclude that rank(C) ≥min(l−2d+3, d+1). ∎

The best lower bound on rank(C) that Claim 2.42 can possibly give is maxd∈[l]min(l −

2d+3, d+1). Note that the expression l−2d+3 is decreasing with d, whereas d+1 is increasing.

It follows that the maximum of min(l−2d+3, d+1) over all real values of d is achieved when

l − 2d + 3 = d + 1, i.e., for d = (l + 2)/3. For d = ⌊ l+2
3 ⌋, the increasing term d + 1 is binding,

so min(l − 2d + 3, d + 1) = d + 1 = 1 + ⌊ l+2
3 ⌋ ≥ 1 + (l/3). Thus, we obtain the lower bound of
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Theorem 2.38 provided we can realize the hypothesis of Claim 2.42 for d = ⌊ l+2
3 ⌋. For this we

use our flexibility in the choice of s to select the partition U = {1, . . . , s}, V = {s + 1, . . . , n}.

Claim 2.43. For every d ∈ [l], there is s ∈ {0, . . . , n} such that, with respect to the partition

U = {1, . . . , s}, V = {s + 1, . . . , n}, Cd−1 = 0 and Cd ≠ 0.

Proof. When s = 0, C0 contains all entries. As s increases by 1, some entries move from their

current block Cd′ to the next block Cd′+1. Finally, when s = n, Cl+1 contains all entries. It

follows that every nonzero entry moves from Cd−1 to Cd at some time. If we stop increasing

s right after the last nonzero entry of C moves out of Cd−1, we have that Cd−1 = 0 and

Cd ≠ 0. ∎

All that remains is to establish Lemma 2.41.

Proof of Lemma 2.41. The proof goes by induction on d∗. The base case is d∗ = 0, where

the lemma holds because the rank of a nonzero matrix is always at least 1. For the inductive

step, where d∗ ≥ 1, we make use of the single-variable projections of p. More precisely, for

i∗ ∈ [n], let pi∗ denote the {i∗}-projection of p onto xi∗ , i.e., the unique polynomial pi∗ such

that p = pi∗xi∗+r for some polynomial r, where neither pi∗ nor r depend on xi∗ . Note that for

any i∗, pi∗ is multi-linear and homogeneous of degree l, and every monomial in pi∗ depends

on at least d∗ − 1 variables indexed by U and at least d∗ − 1 variables indexed by V . In a

moment, we argue that pi∗ ∈ Van[RFEl−2
l−1]. Then we will show the following:

Claim 2.44. There exists i∗ ∈ [n] such that pi∗ ≠ 0 and

rank(CMatU,V (pi∗)) ≤ rank(CMatU,V (p)) − 1. (2.45)

Given an i∗ as in Claim 2.44, we conclude by induction that

rank(CMatU,V (p)) ≥ rank(CMatU,V (pi∗)) + 1 ≥ (d∗ − 1) + 1 + 1 = d∗ + 1. (2.46)

To see that pi∗ belongs to the vanishing ideal of RFEl−2
l−1, we use Lemma 2.18. Condition 1

of Lemma 2.18 is satisfied by pi∗ since it it is satisfied by p, and all of k, l, and the degree
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of pi∗ are one less. Given K and L as in condition 2 of Lemma 2.18, we have

(∂p
′

∂L
)∣

K←0
= ⟨xi∗ ⋅ ∏i∈L xi ∣p⟩K∪L∪{i∗} . (2.47)

Since p ∈ Van[RFEl−1
l ], the contrapositive of the Zoom Lemma applied to p with K ′ =

K ∪ {i∗}, L′ = L ∪ {i∗}, m∗ = ∏i∈L xi, and z = 1, says that (2.47) vanishes at (2.32). So

p′ ∈ Van[RFEl−2
l−1] by Lemma 2.18.

It remains to prove Claim 2.44. Let U ′ ⊆ U be the indices of variables xi such that p

depends on xi, and similarly define V ′ ⊆ V . Our objective is to find i∗ belonging to U ′ ∪ V ′

and so that (2.45) holds. We first consider the possibility that (2.45) fails for every i∗ ∈ V ′.

We show that this can only happen when ∣V ′∣ < ∣U ′∣. A symmetric argument shows that

if (2.45) fails for all i∗ ∈ U ′, then it must be that ∣U ′∣ > ∣V ′∣. Both inequalities cannot

simultaneously occur; this guarantees the existence of the desired i∗, and the lemma follows

as discussed above.

Suppose that (2.45) fails for each i∗ ∈ V ′. Observe that the column of CMatU,V (pi∗)

corresponding to a monomial m equals the column of CMatU,V (xi∗ ⋅pi∗) corresponding to the

monomial xi∗ ⋅m; all other columns of CMatU,V (xi∗ ⋅pi∗) are zero. The matrix CMatU,V (xi∗ ⋅

pi∗) can also be formed from CMatU,V (p) by zeroing out all the columns indexed by subsets

that do not contain i∗ (corresponding to multi-linear monomials not involving xi∗). The

failure of (2.45) implies that CMatU,V (pi∗) has the same rank as CMatU,V (p), which is to

say that the columns of CMatU,V (p) indexed by subsets that contain i∗ span all the columns

of CMatU,V (p). Going block by block, this implies that for every block Cd of C = CMatU,V (p),

the columns within Cd that are indexed by subsets containing i∗ span all the columns of Cd.

This goes for every i∗ ∈ V ′, since we are supposing that (2.45) fails for every such i∗.

Now let d be minimal such that Cd ≠ 0, i.e., such that p has a monomial depending on

exactly d variables indexed by U . Note that d ≥ d∗ ≥ 1, and Cd−1 = 0. The entries of Cd

appear in the linear equations (2.43) given in Lemma 2.40, either with entries from Cd−1

or from Cd+1. Since Cd−1 is zero, some of the equations involving Cd−1 and Cd simplify to

equations on Cd only. Namely, for every I ⊆ U with ∣I ∣ = d−1, every J ⊆ V with ∣J ∣ = l−(d−1),
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and every i∗ ∈ I ∪ J , equation (2.43) simplifies to

∑
i∈U∖I

Cd({i} ∪ I, J)
ai − ai∗

= 0. (2.48)

Note that for any fixed i ∈ U ∖ U ′, all entries of the form Cd({i} ∪ I, J) are zero. Thus,

we can restrict the range of i in (2.48) from U ∖ I to U ′ ∖ I:

∑
i∈U ′∖I

Cd({i} ∪ I, J)
ai − ai∗

= 0. (2.49)

Since Cd ≠ 0, for at least one fixed I not all entries of the form Cd({i} ∪ I, J) are zero.

Let I∗ be such an I, and let C∗d denote the submatrix of Cd consisting of all entries of the

form Cd({i}∪I∗, J). It follows that for every J ⊆ V with ∣J ∣ = l−(d−1) and every i∗ ∈ I∗∪J ,

it holds that

∑
i∈U ′∖I∗

C∗d ({i} ∪ I∗, J)
ai − ai∗

= 0. (2.50)

We make use of the equations (2.50) for i∗ ∈ V ′ where J ranges over all subsets of V of

size ∣J ∣ = l − (d − 1) that contain i∗. Note that, for fixed i∗, the coefficients 1
ai−ai∗

in (2.50)

are independent of the choice of J . We argued that the columns of Cd indexed by subsets J

that contain i∗, span all columns of Cd. The same holds for C∗d as C∗d is obtained from Cd

by removing rows. It follows that (2.50) holds for every subset J of V of size l − (d− 1) (not

just the ones containing i∗).

In particular, let J∗ ⊆ V with ∣J∗∣ = l−(d−1) be such that the column C∗d ({i}∪ I∗, J∗) is

nonzero (where i ranges over U ′∖ I∗). Such J∗ exists by the construction of I∗. The column

represents a nontrivial solution to the homogeneous system (2.50) of ∣V ′∣ linear equations

(one for each choice of i∗ ∈ V ′) in ∣U ′∖I∗∣ unknowns (one for each i ∈ U ′∖I∗). The coefficient

matrix [ 1
ai−ai∗

] is a Cauchy matrix, which is well-known to have full rank. It follows that the

number of equations is strictly less than the number of unknowns, so ∣V ′∣ < ∣U ′∖I∗∣ ≤ ∣U ′∣. ∎
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2.8 Alternating Algebra Representation

In this section we present in greater detail the alternating algebra-based representation of

polynomials suited to studying the vanishing ideal of RFE.

Per Proposition 2.19, RFE acts separately on the homogeneous parts of any polynomial,

so we focus on homogeneous polynomials. We use d as the parameter for degree. Nonzero

polynomials with d ≤ l are automatically outside the ideal, leaving the case of d = l + 1

as the simplest nontrivial case. Subsection 2.8.1 expands the informal discussion in the

introduction, describing the representation and characterization for this case where moreover

l = 1 and k = 0. With that in hand, Subsection 2.8.2 provides a brief introduction to

alternating algebra suited to our purpose, and then Subsection 2.8.3 formalizes the discussion

in Subsection 2.8.1 and extends it to the case of general k and l.

2.8.1 Basic case

Let {x1, . . . , xn} be a set of variables. For the purposes of this subsection, we fix the param-

eters k = 0, l = 1, and d = 2. That is to say, we are studying which degree-2 polynomials

belong to the vanishing ideal for RFE0
1. When d = l+1, polynomials that are not multi-linear

are automatically outside the ideal by an application of the Zoom Lemma (cf. the proof of

Theorem 2.5 from Theorem 2.38), so we focus on multi-linear polynomials.

In Theorem 2.2, we proved that the polynomials EVC0
1[i1, i2, i3] as i1, i2, i3 range over [n]

generate Van[RFE0
1]. As these generators are all degree-2 polynomials, a degree-2 polynomial

is in the ideal if and only if it is a linear combination of instantiations of EVC0
1. Consider

the generator when expanded as a linear combination of monomials:

EVC0
1[i1, i2, i3] =

RRRRRRRRRRRRRRR

ai1 1

ai2 1

RRRRRRRRRRRRRRR
xi1xi2 +

RRRRRRRRRRRRRRR

ai3 1

ai1 1

RRRRRRRRRRRRRRR
xi3xi1 +

RRRRRRRRRRRRRRR

ai2 1

ai3 1

RRRRRRRRRRRRRRR
xi2xi3 . (2.51)

We may represent it graphically by making a vertex for each variable, an undirected edge

for each monomial, and assigning to each edge a weight equal to the coefficient of that
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monomial:

i1

i2

i3

RRRRRRRRRRRRRRR

ai1 1

ai2 1

RRRRRRRRRRRRRRR

RRRRRRRRRRRRRRR

ai2 1

ai3 1

RRRRRRRRRRRRRRR

RRRRRRRRRRRRRRR

ai3 1

ai1 1

RRRRRRRRRRRRRRR

Observe that the coefficient of xi1xi2 has no dependence on ai3 . In particular, as i3 varies,

the coefficient of xi1xi2 in EVC0
1[i1, i2, i3] does not change. In any other instantiation of

EVC0
1 involving both i1 and i2, the coefficient is either the same, or else differs by a sign.

Similar holds with respect to all other monomials. This suggests to modify the graphical

representation by rescaling the weights on edges. To account for the signs, we orient the

edges. More precisely, for each edge {i1, i2}, we select an arbitrary orientation for it, say

i1 → i2, and then divide its coefficient by

RRRRRRRRRRRRRRR

ai1 1

ai2 1

RRRRRRRRRRRRRRR
. With these changes, EVC0

1[i1, i2, i3] may

be drawn in any of the following ways (among others):

i1

i2

i3

1 1

1
i1

i2

i3

−1 1

1
i1

i2

i3

−1 −1

1
i1

i2

i3

−1 −1

−1

In general, for any degree-2 homogeneous multi-linear polynomial p ∈ F[x1, . . . , xn], we can

represent it in a similar way: create a vertex i for each variable xi, and create and arbitrarily

orient an edge for each monomial. For each edge i1 → i2, set its coefficient to be the

coefficient of xi1xi2 in p divided by

RRRRRRRRRRRRRRR

ai1 1

ai2 1

RRRRRRRRRRRRRRR
. Note this graphical representation is linear in the

polynomial: adding or rescaling polynomials coincides with adding or rescaling coefficients

on the edges. Moreover, the representation determines the polynomial: simply undo the

scaling on each edge, and read off a linear combination of monomials.
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Observe that in the graphical representation of EVC0
1[i1, i2, i3], at every vertex, the sum

of the coefficients on edges oriented out of that vertex equals the sum of the coefficients on

edges oriented in to that vertex. This is true no matter how we orient the edges. Indeed, we

can interpret EVC0
1[i1, i2, i3] as a circulation in which one unit of flow travels around a simple

3-cycle i1 → i2 → i3 → i1. The coefficient on an oriented edge i1 → i2 measures how much

flow is traveling in the direction i1 → i2, with negatives representing flow in the opposite

direction. That the sum of coefficients on outgoing edges equals the sum of coefficients on

incoming edges means that this circulation satisfies a conservation law at every vertex: the

total flow in equals the total flow out.

Since every degree-2 polynomial in Van[RFE0
1] is a linear combinations of instantiations

of EVC0
1, each is represented by a circulation that also satisfies the conservation law. Thus

conservation is a necessary condition for membership in Van[RFE0
1]. Not every polynomial

satisfies this condition: consider, for example, any lone monomial, or a sum of variable-

disjoint monomials.

Indeed, conservation is sufficient for ideal membership as well. It is folklore that every

circulation that satisfies conservation can be decomposed as a linear combination of unit

circulations around simple cycles. Unit circulations around simple cycles can be decomposed

as a sum of unit circulations on 3-cycles; this is depicted for a 5-cycle below, where each

edge indicates unit flow:

1

2
3

4
5

= 1

2
3

4
5

= 1

2
3

4
5

(2.52)

The basis of the first equality above is that a unit flow i1 → i2 cancels with a unit flow i2 → i1.

In summary, a homogeneous degree-2 multi-linear polynomial is in Van[RFE0
1] if and

only if, when represented as a circulation, it satisfies the conservation law. This is the

representation and ideal membership characterization for such polynomials in the special
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case k = 0, l = 1, and d = 2.

2.8.2 Alternating algebra

In order to generalize Subsection 2.8.1, we need to be able to discuss higher-dimensional

analogues of “flow” and “circulation”, as well as appropriately-generalized notions of “con-

servation”. Suited to this purpose is the language of alternating algebra. Alternating algebra

was introduced in the 1800s by Hermann Grassmann [Gra44; GK00], and is the formal-

ism underlying differential geometry and its applications to physics. We give only a brief

introduction to alternating algebra here, tailored heavily toward our purposes.

For each variable xi, we create for it with a fresh vertex, labeled i. The alternating

algebra provides a multiplication, denoted ∧, that can be thought of as a constructor to

make oriented simplices out of these vertices. For example, the ∧-product of i1 with i2,

written i1∧i2, encodes the simplex with vertices i1 and i2. When i1 = i2, i1∧i2 is defined to

be zero. ∧-multiplication is associative. Rather than being commutative, the ∧-product is

anticommutative in the sense that i1∧i2 = −i2∧i1. In this way the order of the vertices in the

product encodes an orientation. There are only ever two orientations: in a larger product

such as i1∧i2∧i3, we have
i1∧i2∧i3 = −i1∧i3∧i2

= i3∧i1∧i2 = −i3∧i2∧i1

= i2∧i3∧i1 = −i2∧i1∧i3.

(2.53)

In general, permuting the vertices in a ∧-product by an even permutation has no effect, while

permuting by an odd permutation flips the sign. Any ∧-product that uses the same vertex

more than once is zero. The alternating algebra consists of all formal linear combinations

of ∧-products of vertices formed in the preceding way. This includes as a distinct simplex

the empty product, denoted 1, which is an identity for ∧. The ∧-product distributes over

addition.

To connect this with Subsection 2.8.1, recall the graphical depiction of EVC0
1[i1, i2, i3]:
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i1

i2

i3

1 1

1

Adopting the convention that an arrow i1 → i2 is i1∧i2 (and so an arrow i2 → i1 is i2∧i1 =

−i1∧i2), we can alternatively express the above as

i1∧i2 + i2∧i3 + i3∧i1. (2.54)

In general, the graphical representation of a degree-2 multi-linear polynomial is some linear

combination of such 2-vertex simplices. When we go to higher-degree polynomials, we will

use simplices with more vertices.

To express conservation, we use boundary maps. Denoted by ∂w where w ∶ [n] → F is

any function, they are linear maps that send each simplex to a linear combination of its

boundary faces (and the empty simplex to zero) according to the following formula:

∂w(i1∧⋯∧ir) =
r

∑
j=1
(−1)1+jw(ij) i1∧⋯∧ij−1∧ij+1∧⋯∧ir. (2.55)

The map ∂w extends linearly to all elements of the alternating algebra. In the simplest case,

w is the constant-1 function. In this case, the boundary of some 2-vertex simplex is given

by

∂w(i1∧i2) = i1 − i2. (2.56)

In particular, i1∧i2 contributes +1 toward i1 and −1 toward i2. This coincides with the

contribution of the edge i1 → i2 toward the net flow out of the vertices i1 and i2. In exactly

this way, conservation is identified with having a vanishing boundary. Different choices of w

give rise to different boundary operators.

As we generalize parameters, it will become important to iterate boundary operators. The

first fact here is that taking the same boundary multiple times always vanishes. That is, for

any w, ∂w ○ ∂w = 0. The second is that for any w,w′ and β, β′ ∈ F, ∂βw+β′w′ = β∂w + β′∂w′ ,
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which is to say that the boundary operators themselves are linear in w. It follows from

these that, for any w,w′, ∂w ○ ∂w′ = −∂w′ ○ ∂w. This means that the boundary operators

themselves behave like an alternating algebra, with ○ as the multiplication rather than ∧.

For any w1, . . . ,wk, write ω = w1∧⋯∧wk, and define ∂ω = ∂wk
○ ⋯ ○ ∂w1 . That is, w1∧⋯∧wk

means apply ∂w1 , then ∂w2 , and so on, up to ∂wk
. We extend this by linearity to any linear

combination of such constructions. The result is well-defined.

2.8.3 General case

With the formalism of alternating algebra in hand, we turn now to formalizing and gener-

alizing the representation that we introduced in Subsection 2.8.1, henceforth the simplicial

representation. The parameters k, l ∈ N may be arbitrary; however, we will continue to

restrict to polynomials of degree d = l + 1. As before, since d = l + 1, polynomials of degree

d that are not multi-linear are automatically outside Van[RFEk
l ], so we also restrict our

attention to multi-linear polynomials.

Let {x1, . . . , xn} be the set of variables, and correspond each variable xi with a fresh

vertex, labeled i. Degree-(l + 1) multi-linear polynomials are represented by linear combi-

nations of (l + 1)-vertex simplices, and we will use simplices of other dimensions to study

membership in Van[RFEk
l ]. Together, all live in the following spaces:

Definition 2.45 (Space of oriented simplices). For each t ∈ N, we let

Σt ≐ span(i1∧⋯∧it ∶ i1, . . . , it ∈ [n]) (2.57)

denote the space of linear combinations of t-vertex oriented simplices. ◂

To emphasize, the t in Σt counts the number of vertices in the simplices; this is one more

than the usual notion of dimension of a simplex.
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The representation makes use of certain Vandermonde determinants. We abbreviate

them using the following notation:

∣i1∧⋯∧it∣a ≐

RRRRRRRRRRRRRRRRRRRRRRR

at−1
i1
⋯ 1

⋮ ⋮

at−1
it
⋯ 1

RRRRRRRRRRRRRRRRRRRRRRR

. (2.58)

Note that the determinants depend on the abscissas ai that underlie RFE.

Algebraically, the representation of a polynomial in this representation can be concisely

understood as follows. For distinct i1, . . . , il+1 ∈ [n], the monomial xi1⋯xil+1 is represented

as the following element of Σl+1:
i1∧⋯∧il+1

∣i1∧⋯∧il+1∣a
. (2.59)

Note that the above is indeed symmetric in the order of the variable indices: exchanging

any two indices causes both the numerator and denominator to change signs, to a net effect

of no change. Formally, we define the following “decoder map” that maps a simplicial

representation to the polynomial it represents:

Definition 2.46 (Representation). Let ρ ∶ Σl+1 → F[x1, . . . , xn] be the linear map extend-

ing

i1∧⋯∧il+1 ↦ ∣i1∧⋯∧il+1∣a ⋅ xi1⋯xil+1 . (2.60)

◂

ρ is a vector space isomorphism between Σl+1 and the space of homogeneous degree-(l+1)

multi-linear polynomials.

Reasoning about membership in Van[RFE] makes use of boundary operators ⊕n
t=0 Σt →

⊕n
t=0 Σt. Boundary operators are parametrized by functions w ∶ [n] → F. For our purposes,

it is useful to view these functions as univariate polynomials in the sense that a univariate

polynomial w ∈ F[α] determines the function i↦ w(ai).
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Definition 2.47 (Boundary operator). For any univariate polynomial w ∈ F[α], the

boundary operator with weight function w, ∂w ∶ ⊕n
t=0 Σt →⊕n

t=0 Σt, is defined to be the linear

map extending

i1∧⋯∧it ↦
t

∑
j=1
(−1)1+jw(aij

) (i1∧⋯∧ij−1∧ij+1∧⋯∧it). (2.61)

◂

For each t ≥ 1, ∂w(Σt) ⊆ Σt−1, while ∂w(Σ0) = {0}.

One may restrict attention to w with degree less than n, since any two polynomials

that are the same as functions {ai ∶ i ∈ [n]} → F determine the same boundary operator. In

general, we will be interested in the boundaries that are weighted by low-degree polynomials.

When w has degree δ or less, we say that ∂w is a degree-δ boundary.

As discussed in Subsection 2.8.2, boundary operators under composition behave like an

alternating algebra. In this way, the expression ∂ω for some ω = w1∧⋯∧wr is defined to be

∂wr ○ ⋯ ○ ∂w1 .

We can now describe the simplicial representation of EVC:

Lemma 2.48. For any k, l ∈ N and i1, . . . , ik+l+2 ∈ [n],

EVCk
l [i1, . . . , ik+l+2] = (−1)(k+1)(l+1) ⋅ ρ ( ∂αk ∧⋯∧α0 (i1∧⋯∧ik+l+2) ) . (2.62)

That is, EVCk
l is the polynomial formed (up to sign) from a given (l + 1)-vertex simplex

by iteratively applying to it the k + 1 boundaries weighted by α0, α1, . . . , αk. The sign factor

in (2.62) can be removed if one rearranges (2.4) so that the first l + 1 columns come after

the last k + 1 columns.

Every degree-(l+1) polynomial in Van[RFEk
l ] is a linear combination of instantiations of

EVCk
l , which is to say that it is in the image of Σk+l+2 through ρ ○ ∂αk ∧⋯∧α0 . Equivalently,

for any degree-(l + 1) homogeneous multi-linear polynomial p ∈ F[x1, . . . , xn], p belongs to

Van[RFEk
l ] if and only if ρ−1(p) is in the set ∂αk ∧⋯∧α0(Σl+k+2). The following relationship

is an instance of a general phenomenon in alternating algebra:

Im (∂αk ∧⋯∧α0) =
k

⋂
r=0

Ker (∂αr) . (2.63)
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This leads to the following characterization of the degree-(l + 1) elements of Van[RFEk
l ]:

Theorem 2.49. Let k, l ∈ N. For any homogeneous multi-linear polynomial p ∈ F[x1, . . . , xn]

of degree l + 1, p(RFEk
l ) = 0 if and only if

∂w( ρ−1(p) ) = 0 (2.64)

for every w ∈ F[α] of degree at most k.

In other words, for any degree-(l + 1) homogeneous multi-linear polynomial, it vanishes

at RFEk
l if and only if in the simplicial representation it satisfies conservation with respect

to all degree-k boundaries. This is the representation and ideal membership characterization

for such polynomials for general k and l.

Theorem 2.49 is ultimately a reformulation of Theorem 2.4 (more precisely, Lemma 2.18)

in the specific case of homogeneous, multi-linear polynomials of degree l+1. For sets K and

L as in Lemma 2.18, let w(α) ≐ ∏y∈K(α−ay) and let i1, . . . , il enumerate L. The coefficient of

i1∧⋯∧il in ∂w(ρ−1(p)), multiplied by ∣i1∧⋯∧il∣a, precisely equals the evaluation of ( ∂p
∂K
)∣

L←0

at (2.32).

Theorem 2.49 extends to higher degrees as follows. Let d > l, and let F[x1, . . . , xn]=d be the

space of degree-d homogeneous polynomials. For each monomial xi1⋯xid
∈ F[x1, . . . , xn]=d

with distinct i1, . . . , id, we represent it as i1∧⋯∧id/ ∣i1∧⋯∧id∣a. This means extending our

decoder map ρ to Σd:

ρ ∶ Σd → F[x1, . . . , xn]=d

i1∧⋯∧id ↦ ∣i1∧⋯∧id∣a ⋅ xi1⋯xid

. (2.65)

ρ is a vector space isomorphism between Σd and the multi-linear subspace of F[x1, . . . , xn]=d.

The following theorem characterizes Van[RFEk
l ] within this representation. It is likewise

ultimately a reformulation of Theorem 2.4 (or Lemma 2.18 to be precise).
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Theorem 2.50. Let k, l ∈ N and ∆ ≥ 1. For any homogeneous multi-linear polynomial

p ∈ F[x1, . . . , xn] of degree l +∆, p(RFEk
l ) = 0 if and only if

∂w1∧⋯∧w∆( ρ−1(p) ) = 0 (2.66)

for every w1, . . . ,w∆ ∈ F[α] of degree at most k +∆ − 1.

Theorems 2.49 and 2.50 do well for understanding the multi-linear elements of the van-

ishing ideal. For non-multi-linear elements, one may do the following. Let Σ̂t be Σt except

that coefficients may be arbitrary polynomials in F[x1, . . . , xn] rather than just scalars in F.

The decoder map ρ and boundary maps ∂w carry over to Σ̂t directly, though now ρ is no

longer injective. The following variation of Theorem 2.49 characterizes ideal membership for

arbitrary polynomials.

Theorem 2.51. Let k, l ∈ N. For any polynomial p ∈ F[x1, . . . , xn], p(RFEk
l ) = 0 if and only

if there exists η ∈ Σ̂l+1 with ρ(η) = p such that, for every w ∈ F[α] of degree at most k,

∂w(η) = 0. (2.67)

While Theorem 2.51 applies to a broader class of polynomials, it has the drawback

that representing polynomials with Σ̂l+1 is too redundant. Specifically, whenever p has a

representation in Σ̂l+1, there are many η ∈ Σ̂l+1 that represent p, and most of them do not

satisfy the boundary conditions, even when p belongs to the vanishing ideal. This weakens

the utility of the characterization. Theorems 2.49 and 2.50 yield straightforward tests: given

p, form the unique η with ρ(η) = p, and then check whether the boundary conditions hold

for η. Theorem 2.51, on the other hand, leaves η comparatively underspecified.
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Chapter 3

Circuit Minimization

3.1 Overview

Finding a circuit of minimum size that computes a given Boolean function constitutes the

overarching goal in nonuniform complexity theory. It defines an interesting computational

problem in its own right, the complexity of which depends on the way the Boolean function

is specified. A generic and natural, albeit verbose, way to specify a Boolean function is via

its truth table. The corresponding decision problem is known as the Minimum Circuit Size

Problem (MCSP): Given a truth table and a threshold θ, does there exist a Boolean circuit of

size at most θ that computes the Boolean function specified by the truth table? The interest

in MCSP dates back to the dawn of theoretical computer science [Tra84]. It continues today

partly due to the fundamental nature of the problem, and partly because of the work on

natural proofs and the connections between pseudorandomness and computational hardness.

A closely related problem from Kolmogorov complexity theory is the Minimum KT Prob-

lem (MKTP), which deals with compression in the form of efficient programs instead of

circuits. Rather than asking if the input has a small circuit when interpreted as the truth

table of a Boolean function, MKTP asks if the input has a small program that produces

each individual bit of the input quickly. To be more specific, let us fix a universal Turing
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machine U . We consider descriptions of the input string x in the form of a program d such

that, for every bit position i, U on input d and i outputs the i-th bit of x in T steps. The

KT cost of such a description is defined as ∣d∣ + T , i.e., the bit-length of the program plus

the running time. The KT complexity of x, denoted KT(x), is the minimum KT cost of a

description of x. KT(x) is polynomially related to the circuit complexity of x when viewed

as a truth table (see Section 3.2.1 for a more formal treatment). On input a string x and an

integer θ, MKTP asks whether KT(x) ≤ θ.

Both MCSP and MKTP are in NP but are not known to be in P or NP-complete.

As such, they are two prominent candidates for NP-intermediate status. Others include

factoring integers, discrete log over prime fields, graph isomorphism (GI), and a number of

similar isomorphism problems.

Whereas NP-complete problems all reduce one to another, even under fairly simple re-

ductions, less is known about the relative difficulty of presumed NP-intermediate problems.

Regarding MCSP and MKTP, despite their apparent similarity, it is not known whether one

reduces to the other. Factoring integers and discrete log over prime fields are known to reduce

to both MCSP and MKTP under randomized reductions with zero-sided error [ABK+06;

Rud17]. Recently, Allender and Das [AD17] showed that GI and all of SZK (Statistical Zero

Knowledge) reduce to both under randomized reductions with bounded error.

Those reductions and, prior to this work, all reductions of supposedly-intractable prob-

lems to MCSP / MKTP, proceed along the same well-trodden path. Namely, MCSP /

MKTP is used as an efficient statistical test to distinguish random distributions from pseu-

dorandom distributions, where the pseudorandom distribution arises from a hardness-based

pseudorandom generator construction. In particular, [KC00] employs the construction based

on the hardness of factoring Blum integers, [ABK+06; AD17; AKR+10; Rud17] use the con-

struction from [HIL+99] based on the existence of one-way functions, and [ABK+06; CIK+16]

make use of the Nisan-Wigderson construction [NW94]. The property that MCSP / MKTP

breaks the construction implies that the underlying hardness assumption fails relative to
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MCSP / MKTP, and thus that the supposedly hard problem reduces to MCSP / MKTP.

Contributions The main conceptual contribution in this chapter is a fundamentally dif-

ferent way of constructing reductions to MKTP based on a novel use of known interactive

proof systems. The approach applies to GI and a broad class of isomorphism problems. A

common framework for those isomorphism problems is another conceptual contribution. In

terms of results, the new approach allows us to eliminate the errors in the known reductions

from GI to MKTP, and more generally to establish zero-sided error randomized reductions

to MKTP from many isomorphism problems within the framework. These include Linear

Code Equivalence, Matrix Subspace Conjugacy, and Permutation Group Conjugacy (see Sec-

tion 3.6 for the definitions). Many other isomorphism problems reduce to Matrix Subspace

Conjugacy [GQ21], so the result extends automatically to all those problems as well. The

technical contributions mainly consist of encodings of isomorphism classes that are efficiently

decodable and achieve compression that is at or near the information-theoretic optimum.

The techniques remain of interest even in light of the quasi-polynomial-time algorithm

for GI [Bab16]. For one, GI is still not known to be in P, and Group Isomorphism stands

as a significant obstacle to this (as stated at the end of [Bab16]). More importantly, the

techniques also apply to the other isomorphism problems mentioned above, for which the

current best algorithms are still exponential.

In addition, there is some evidence that our approach for constructing reductions to

MKTP differs in an important way from the existing ones. Specifically, the existing approach

can only yield zero-sided error reductions to MKTP from problems that are in NP ∩ coNP,

a class that neither GI nor any of the other isomorphism problems mentioned above are

known to reside in. This is because the underlying hardness assumptions are fundamen-

tally average-case,1 which implies that the reduction can have both false positives and false

negatives. For example, in the papers employing the construction from [HIL+99], MKTP

1In some settings worst-case to average-case reductions are known, but these reductions are themselves
randomized with two-sided error.
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is used in a subroutine to invert a polynomial-time-computable function (see Lemma 3.3 in

Section 3.2.1), and the subroutine may fail to find an inverse. Given a reliable but imper-

fect subroutine, the traditional way to eliminate false positives is to use the subroutine for

constructing an efficiently verifiable membership witness, and only accept after verifying its

validity. As such, the existence of a traditional reduction without false positives from a lan-

guage L to MKTP implies that L ∈ NP. Similarly, a traditional reduction from L to MKTP

without false negatives is only possible if L ∈ coNP, and zero-sided error is only possible if

L ∈ NP ∩ coNP.

Main Idea Instead of using the oracle for MKTP in the construction of a candidate witness

and then verifying the validity of the candidate without the oracle, the oracle is used in the

verification process. This obviates the need for the language L to be in NP ∩ coNP in the

case of reductions with zero-sided error.

Let us see how to implement this idea for L = GI. Recall that an instance of GI consists

of a pair (G0,G1) of graphs on the vertex set [n], and the question is whether G0 ≡ G1, i.e.,

whether there exists a permutation π ∈ Sn such that G1 = π(G0), where π(G0) denotes the

result of applying the permutation π to the vertices of G0. In order to develop a zero-sided

error algorithm for GI, it suffices to develop one without false negatives. This is because the

false positives can subsequently be eliminated using the known search-to-decision reduction

for GI [KST93].

The crux for obtaining a reduction without false negatives from GI to MKTP is a witness

system for the complement GI inspired by the well-known two-round interactive proof system

for GI [GMW91]. Consider the distribution RG(π) ≐ π(G) where π ∈ Sn is chosen uniformly

at random. By the Orbit–Stabilizer Theorem, for any fixed G, RG is uniform over a set of

size N ≐ n!/∣Aut(G)∣ and thus has entropy s = log(N), where Aut(G) ≐ {π ∈ Sn ∶ π(G) =

G} denotes the set of automorphisms of G. For ease of exposition, let us assume that

∣Aut(G0)∣ = ∣Aut(G1)∣ (which is actually the hardest case for GI), so both RG0 and RG1 have
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the same entropy s. Consider picking r ∈ {0,1} uniformly at random, and setting G = Gr.

If (G0,G1) ∈ GI, the distributions RG0 , RG1 , and RG are all identical, and therefore RG also

has entropy s. On the other hand, if (G0,G1) /∈ GI, the entropy of RG equals s + 1. The

extra bit of information corresponds to the fact that in the nonisomorphic case each sample

of RG reveals the value of r that was used, whereas that bit gets lost in the reduction in the

isomorphic case.

The difference in entropy suggests that a typical sample of RG can be compressed more

in the isomorphic case than in the nonisomorphic case. If we can compute some threshold

such that KT(RG) never exceeds the threshold in the isomorphic case, and exceeds it with

non-negligible probability in the nonisomorphic case, we have the witness system for GI that

we aimed for: Take a sample from RG, and use the oracle for MKTP to check that it cannot

be compressed at or below the threshold. The entropy difference of 1 may be too small to

discern, but we can amplify the difference by taking multiple samples and concatenating

them. Thus, we end up with a randomized mapping reduction of the following form, where

t denotes the number of samples and θ the threshold:

Pick r ≐ r1 . . . rt ∈ {0,1}t and πi ∈ Sn for i ∈ [t], uniformly at random.

Output (y, θ) where y ≐ y1 . . . yt and yi ≐ πi(Gri
).

(3.1)

We need to analyze how to set the threshold θ and argue correctness for a value of t that

is polynomially bounded. In order to do so, let us first consider the case where the graphs G0

and G1 are rigid, i.e., they have no nontrivial automorphisms, or equivalently, s = log(n!).

○ If G0 /≡ G1, the string y contains all of the information about the random string r

and the t random permutations π1, . . . , πt, which amounts to ts + t = t(s + 1) bits

of information. This implies that y has KT-complexity close to t(s + 1) with high

probability.

○ If G0 ≡ G1, then we can efficiently produce each bit of y from the adjacency matrix

representation of G0 (n2 bits) and the function table of permutations τi ∈ Sn (for i ∈ [t])
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such that yi ≐ πi(Gri
) = τi(G0). Moreover, the set of all permutations Sn allows an

efficiently decodable indexing, i.e., there exists an efficient algorithm that takes an

index k ∈ [n!] and outputs the function table of the k-th permutation in Sn according

to some ordering. An example of such an indexing is the Lehmer code (see, e.g.,

[Knu98, pp. 12-13] for specifics). This shows that

KT(y) ≤ t⌈s⌉ + (n + log(t))c (3.2)

for some constant c, where the first term represents the cost of the t indices of ⌈s⌉ bits

each, and the second term represents the cost of the n2 bits for the adjacency matrix

of G0 and the polynomial running time of the decoding process.

If we ignore the difference between s and ⌈s⌉, the right-hand side of (3.2) becomes ts + nc,

which is closer to ts than to t(s+ 1) for t any sufficiently large polynomial in n, say t = nc+1.

Thus, setting θ halfway between ts and t(s + 1), i.e., θ ≐ t(s + 1
2), ensures that KT(y) > θ

holds with high probability if G0 /≡ G1, and never holds if G0 ≡ G1. This yields the desired

randomized mapping reduction without false negatives, modulo the rounding issue of s to

⌈s⌉. The latter can be handled by aggregating the permutations τi into blocks so as to make

the amortized cost of rounding negligible. The details are captured in the Blocking Lemma

of Section 3.3.1.

What changes in the case of non-rigid graphs? For ease of exposition, let us again assume

that ∣Aut(G0)∣ = ∣Aut(G1)∣. There are two complications:

(i) We no longer know how to efficiently compute the threshold θ ≐ t(s + 1
2) because s ≐

log(N) where N ≐ n!/∣Aut(G0)∣ = n!/∣Aut(G1)∣ involves the size of the automorphism

group.

(ii) The Lehmer code no longer provides sufficient compression in the isomorphic case as

it requires log(n!) bits per permutation whereas we only have s to spend, which could

be considerably less than log(n!).
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In order to resolve (ii) we develop an efficiently decodable indexing of cosets for any subgroup

of Sn given by a list of generators (see Lemma 3.9 in Section 3.3.2). In fact, our scheme

even works for cosets of a subgroup within another subgroup of Sn (see Lemma 3.30 in

Section 3.7). Applying our scheme to Aut(G) and including a minimal list of generators for

Aut(G) in the description of the program p allows us to maintain (3.2).

Regarding (i), we can deduce a good approximation to the threshold with high probability

by taking, for both choices of r ∈ {0,1}, a polynomial number of samples of RGr and using

the oracle for MKTP to compute the exact KT-complexity of their concatenation. This

leads to a randomized reduction from GI to MKTP with bounded error (from which one

without false positives follows as mentioned before), reproving the earlier result of [AD17]

using our new approach (see Remark 3.10 in Section 3.3.2 for more details).

In order to avoid false negatives, we need to improve the above approximation algorithm

such that it never produces a value that is too small, while maintaining efficiency and the

property that it outputs a good approximation with high probability. In order to do so,

it suffices to develop a probably-correct overestimator for the quantity n!/∣Aut(G)∣, i.e., a

randomized algorithm that takes as input an n-vertex graph G, produces the correct quantity

with high probability, and never produces a value that is too small; the algorithm should run

in polynomial time with access to an oracle for MKTP. Equivalently, it suffices to develop

a probably-correct underestimator of similar complexity for ∣Aut(G)∣.

The latter can be obtained from the known search-to-decision procedures for GI, and

answering the oracle calls to GI using the above two-sided error reduction from GI to MKTP.

There are a number of ways to implement this strategy; here is one that generalizes to a

number of other isomorphism problems including Linear Code Equivalence.

1. Find a list of permutations that generates a subgroup of Aut(G) such that the subgroup

equals Aut(G) with high probability.

Finding a list of generators for Aut(G) deterministically reduces to GI (see, e.g., sec-
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tions 1.2–1.3 in [KST93]).2 Substituting the oracle for GI by a two-sided error algo-

rithm yields a list of permutations that generates Aut(G) with high probability, and

always produces a subgroup of Aut(G). The latter property follows from the inner

workings of the reduction, or can be imposed explicitly by checking every permutation

produced and dropping it if it does not map G to itself. We use the above randomized

reduction from GI to MKTP as the two-sided error algorithm for GI.

2. Compute the order of the subgroup generated by those permutations.

There is a known deterministic polynomial-time algorithm to do this (see, e.g., [Ser03]).

The resulting probably-correct underestimator for ∣Aut(G)∣ runs in polynomial time with

access to an oracle for MKTP. Plugging it into our approach, we obtain a randomized

reduction from GI to MKTP without false negatives. A reduction with zero-sided error

follows as discussed earlier.

Before applying our approach to other isomorphism problems, let us point out the im-

portant role that the Orbit–Stabilizer Theorem plays. A randomized algorithm for finding

generators for a graph’s automorphism group yields a probably-correct underestimator for

the size of the automorphism group, as well as a randomized algorithm for GI without false

positives. The Orbit–Stabilizer Theorem allows us to turn a probably-correct underestimator

for ∣Aut(G)∣ into a probably-correct overestimator for the size of the support of RG, thereby

switching the error from one side to the other, and allowing us to avoid false negatives

instead of false positives.

General Framework The above approach extends to several other isomorphism prob-

lems. They can be cast in the following common framework, parametrized by an underlying

2Briefly, suppose the vertices of G are 1, 2, . . . , n. By appropriately coloring vertices of two separate
copies of G, one may query, for each u = 1, 2, . . . , n and each v = u + 1, u + 2, . . . , n, whether there is an
automorphism of G that fixes 1, 2, . . . , u − 1 and sends u to v. Moreover, whenever such an automorphism
exists, it may be constructed efficiently through further refinement of the colors and use of oracle queries
to GI, as in the standard search-to-decision reduction for GI. Such a collection of automorphisms generates
Aut(G).
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family of group actions (Ω,H) where H is a group that acts on the universe Ω. We typically

think of the elements of Ω as abstract objects, which need to be described in string format

in order to be input to a computer; we let ω(z) denote the abstract object represented by

the string z.

Definition 3.1 (Isomorphism Problem). An instance of an isomorphism problem consists

of a pair x = (x0, x1) that determines a universe Ωx and a group Hx that acts on Ωx such

that ω0(x) ≐ ω(x0) and ω1(x) ≐ ω(x1) belong to Ωx. Each h ∈ Hx is identified with the

permutation h ∶ Ωx → Ωx induced by the action. The goal is to determine whether there

exists h ∈Hx such that h(ω0(x)) = ω1(x). ◂

When it causes no confusion, we drop the argument x and simply write H, Ω, ω0, and

ω1. We often blur the—sometimes pedantic—distinction between z and ω(z). For example,

in GI, each z is an n × n binary matrix (a string of length n2), and represents the abstract

object ω(z) of a graph with n labeled vertices; thus, in this case the correspondence between

z and ω(z) is a bijection. The group H is the symmetric group Sn, and the action is by

permuting the labels.

Table 3.1 summarizes how the problems we mentioned earlier can be cast in the framework

(see Section 3.6 for details about the last three).

Problem H Ω
Graph Isomorphism Sn graphs with n labeled vertices

Linear Code Equivalence Sn linear subspaces of Fn
q

Permutation Group Conjugacy Sn subgroups of Sn

Matrix Subspace Conjugacy GLn(Fq) linear subspaces of Fn×n
q

Table 3.1: Example isomorphism problems

We generalize our construction for GI to any isomorphism problem by replacing RG(π) ≐

π(G) where π ∈ Sn is chosen uniformly at random, by Rω(h) ≐ h(ω) where h ∈ H is chosen

uniformly at random. The analysis that the construction yields a randomized reduction

without false negatives from the isomorphism problem to MKTP carries over, provided that

the isomorphism problem satisfies the following properties.
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1. The underlying group H is efficiently samplable, and the action (ω,h) ↦ h(ω) is

efficiently computable. We need this property in order to make sure the reduction is

efficient.

2. There is an efficiently computable normal form for representing elements of Ω as

strings. This property trivially holds in the setting of GI as there is a unique adjacency

matrix that represents any given graph on the vertex set [n]. However, uniqueness of

representation need not hold in general. Consider, for example, Permutation Group

Conjugacy. An instance of this problem abstractly consists of two permutation groups

(Γ0,Γ1), represented (as usual) by a sequence of elements of Sn generating each group.

In that case there are many strings representing the same abstract object, i.e., a sub-

group has many different sets of generators.

For the correctness analysis in the isomorphic case it is important that H acts on the

abstract objects, and not on the binary strings that represent them. In particular, the

output of the reduction should only depend on the abstract object h(ω), and not on the

way ω was provided as input. This is because the latter may leak information about

the value of the bit r that was picked. The desired independence can be guaranteed

by applying a normal form to the representation before outputting the result. In the

case of Permutation Group Conjugacy, this means transforming a set of permutations

that generate a subgroup Γ into a canonical set of generators for Γ.

In fact, it suffices to have an efficiently computable complete invariant for Ω, i.e., a

mapping from representations of objects from Ω to strings such that the image only

depends on the abstract object, and is different for different abstract objects.

3. There exists a probably-correct overestimator for N ≐ ∣H ∣/∣Aut(ω)∣ that is computable

efficiently with access to an oracle for MKTP. We need this property to set the

threshold θ ≐ t(s + 1
2) with s ≐ log(N) correctly.

4. There exists an encoding for cosets of Aut(ω) in H that achieves KT-complexity close
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to the information-theoretic optimum (see Section 3.2.2 for the definition of an encod-

ing). This property ensures that in the isomorphic case the KT-complexity is never

much larger than the entropy.

Properties 1 and 2 are fairly basic. Property 4 may seem to require an instantiation-

dependent approach. However, in Section 3.4 we shall see a generic hashing-based en-

coding scheme that meets the requirements. In fact, the approach provides a nearly-optimal

encoding scheme for any samplable distribution that is almost flat, without reference to iso-

morphism. Unlike the indexings from Lemma 3.9, the generic construction does not achieve

the information-theoretic optimum, but it comes sufficiently close for our purposes.

The notion of a probably-correct overestimator in Property 3 can be further relaxed to

that of a probably-approximately-correct overestimator, or pac overestimator for short. This

is a randomized algorithm that with high probability outputs a value within an absolute

deviation bound of ∆ from the correct value, and never produces a value that is more than

∆ below the correct value. More precisely, it suffices to efficiently compute with access to

an oracle for MKTP a pac overestimator for s ≐ log(∣H ∣/∣Aut(ω)∣) with deviation ∆ = 1/4.

The relaxation suffices because of the difference of about 1/2 between the threshold θ and

the actual KT-values in both the isomorphic and the nonisomorphic case. As s = log ∣H ∣ −

log ∣Aut(ω)∣, it suffices to have a pac overestimator for log ∣H ∣ and a pac underestimator for

log ∣Aut(ω)∣, both to within deviation ∆/2 = 1/8 and of the required efficiency.

Generalizing our approach for GI, one way to obtain the desired underestimator for

log ∣Aut(ω)∣ is by showing how to efficiently compute with access to an oracle for MKTP:

(a) a list L of elements of H that generates a subgroup ⟨L⟩ of Aut(ω) such that ⟨L⟩ =

Aut(ω) with high probability, and

(b) a pac underestimator for log ∣⟨L⟩∣, the logarithm of the order of the subgroup generated

by a given list L of elements of H.
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Following the above approach for GI, we know how to achieve (a) when the isomorphism

problem allows a search-to-decision reduction. Such a reduction is known for Linear Code

Equivalence, but remains open for problems like Matrix Subspace Conjugacy and Permuta-

tion Group Conjugacy. However, we shall see that (a) holds for a generic isomorphism prob-

lem provided that products and inverses in H can be computed efficiently (see Lemma 3.20

in Section 3.5.2). The proof hinges on the ability of MKTP to break the pseudo-random

generator construction of [HIL+99] based on a purported one-way function (Lemma 3.3 in

Section 3.2.1).

As for (b), we know how to efficiently compute the order of the subgroup exactly in the

case of permutation groups (H = Sn), even without an oracle for MKTP, and in some other

cases with the MKTP oracle (see, e.g., [BBS09] and subsequent work for matrix groups),

though not for all groups. Instead, we show how to generically construct a pac underesti-

mator with small deviation given access to MKTP as long as products and inverses in H

can be computed efficiently, and H allows an efficient complete invariant (see Lemma 3.21

in Section 3.5.2). The first two conditions are sufficient to efficiently generate a distribution

p̃ on ⟨L⟩ that is uniform to within a small relative deviation [Bab91]. The entropy s̃ of that

distribution equals log ∣⟨L⟩∣ to within a small additive deviation. As p̃ is almost flat, our en-

coding scheme from Section 3.4 shows that p̃ has an encoding whose length does not exceed

s̃ by much, and that can be decoded by small circuits. Given an efficient complete invariant

for H, the approach we used to pac underestimate the threshold θ carries over to a pac

underestimator for s̃ with small additive deviation, namely the amortized KT-complexity

of the concatenation of a polynomial number of samples from p̃. With access to an oracle

for MKTP we can efficiently evaluate KT. As a result, we obtain a pac underestimator for

log ∣⟨L⟩∣ with a small additive deviation that is efficiently computable with oracle access to

MKTP.

The above ingredients allow us to conclude that all of the isomorphism problems in

Table 3.1 reduce to MKTP under randomized reductions without false negatives. Moreover,
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we argue that Properties 1 and 2 are sufficient to generalize the construction of Allender

and Das [AD17], which yields randomized reductions of the isomorphism problem to MKTP

without false positives (irrespective of whether a search-to-decision reduction is known). By

combining both reductions, we conclude that all of the isomorphism problems in Table 3.1

reduce to MKTP under randomized reductions with zero-sided error. See Sections 3.5 and

3.6 for more details.

3.2 Preliminaries

The standard complexity classes BPP, RP, coRP, and ZPP each comprise the problems

computable by randomized algorithms in expected polynomial time, and differ only in how

the error is bounded. In BPP false positives and false negatives may occur; in RP there can

be no false positives; in coRP there can be no false negatives; and in ZPP there can be neither

false positives nor false negatives. We make use of these classes and their relativizations that

use MKTP as an oracle. For formal definitions, we refer to [AB09].

The remainder of this section provides more details about KT-complexity, formally de-

fines the related notions of indexing and encoding, and reviews some background on graph

isomorphism.

3.2.1 KT Complexity

The measure KT that we informally described in Section 3.1, was introduced and formally

defined as follows in [ABK+06]. We refer to that paper for more background and motivation

for the particular definition.

Definition 3.2 (KT). Let U be a universal Turing machine. For each string x, define

KTU(x) to be

min{ ∣d∣ + T ∶ (∀σ ∈ {0,1,∗}) (∀i ≤ ∣x∣ + 1) Ud(i, σ) accepts in T steps iff xi = σ }. (3.3)
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We define xi = ∗ if i > ∣x∣; thus, for i = ∣x∣ + 1 the machine accepts iff σ = ∗. The notation Ud

indicates that the machine U has random access to the description d. ◂

KT(x) is defined to be equal to KTU(x) for a fixed choice of universal machine U with

logarithmic simulation time overhead [ABK+06, Proposition 5]. In particular, if d consists

of the description of a Turing machine M that runs in time TM(n) and some auxiliary

information a such thatMa(i) = xi for i ∈ [n], then KT(x) ≤ ∣a∣+cMTM(logn) log(TM(logn)),

where n ≐ ∣x∣ and cM is a constant depending on M . It follows that (µ/ logn)Ω(1) ≤ KT(x) ≤

(µ ⋅ logn)O(1) where µ represents the circuit complexity of the mapping i ↦ xi [ABK+06,

Theorem 11].

The Minimum KT Problem is defined as MKTP ≐ {(x, θ) ∣ KT(x) ≤ θ}. [ABK+06]

showed that an oracle for MKTP is sufficient to invert on average any function that can be

computed efficiently. The following is a precise formulation:

Lemma 3.3 (follows from Theorem 45 in [ABK+06]). There exists a polynomial-time

probabilistic Turing machine M using oracle access to MKTP so that the following holds.

For any circuit C on n input bits,

Pr [C(τ) = C(σ)] ≥ 1/poly(n) where τ ≐M(C,C(σ)), (3.4)

and the probability is over the uniform distribution of σ ∈ {0,1}n and the internal coin flips

of M .

3.2.2 Random Variables, Samplers, Indexings and Encodings

A finite probability space consists of a finite sample space S, and a probability distribution p

on S. Typical sample spaces include finite groups and finite sets of strings. The probability

distributions underlying our probability spaces are always uniform.

A random variable R is a mapping from the sample space S to a set T , which typically

is the universe Ω of a group action, or a set of strings. The random variable R with the
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uniform distribution on S induces a distribution p on T . We sometimes use R to denote the

induced distribution p as well.

The support of a distribution p on a set T is the set of elements τ ∈ T with positive

probability p(τ). A distribution is flat if it is uniform on its support. The entropy of a

distribution p is the expected value of log(1/p(τ)). The min-entropy of p is the largest real

s such that p(τ) ≤ 2−s for every τ in the support of p. The max-entropy of p is the least

real s such that p(τ) ≥ 2−s for every τ in the support of p. For a flat distribution, the min-,

max-, and ordinary entropy coincide and equal the logarithm of the size of the support. For

two distributions p and q on the same set T , we say that q approximates p within a factor

1 + δ if q(τ)/(1 + δ) ≤ p(τ) ≤ (1 + δ) ⋅ q(τ) for all τ ∈ T . In that case, p and q have the same

support, and if p has min-entropy s, then q has min-entropy at least s − log(1 + δ), and if p

has max-entropy s, then q has max-entropy at most s + log(1 + δ).

A sampler within a factor 1 + δ for a distribution p on a set T is a random variable

R ∶ {0,1}ℓ → T that induces a distribution that approximates p within a factor 1+ δ. We say

that R samples T within a factor 1+ δ from length ℓ. If δ = 0 we call the sampler exact. The

choice of {0,1}ℓ reflects the fact that distributions need to be generated from a source of

random bits. Factors 1+ δ with δ > 0 are necessary in order to sample uniform distributions

whose support is not a power of 2.

We consider ensembles of distributions {px} where x ranges over {0,1}∗. We call the

ensemble samplable by polynomial-size circuits if there exists an ensemble of random variables

{Rx,δ} where δ ranges over the positive rationals such that Rx,δ samples px within a factor 1+δ

from length ℓx,δ and Rx,δ can be computed by a circuit of size poly(∣x∣/δ). We stress that the

circuits can depend on the string x, not just on ∣x∣. If in addition the mappings (x, δ) ↦ ℓx,δ

and (x, δ, σ) ↦ Rx,δ(σ) can be computed in time poly(∣x∣/δ), we call the ensemble uniformly

samplable in polynomial time.

One way to obtain strings with high KT-complexity is as samples from distributions with

high min-entropy.
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Proposition 3.4. Let y be sampled from a distribution with min-entropy s. For all k, we

have KT(y) ≥ ⌊s − k⌋ except with probability at most 2−k.

Proof. There are only ∑⌊s−k⌋−1
i=0 2i < 2s−k descriptions of strings with complexity less than

⌊s − k⌋. In a distribution with min-entropy s, every sample occurs with probability at most

2−s. Thus the total probability mass on samples with complexity less than ⌊s − k⌋ is at most

2s−k ⋅ 2−s = 2−k. ∎

One way to establish upper bounds on KT-complexity is via efficiently decodable en-

codings into integers from a small range. Encodings with the minimum possible range are

referred to as indexings. We use these notions in various settings. The following formal

definition is for use with random variables and is general enough to capture all the settings

we need. It defines an encoding via its decoder D; the range of the encoding corresponds to

the domain of D.

Definition 3.5 (Encoding, Indexing). Let R ∶ S → T be a random variable. An encoding

of R is a mapping D ∶ [N] → S such that for every τ ∈ R(S) there exists i ∈ [N] such that

R(D(i)) = τ . We refer to ⌈log(N)⌉ as the length of the encoding. An indexing is an encoding

with N = ∣R(S)∣. ◂

Definition 3.5 applies to a set S by identifying S with the random variable that is the

identity mapping on S. It applies to the cosets of a subgroup Γ of a group H by considering

the random variable that maps h ∈ H to the coset hΓ. It applies to a distribution induced

by a random variable R by considering the random variable R itself.

We say that an ensemble of encodings {Dx} is decodable by polynomial-size circuits if

for each x there is a circuit of size poly(∣x∣) that computes Dx(i) for every i ∈ [Nx]. If in

addition the mapping (x, i) ↦ Dx(i) is computable in time poly(∣x∣), we call the ensemble

uniformly decodable in polynomial time.
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3.2.3 Graph Isomorphism and the Orbit-Stabilizer Theorem

Graph Isomorphism (GI) is the computational problem of deciding whether two graphs,

given as input, are isomorphic. A graph for us is a simple, undirected graph, that is, a

vertex set V (G), and a set E(G) of unordered pairs of vertices. An isomorphism between

two graphs G0,G1 is a bijection π∶V (G0) → V (G1) that preserves both edges and non-

edges: (v,w) ∈ E(G0) if and only if (π(v), π(w)) ∈ E(G1). An isomorphism from a graph

to itself is an automorphism; the automorphisms of a given graph G form a group under

composition, denoted Aut(G). The Orbit–Stabilizer Theorem implies that the number of

distinct graphs isomorphic to G equals n!/∣Aut(G)∣. A graph G is rigid if ∣Aut(G)∣ = 1, i.e.,

the only automorphism is the identity, or equivalently, all n! permutations of G yield distinct

graphs.

More generally, let H be a group acting on a universe Ω. For ω ∈ Ω, each h ∈ H is an

isomorphism from ω to h(ω). Aut(ω) is the set of isomorphisms from ω to itself. By the

Orbit–Stabilizer Theorem the number of distinct isomorphic copies of ω equals ∣H ∣/∣Aut(ω)∣.

3.3 Graph Isomorphism

In this section we show:

Theorem 3.6. GI ∈ ZPPMKTP.

The crux is the randomized mapping reduction from deciding whether a given pair of

n-vertex graphs (G0,G1) is in GI to deciding whether (y, θ) ∈MKTP, as prescribed by (3.1).

Recall that (3.1) involves picking a string r ≐ r1 . . . rt ∈ {0,1}t and permutations πi at random,

and constructing the string y = y1 . . . yt, where yi = πi(Gri
). It remains to determine θ such

that a sufficiently large polynomial t guarantees that the reduction has no false negatives.

We follow the outline of Section 3.1, take the same four steps, and fill in the missing details.
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3.3.1 Rigid Graphs

We first consider the simplest setting, in which both G0 and G1 are rigid. We argue that

θ ≐ t(s + 1
2) works, where s = log(n!).

Nonisomorphic Case If G0 /≡ G1, then (by rigidity), each choice of r and each distinct

sequence of t permutations results in a different string y, and thus the distribution on the

strings y has entropy t(s + 1) where s ≐ log(n!). Thus, by Proposition 3.4, KT(y) > θ =

t(s+ 1) − t
2 with all but exponentially small probability in t. Thus with high probability the

algorithm declares G0 and G1 nonisomorphic.

Isomorphic Case If G0 ≡ G1, we need to show that KT(y) ≤ θ always holds. The key

insight is that the information in y is precisely captured by the t permutations τ1, τ2, . . . , τt

such that τi(G0) = yi. These permutations exist because G0 ≡ G1; they are unique by the

rigidity assumption. Thus, y contains at most ts bits of information. We argue that its

KT-complexity is not much larger than this. The argument relies on the following encoding,

due to Lehmer (see, e.g., [Knu98, pp. 12–33]):

Proposition 3.7 (Lehmer code). The symmetric groups Sn have indexings that are uni-

formly decodable in time poly(n).

To bound KT(y), we consider a program d that has the following information hard-wired

into it: n, the adjacency matrix of G0, and the t integers k1, . . . , kt ∈ [n!] encoding τ1, . . . , τt.

We use the decoder from Proposition 3.7 to compute the i-th bit of y on input i. This can

be done in time poly(n, log(t)) given the hard-wired information.

As mentioned in Section 3.1, a naïve method for encoding the indices k1, . . . , kt only gives

the bound t ⌈s⌉ + poly(n, log(t)) on KT(y), which may exceed t(s + 1) and—a fortiori—the

threshold θ, no matter how large a polynomial t is. We remedy this by aggregating multiple

indices into blocks, and amortizing the encoding overhead across multiple samples. The

following technical lemma captures the technique. For a set T of strings and b ∈ N, the
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statement uses the notation T b to denote the set of concatenations of b strings from T ; see

Section 3.2.2 for the other terminology.

Lemma 3.8 (Blocking Lemma). Let {Tx} be an ensemble of sets of strings such that all

strings in Tx have the same length poly(∣x∣). Suppose that for each x ∈ {0,1}∗ and b ∈ N,

there is a random variable Rx,b whose image contains (Tx)b, and such that Rx,b is computable

by a circuit of size poly(∣x∣, b) and has an encoding of length s′(x, b) decodable by a circuit of

size poly(∣x∣, b). Then there are constants c1 and c2 so that, for every constant α > 0, every

t ∈ N, every sufficiently large x, and every y ∈ (Tx)t

KT(y) ≤ t1−α ⋅ s′(x, ⌈tα⌉) + tα⋅c1 ⋅ ∣x∣c2 . (3.5)

Let us first see how to apply the Blocking Lemma and then prove it. For a given rigid

graph G, we let TG be the image of the random variable RG that maps π ∈ Sn to π(G)

(an adjacency matrix viewed as a string of n2 bits). We let RG,b be the b-fold Carte-

sian product of RG, i.e., RG,b takes in b permutations τ1, . . . , τb ∈ Sn, and maps them to

τ1(G)τ2(G)⋯τb(G). RG,b is computable by (uniform) circuits of size poly(n, b). To encode

an outcome τ1(G)τ2(G)⋯τb(G), we use as index the number whose base-(n!) representation

is written k1k2⋯kb, where ki is the index of τi from the Lehmer code. This indexing has

length s′(G, b) ≐ ⌈log(n!b)⌉ ≤ bs + 1. Given an index, the list of permutations τ1, . . . , τb can

be decoded by (uniform) circuits of size poly(n, b). By the Blocking Lemma, we have that

KT(y) ≤ t1−α(⌈tα⌉ s + 1) + tαc1 ⋅ nc2 ≤ ts + t1−α ⋅ nc0 + tαc1 ⋅ nc2 (3.6)

for some constants c0, c1, c2, every constant α > 0, and all sufficiently large n, where we use the

fact that s = logn! ≤ nc0 . Setting α = α0 ≐ 1/(c1 + 1), this becomes KT(y) ≤ ts + t1−α0n(c0+c2).

Taking t = n1+(c0+c2)/α0 , we see that for all sufficiently large n, KT(y) ≤ t(s + 1
2) ≐ θ.

Proof of the Blocking Lemma. Let Rx,b be the hypothesized random variables and Dx,b their

corresponding decoders. Fix x and t, let m = poly(∣x∣) denote the length of the strings in

Tx, and let b ∈ N be a parameter to be set later.
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To bound KT(y), we first break y into ⌈t/b⌉ blocks ỹ1, ỹ2, . . . , ỹ⌈t/b⌉ where each ỹi ∈ (Tx)b

(after padding ỹ⌈t/b⌉ with arbitrary strings from Tx if needed). As the image of Rx,b contains

(Tx)b, each ỹj is encoded by some index kj of length s′(x, b).

Consider a program d that has x, t, m, b, the circuit for computing Rx,b, the circuit

for computing Dx,b, and the indices k1, k2, . . . , k⌈t/b⌉ hardwired, takes an input i ∈ N, and

determines the i-th bit of y as follows. If i > tm, then the output is ∗. Otherwise, d first

computes j0, j1 ∈ N so that i points to the j1-th bit position in ỹj0 . Then, using Dx,b, kj0 ,

and j1, it finds σ such that Rx,b(σ) equals ỹj0 . Finally, it computes Rx,b(σ) and outputs the

j1-th bit, which is the i-th bit of y.

The bit-length of d is at most ⌈t/b⌉ ⋅ s′(x, b) for the indices, plus poly(∣x∣, b, log t) for the

rest. The time needed by d is bounded by poly(∣x∣, b, log t). Thus

KT(y) ≤ ⌈t/b⌉ ⋅ s′(x, b) + poly(∣x∣, b, log t) (3.7)

≤ t/b ⋅ s′(x, b) + poly(∣x∣, b, log t) (3.8)

where we used the fact that s′(x, b) ≤ poly(∣x∣, b). The lemma follows by choosing b = ⌈tα⌉. ∎

3.3.2 Known Number of Automorphisms

We generalize the case of rigid graphs to graphs for which we know the size of their auto-

morphism groups. Specifically, in addition to the two input graphs G0 and G1, we are also

given numbers N0,N1 where Ni ≐ n!/∣Aut(Gi)∣. Note that if N0 ≠ N1, we can right away

conclude that G0 /≡ G1. Nevertheless, we do not assume that N0 = N1 as the analysis of the

case N0 ≠ N1 will be useful in Section 3.3.3.

The reduction is the same as in Section 3.3.1 with the correct interpretation of s. The

main difference lies in the analysis, where we need to accommodate for the loss in entropy

that comes from having multiple automorphisms.

Let si ≐ log(Ni) be the entropy in a random permutation of Gi. Set s ≐min(s0, s1), and

θ ≐ t(s+ 1
2). In the nonisomorphic case the min-entropy of y is at least t(s+1), so KT(y) > θ
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with high probability. In the isomorphic case we upper bound KT(y) by about ts. Unlike

the rigid case, we can no longer afford to encode an entire permutation for each permuted

copy of G0; we need a replacement for the Lehmer code. The following encoding, applied to

Γ = Aut(G), suffices to complete the argument from Section 3.3.1.

Lemma 3.9. For every subgroup Γ of Sn there exists an indexing of the cosets of Γ that is

uniformly decodable in polynomial time when Γ is given by a list of generators.

We prove Lemma 3.9 in Section 3.7 as a corollary to a more general lemma that gives,

for each Γ ≤H ≤ Sn, an efficiently computable indexing for the cosets of Γ in H.

Remark 3.10. Before we continue towards Theorem 3.6, we remark that the above ideas

yield an alternate proof that GI ∈ BPPMKTP (and hence that GI ∈ RPMKTP). This weaker

result was already obtained in [AD17] along the well-trodden path discussed in Section 3.1;

this remark shows how to obtain it using our new approach.

The key observation is that in both the isomorphic and the nonisomorphic case, with

high probability KT(y) stays away from the threshold θ by a growing margin. Moreover, the

above analysis allows us to efficiently obtain high-confidence approximations of θ to within

any constant using sampling and queries to the MKTP oracle.

More specifically, for i ∈ {0,1}, let ỹi denote the concatenation of t̃ independent samples

from RGi
. Our analysis shows that KT(ỹi) ≤ t̃si + t̃1−α0nc always holds, and that KT(ỹi) ≥

t̃si − t̃1−α0nc holds with high probability. Thus, s̃i ≐ KT(ỹi)/t̃ approximates si with high

confidence to within an additive deviation of nc/t̃α0 . Similarly, s̃ ≐min(s̃0, s̃1) approximates

s to within the same deviation margin, and θ̃ ≐ t(s̃+ 1
2) approximates θ to within an additive

deviation of tnc/t̃α0 . The latter bound can be made less than 1 by setting t̃ to a sufficiently

large polynomial in n and t. Moreover, all these estimates can be computed in time poly(t̃, n)

with access to MKTP as MKTP enables us to evaluate KT efficiently. ◂
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3.3.3 Probably-Correct Underestimators for the Number of

Automorphisms

The reason the BPPMKTP-algorithm in Remark 3.10 can have false negatives is that the

approximation θ̃ to θ may be too small. Knowing the quantities Ni ≐ n!/∣Aut(Gi)∣ exactly

allows us to compute θ exactly and thereby obviates the possibility of false negatives. In

fact, it suffices to compute overestimates for the quantities Ni which are correct with non-

negligible probability. We capture this notion formally as follows:

Definition 3.11 (Probably-Correct Overestimator). Let g ∶ Ω → R be a function, and

M a randomized algorithm that, on input ω ∈ Ω, outputs a valueM(ω) ∈ R. We say that M is

a probably-correct overestimator for g if, for every ω ∈ Ω, M(ω) = g(ω) holds with probability

at least 1/poly(∣ω∣), and M(ω) > g(ω) otherwise. A probably-correct underestimator for g is

defined similarly by reversing the inequality. ◂

Note that, for any probably-correct overestimator (underestimator), taking the minimum

(maximum) among poly(∣ω∣) independent runs yields the correct value with probability

1 − 2−poly(∣ω∣).

We are interested in the case where g(G) = n!/∣Aut(G)∣. Assuming this g on a given

class of graphs Ω has a probably-correct overestimator M computable in randomized poly-

nomial time with an MKTP oracle, we argue that GI on Ω reduces to MKTP in randomized

polynomial time without false negatives.

To see this, consider the algorithm that, on input a pair (G0,G1) of n-vertex graphs,

computes Ñi =M(Gi) as estimates of the true values Ni = n!/∣Aut(Gi)∣, and then runs the

algorithm from Section 3.3.2 using the estimates Ñi.

○ In the case where G0 and G1 are not isomorphic, if both estimates Ñi are correct, then

the algorithm detects G0 /≡ G1 with high probability.
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○ In the case where G0 ≡ G1, if Ñi = Ni we showed in Section 3.3.2 that the algorithm

always declares G0 and G1 to be isomorphic. Moreover, increasing θ can only decrease

the probability of a false negative. As the computed threshold θ increases as a function

of Ñi, and the estimate Ñi is always at least as large as Ni, it follows that G0 and G1

are always declared isomorphic.

3.3.4 Arbitrary Graphs

A probably-correct overestimator for the function G ↦ n!/∣Aut(G)∣ on any graph G can be

computed in randomized polynomial time with access to MKTP. The process is described

in full detail in Section 3.1, based on a BPPMKTP algorithm for GI (taken from Remark 3.10

or from [AD17]). This means that the setting of Section 3.3.3 is actually the general one.

The only difference is that we no longer obtain a mapping reduction from GI to MKTP, but

an oracle reduction: We still make use of (3.1), but we need more queries to MKTP in order

to set the threshold θ.

This shows that GI ∈ coRPMKTP. As GI ∈ RPMKTP follows from the known search-to-

decision reduction for GI, this concludes the proof of Theorem 3.6 that GI ∈ ZPPMKTP.

3.4 Estimating the Entropy of Flat Samplable

Distributions

In this section we develop a key ingredient in extending Theorem 3.6 from GI to other iso-

morphism problems that fall within the framework presented in Section 3.1, namely efficient

near-optimal encodings of cosets of automorphism groups. More generally, the encoding

scheme works well for any samplable distribution that is flat or almost flat. It allows us to

probably-approximately-correctly underestimate the entropy of such distributions with the

help of an oracle for MKTP.
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We first develop the encoding, which only requires the existence of a sampler from strings

of polynomial length. The length of the encoding is roughly the max-entropy of the distri-

bution, which is the information-theoretic optimum for flat distributions.

The lemma is stated in terms of a random variable that samples the distribution. Recall

from Section 3.2 that a random variable R samples a distribution p from length ℓ when R

has domain {0,1}ℓ, and p is identical to the distribution of R(σ) with σ drawn uniformly at

random from its domain.

Lemma 3.12 (Encoding Lemma). Consider an ensemble {Rx} of random variables that

sample distributions with max-entropy s(x) from length poly(∣x∣). Each Rx has an encoding

of length s(x) + log s(x) +O(1) that is decodable by polynomial-size circuits.

To see how the Encoding Lemma performs, let us apply it to the setting of GI. Consider

the random variable RG mapping a permutation π ∈ Sn to π(G). The induced distribution

is flat and has entropy s = log(n!/∣Aut(G)∣), and each π ∈ Sn can be sampled from strings of

length O(n logn). The Encoding Lemma thus yields an encoding of length s + log s +O(1)

that is efficiently decodable. The bound on the length is worse than Lemma 3.9’s bound of

⌈s⌉, but will still be sufficient for the generalization of Theorem 3.6 and yield the result for

GI.

We prove the Encoding Lemma using hashing. Here is the idea. Consider a random hash

function h ∶ {0,1}ℓ → {0,1}m where ℓ denotes the length of the strings in the domain of Rx

for a given x, and m is set slightly below ℓ − s. For any fixed outcome y of Rx, there is a

positive constant probability that no more than about 2ℓ/2m ≈ 2s of all samples σ ∈ {0,1}ℓ

have h(σ) = 0m, and at least one of these also satisfies Rx(σ) = y. Let us say that h works for

y when both those conditions hold. In that case—ignoring efficiency considerations—about

s bits of information are sufficient to recover a sample σy satisfying Rx(σy) = y from h.

Now a standard probabilistic argument shows that there is a sequence h1, h2, . . . of O(s)

hash functions such that for every possible outcome y, there is at least one hi that works for

y. Given such a sequence, we can encode each outcome y as the index i of a hash function
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hi that works for y, and enough bits of information that allow us to efficiently recover σy

given hi. We show that s+O(1) bits suffice for the standard linear-algebraic family of hash

functions. The resulting encoding has length s + log(s) +O(1) and is decodable by circuits

of polynomial size.

Proof of the Encoding Lemma. Recall that a family Hℓ,m of functions {0,1}ℓ → {0,1}m is

universal if for any two distinct σ0, σ1 ∈ {0,1}ℓ, the distributions of h(σ0) and h(σ1) for a

uniform choice of h ∈ Hℓ,m are independent and uniform over {0,1}m. We make use of the

specific universal family H(lin)ℓ,m that consists of all functions of the form σ ↦ Uσ+v, where U

is a binary (m × ℓ)-matrix, v is a binary column vector of dimension ℓ, and σ is also viewed

as a binary column vector of dimension ℓ [CW79]. Uniformly sampling from H(lin)ℓ,m means

picking U and v uniformly at random.

Claim 3.13. Let ℓ,m ∈ N and s ∈ R.

1. For every universal family Hℓ,m with m = ℓ − ⌈s⌉ − 2, and for every S ⊆ {0,1}ℓ with

∣S∣ ≥ 2ℓ−s,

Pr[(∃σ ∈ S)h(σ) = 0m and ∣h−1(0m)∣ ≤ 2⌈s⌉+3] ≥ 1
4 , (3.9)

where the probability is over a uniformly random choice of h ∈ Hℓ,m.

2. The sets h−1(0m) have indexings that are uniformly decodable in time polynomial in ℓ

and m, where h ranges over H(lin)ℓ,m .

Assume for now that the claim holds, and let us continue with the proof of the lemma.

Fix an input x, and let ℓ = ℓ(x) and s = s(x). Consider the familyH(lin)ℓ,m with m = ℓ−⌈s⌉−2.

For each outcome y of Rx, let Sy consist of the strings σ ∈ {0,1}ℓ for which Rx(σ) = y. Since

the distribution induced by Rx has max-entropy s, a fraction at least 1/2s of the strings in

the domain of Rx map to y. It follows that ∣Sy ∣ ≥ 2ℓ−s.

A hash function h ∈ H(lin)ℓ,m works for y if there is some σ ∈ Sy with h(σ) = 0m and

∣h−1(0m)∣ ≤ 2⌈s⌉+3. By the first part of Claim 3.13, the probability that a random h ∈ H(lin)ℓ,m
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works for a fixed y is at least 1/4. If we now pick 3 ⌈s⌉ hash functions independently at

random, the probability that none of them work for y is at most (3/4)3⌈s⌉ < 1/2s. Since there

are at most 2s distinct outcomes y, a union bound shows that there exists a sequence of hash

functions h1, h2, . . . , h3⌈s⌉ ∈ H(lin)ℓ,m such that for every outcome y of Rx there exists iy ∈ [3 ⌈s⌉]

such that hiy works for y.

The encoding works as follows. Let D(lin) denote the uniform decoding algorithm from

part 2 of Claim 3.13 such that D(lin)(h, ⋅) decodes the set h−1(0m). For each outcome

y of Rx, let jy ∈ [2⌈s⌉+3] be such that D(lin)(hiy , jy) = σy ∈ Sy. Such a jy exists since

hiy works for y. Let ky = 2⌈s⌉+3iy + jy. Given h1, h2, . . . , h3⌈s⌉ and ℓ and m as auxiliary

information, we can decode σy from ky by parsing out iy and jy, extracting hiy from the

auxiliary information, and running D(lin)(hiy , jy). This gives an encoding for Rx of length

⌈s⌉ + 3 + ⌈log(3 ⌈s⌉)⌉ = s + log s +O(1) that can be decoded in time poly(∣x∣) with the hash

functions as auxiliary information. As each hash function can be described using (ℓ + 1)m

bits and there are 3 ⌈s⌉ ≤ poly(∣x∣) many of them, the auxiliary information consists of no

more than poly(∣x∣) bits. Hard-wiring it yields a decoder circuit of size poly(∣x∣). ∎

For completeness we argue Claim 3.13.

Proof of Claim 3.13. For part 1, let m = ℓ − ⌈s⌉ − 2, and consider the random variables X ≐

∣h−1(0m)∩S∣ and Y ≐ ∣h−1(0m)∣. Because of universality we have that V(X) ≤ E(X) = ∣S∣/2m,

and by the choice of parameters ∣S∣/2m ≥ 4. By Chebyshev’s inequality

Pr(X = 0) ≤ Pr(∣X −E(X)∣ ≥ E(X)) ≤ V(X)
(E(X))2 ≤

1
E(X) ≤

1
4 . (3.10)

We have that E(Y ) = 2ℓ/2m = 2⌈s⌉+2. By Markov’s inequality

Pr(Y ≥ 2⌈s⌉+3) = Pr(Y ≥ 2E(Y )) ≤ 1
2 . (3.11)

A union bound shows that

Pr(X = 0 or Y ≥ 2⌈s⌉+3) ≤ 1
4 +

1
2 , (3.12)
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from which part 1 follows.

For part 2, note that if ∣h−1(0m)∣ > 0 then ∣h−1(0m)∣ = 2ℓ−r where r denotes the rank of U .

In that case, given U and v, we can use Gaussian elimination to find binary column vectors

σ̂ and σ1, σ2, . . . , σℓ−r such that Uσ̂+v = 0m and the σi’s form a basis for the kernel of U . On

input j ∈ [2ℓ−r], the decoder outputs σ̂ +∑ℓ−r
i=1 jiσi, where ∑ℓ−r

i=1 ji2i−1 is the binary expansion

of j − 1. The image of the decoder is exactly h−1(0m). As the decoding process runs in time

poly(ℓ,m) when given U and u, this gives the desired indexing. ∎

The first part of Claim 3.13 is commonly used, e.g., for randomness extraction in cryp-

tography. The combination of the two parts of Claim 3.13 seems to have found fewer appli-

cations. [PP10] applies them in a similar way as we do (but with a single hash function),

namely to boost the success probability of randomized circuits that decide CircuitSAT as a

function of the number of input variables.3

Remark 3.14. The proof of the Encoding Lemma shows a somewhat more general result:

For any ensemble {Rx} of random variables whose domains consist of strings of length

poly(∣x∣), and for any bound s(x), the set of outcomes of Rx with probability at least 1/2s(x)

has an encoding of length s(x)+log s(x)+O(1) that is decodable by a circuit of size poly(∣x∣).

In the case of flat distributions of entropy s(x) that set contains all possible outcomes. ◂

In combination with the Blocking Lemma, the Encoding Lemma yields upper bounds on

KT-complexity in the case of distributions p that are samplable by polynomial-size circuits.

More precisely, if y is the concatenation of t samples from p, we can essentially upper

bound the amortized KT-complexity KT(y)/t by the max-entropy of p. On the other hand,

3More precisely, suppose there exists a randomized circuit family A of size f(n, m) that decides
CircuitSAT without false positives on instances consisting of circuits C with n input variables and of de-
scription length m such that the probability of success is at least 1/2αn. Applying our encoding to the set
of random bit sequences that make A accept on a positive instance C, and hard-wiring the input C into
the circuit A, yields an equivalent instance C ′ on αn variables of size f(n, m) + µ(D), where µ(D) denotes
the circuit size of D. Applying A to the description of this new circuit C ′ yields a randomized circuit A′ to
decide whether C is satisfiable without false positives. For the linear-algebraic family of hash functions, A′

has size O(f(n, m)polylog(f(n, m))). Its success probability is at least 1/2α2n, which is larger than 1/2αn

when α < 1.



99

Proposition 3.4 shows that if the samples are picked independently at random, with high

probability KT(y)/t is not much less than the min-entropy of p. Thus, in the case of

flat distributions, KT(y)/t is a good probably-approximately-correct underestimator for the

entropy, a notion formally defined as follows.

Definition 3.15 (Probably-Approximately-Correct Underestimator). Let g ∶ Ω→ R

be a function, and M a randomized algorithm that, on input ω ∈ Ω, outputs a value

M(ω) ∈ R. We say that M is a probably-approximately-correct underestimator (or pac un-

derestimator) for g with deviation ∆ if, for every ω ∈ Ω, ∣M(ω) − g(ω)∣ ≤ ∆ holds with

probability at least 1/poly(∣ω∣), and M(ω) < g(ω) otherwise. A probably-approximately-

correct overestimator (or pac overestimator) for g is defined similarly, by reversing the last

inequality. ◂

Similar to the case of probably-correct under-/overestimators, we can boost the confi-

dence level of a pac under-/overestimator from 1/poly(∣ω∣) to 1 − 2−poly(∣ω∣) by taking the

max/min of poly(∣ω∣) independent runs.

More generally, we argue that the amortized KT-complexity of samples yields a good

pac underestimator for the entropy when the distribution is almost flat, i.e., the difference

between the max- and min-entropy is small. As KT can be evaluated efficiently with oracle

access to MKTP, pac underestimating the entropy of such distributions reduces to MKTP.

Corollary 3.16 (Entropy Estimator Corollary). Let {px} be an ensemble of distribu-

tions such that px is supported on strings of the same length poly(∣x∣). Consider a randomized

process that on input x computes KT(y)/t, where y is the concatenation of t independent

samples from px. If px is samplable by circuits of polynomial size, then for t a sufficiently

large polynomial in ∣x∣, KT(y)/t is a pac underestimator for the entropy of px with deviation

∆(x) + o(1), where ∆(x) is the difference between the min- and max-entropies of px.

Proof. Since the entropy lies between the min- and max-entropies, it suffices to show that

KT(y)/t is at least the min-entropy of px with high probability, and is always at most the
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max-entropy of px (both up to o(1) terms) when t is a sufficiently large polynomial. The

lower bound follows from Proposition 3.4. It remains to establish the upper bound.

Let {Rx,δ} be the ensemble of random variables witnessing the samplability of {px}

by circuits of polynomial size, and let s(x) denote the max-entropy of px. The Blocking

Lemma allows us to bound KT(y) by giving an encoding for random variables whose support

contains the b-tuples of samples from px. Let R′x,b denote the b-fold Cartesian product of

Rx,1/b. R′x,b induces a distribution that approximates to within a factor of (1 + 1/b)b = O(1)

the distribution of the b-fold Cartesian product of px, which is a distribution of max-entropy

bs(x). It follows that the distribution induced by R′x,b has min-entropy at most bs(x)+O(1).

Its support is exactly the b-tuples of samples from px. Moreover, the ensemble {R′x,b} is

computable by circuits of size poly(n, b). By the Encoding Lemma there exists an encoding

of R′x,b of length bs(x)+log b+log s(x)+O(1) that is decodable by circuits of polynomial-size.

The Blocking Lemma then says that there exist constants c1 and c2 so that for all α > 0 and

all sufficiently large n

KT(y) ≤ t1−α ⋅ (⌈tα⌉ ⋅ s(x) + log s(x) + α log t +O(1)) + tαc1 ⋅ nc2 (3.13)

≤ ts(x) + t1−α ⋅ (nc0 + c0 logn + α log t +O(1)) + tαc1 ⋅ nc2 , (3.14)

where we use the fact that there exists a constant c0 such that s(x) ≤ nc0 . A similar

calculation as the one following equation (3.6) shows that KT(y) ≤ ts(x) + t1−α0nc0+c2 for

t ≥ nc and n sufficiently large, where α0 = 1/(1 + c1) and c = 1 + (1 + c1)(c0 + c2). Dividing

both sides by t yields the claimed upper bound. ∎

3.5 Generic Isomorphism Problem

In Section 3.1 we presented a common framework for isomorphism problems and listed some

instantiations in Table 3.1. In this section we state and prove a generalization of Theorem 3.6

that applies to many problems in this framework, including the ones from Table 3.1.
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3.5.1 Generalization

The generalized reduction makes use of a complete invariant for the abstract universe Ω.

For future reference, we define the notion with respect to a representation for an arbitrary

ensemble of sets.

Definition 3.17 (Representation, Complete Invariant). Let {Ωx} denote an ensemble

of sets. A representation of the ensemble is a surjective mapping ω ∶ {0,1}∗ → ∪xΩx. A

complete invariant for ω is a mapping ν ∶ {0,1}∗ → {0,1}∗ such that for all strings x, z0, z1

with ω(z0), ω(z1) ∈ Ωx

ω(z0) = ω(z1) ⇔ ν(z0) = ν(z1). (3.15)

◂

ω(z) denotes the set element represented by the string z. The surjective property of a

representation guarantees that every set element has at least one string representing it.

Note that for the function ν to represent a normal form (rather than just a complete

invariant), it would need to be the case that ω(ν(z)) = ω(z). Although this additional

property holds for all the instantiations we consider, it is not a requirement. In our setting,

all that matters is that ν(z) only depends on the element ω(z) that z represents, and is

different for different elements. For complexity-theoretic investigations into the difference

between complete invariants and normal forms, see, e.g., [BG84a; BG84b; FG11; FH16].

We are now ready to state the generalization of Theorem 3.6.

Theorem 3.18. Let Iso denote an isomorphism problem as in Definition 3.1. Consider the

following conditions:

1. [Action Sampler] The uniform distribution on Hx is uniformly samplable in polynomial

time, and the mapping (ω,h) ↦ h(ω) underlying the action of Hx on Ωx is computable

in ZPP.



102

2. [Complete Universe Invariant] There exists a complete invariant ν for the representa-

tion ω that is computable in ZPP.

3. [Entropy Estimator] There exists a probably-approximately-correct overestimator for

(x,ω) ↦ log (∣Hx∣/∣Aut(ω)∣) with deviation 1/4 that is computable in randomized time

poly(∣x∣) with access to an oracle for MKTP.

With these definitions:

(a) If conditions 1 and 2 hold, then Iso ∈ RPMKTP.

(b) If conditions 1, 2, and 3 hold, then Iso ∈ coRPMKTP.

In the case of GI, Ω denotes the universe of graphs on n vertices (represented as adjacency

matrices viewed as strings of length n2), andH the group of permutations on [n] (represented

as function tables). All conditions in the statement of Theorem 3.18 are met. The identity

mapping can be used as the complete invariant ν in condition 2, and the probably-correct

overestimator for n!/∣Aut(G)∣ that we argued in Sections 3.1 and 3.3 immediately yields the

pac overestimator for log(n!/∣Aut(G)∣) required in condition 3.

Note that log(n!/∣Aut(G)∣) equals the entropy of the distribution induced by the random

variable RG. In general, the quantity log(∣Hx∣/∣Aut(ω)∣) in condition 3 represents the entropy

of ν(h(ω)) when h ∈Hx is picked uniformly at random.

Proof of Theorem 3.18. Let x denote an instance of length n ≐ ∣x∣, defining a universe Ω, a

group H that acts on Ω, and two elements ωi = ωi(x) for i ∈ {0,1}. Both parts (a) and (b)

make use of the random variables Ri for i ∈ {0,1} where Ri ∶ H → {0,1}∗ maps h ∈ H to

ν(h(ωi)).

Part (a) We follow the approach from [AD17]. Their argument uses Lemma 3.3, which

states the existence of a randomized polynomial-time machine M with access to an MKTP

oracle that, given a random sample y from the distribution induced by a circuit C, recovers
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with non-negligible probability of success an input σ so that C(σ) = y. If we can model the

Ri as circuits of size poly(n) that take in an element h from H and output Ri(h), this means

that, with non-negligible probability over a random h0 ∈H, M(R0,R0(h0)) outputs some h1

so that h1(ω0) = h0(ω0). The key observation is that when ω0 ≡ ω1, R0 and R1 induce the

same distribution, and therefore, for a random element h0, M(R1,R0(h0)) outputs some h1

so that h1(ω0) = h0(ω0) with non-negligible probability probability of success. Thus Iso can

be decided by trying the above a polynomial number of times, declaring ω0 ≡ ω1 if a trial

succeeds, and declaring ω0 /≡ ω1 otherwise.

We do not know how to model the Ri exactly as circuits of size poly(n), but we can do so

approximately. Condition 1 implies that we can construct circuits Ci,δ in time poly(n/δ) that

sample h(ωi) within a factor 1+δ. Combined with the ZPP-computability of ν in condition 2

this means that we can construct a circuit Cν in time poly(n) such that the composed circuit

Cν ○ Ci,δ samples Ri within a factor 1 + δ from strings σ of length poly(n/δ). We use the

composed circuits in lieu of Ri in the arguments for M above. More precisely, we pick an

input σ0 for C0,δ uniformly at random, and compute σ1 =M(C1,δ,C0,δ(σ0)). Success means

that h1(ω0) = h0(ω0), where hi = Ci,δ(σi). The probability of success for an approximation

factor of 1 + δ is at least 1/(1 + δ)2 times the probability of success in the exact setting,

which is 1/poly(n/δ) in the isomorphic case. Fixing δ to any positive constant, a single trial

runs in time poly(n), success can be determined in ZPP (by the second part of condition 1),

and the probability of success is at least 1/poly(n) in the isomorphic case. Completing the

argument as in the exact setting above, we conclude that Iso ∈ RPMKTP.

Part (b) We extend the argument from Section 3.3. Let si ≐ log (∣H ∣/∣Aut(ωi)∣) for i ∈

{0,1}, and let M be the pac overestimator from condition 3. We assume that M has been

amplified such that it outputs a good estimate with probability exponentially close to 1.

Condition 1 and the ZPP-computability of ν imply that the distribution induced by Ri

is uniformly samplable in polynomial time, i.e., for each i ∈ {0,1} and δ > 0, there is a
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random variable Ri,δ that samples Ri within a factor 1+ δ from length poly(∣x∣/δ), and that

is computable in time poly(∣x∣/δ).

Let t ∈ N and δ be parameters to be determined. On input x, the algorithm begins

by computing the estimates s̃i = M(x,ωi) for i ∈ {0,1}, and sets s̃ ≐ min(s̃0, s̃1) and θ̃ ≐

t(s̃+ 1
2). The algorithm then samples r ∈ {0,1}t uniformly, and constructs y = (Rri,δ(σi))ti=1,

where each σi is drawn independently and uniformly from {0,1}poly(n,1/δ). If KT(y) > θ̃, the

algorithm declares ω0 /≡ ω1; otherwise, the algorithm declares ω0 ≡ ω1.

Nonisomorphic Case If ω0 /≡ ω1, we need to show KT(y) > θ̃ with high probability.

Since Ri,δ samples Ri within a factor of 1 + δ, and Ri is flat with entropy si, it follows that

Ri,δ has min-entropy at least si − log(1 + δ), and that y is sampled from a distribution with

min-entropy at least

t(1 +min(s0, s1) − log(1 + δ)). (3.16)

Since M is a pac overestimator with deviation 1/4, ∣s̃0−s0∣ ≤ 1/4 and ∣s̃1−s1∣ ≤ 1/4 with high

probability. When this happens, s̃ ≤min(s0, s1) + 1/4,

θ̃ ≤ t(min(s0, s1) + 3/4), (3.17)

and Proposition 3.4 guarantees that KT(y) > θ̃ except with probability exponentially small

in t as long as δ is a constant such that 1− log(1+δ) > 3/4. Such a positive constant δ exists.

Isomorphic Case If ω0 ≡ ω1, we need to show that KT(y) ≤ θ̃ always holds for t a

sufficiently large polynomial in n, and n sufficiently large. Recall that, since ω0 ≡ ω1, R0 and

R1 induce the same distribution, so we can view y as the concatenation of t samples from

R0. Each R0 is flat, hence has min-entropy equal to its max-entropy, and the ensemble of

all R0 (across all inputs x) is samplable by (uniform) polynomial-size circuits. The Entropy

Estimator Corollary with ∆(x) ≡ 0 then implies that KT(y) ≤ t(s0 + o(1)) holds whenever

t is a sufficiently large polynomial in n, and n is sufficiently large. In that case, KT(y) ≤
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t(s̃+ 1
4 + o(1)) < θ̃ holds because s0 ≤ s̃+1/4 follows from M being a pac overestimator for s0

with deviation 1/4. ∎

Remark 3.19. The notion of efficiency in conditions 1, and 2 can be relaxed to mean

the underlying algorithm is implementable by a family of polynomial-size circuits that is

constructible in ZPPMKTP. It is important for the argument that the circuits themselves

do not have oracle access to MKTP, but it is all right for them to be constructible in

ZPPMKTP rather than P or ZPP. For example, a sampling procedure that requires knowing

the factorization of some number (dependent on the input x) is fine because the factorization

can be computed in ZPPMKTP [ABK+06] and then can be hard-wired into the circuit.

In particular, this observation yields an alternate way to show that integer factorization

being in ZPPMKTP implies that the discrete log over prime fields is in ZPPMKTP [Rud17].

Recall that an instance of the discrete log problem consists of a triple x = (g, z, p), where g

and z are integers, and p is a prime, and the goal is to find an integer y such that gy ≡ z mod p,

or report that no such integer exists. The search version is known to reduce to the decision

version in randomized polynomial time, and the above observation shows that the decision

version is in ZPPMKTP. This is because computing the size of the subgroup of F×p generated

by g or z reduces to integer factorization, and can thus be computed in ZPPMKTP. ◂

3.5.2 Construction of Probably-Correct Overestimators

We now discuss some generic methods to satisfy condition 3 in Theorem 3.18, i.e., how to

construct a probably-approximately-correct overestimator for the quantity log(∣H ∣/∣Aut(ω)∣)

that is computable in ZPPMKTP.

Here is the generalization of the approach we used in Section 3.3.4 in the context of GI:

1. Find a list L of elements of H that generates a subgroup ⟨L⟩ of Aut(ω) such that

⟨L⟩ = Aut(ω) with high probability.
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2. Pac underestimate log ∣⟨L⟩∣ with deviation 1/8. This yields a pac underestimator for

log ∣Aut(ω)∣.

3. Pac overestimate log ∣H ∣ with deviation 1/8.

4. Return the result of step 3 minus the result of step 2. This gives a pac overestimator

for log(∣H ∣/∣Aut(ω)∣) with deviation 1/4.

Although in the setting of GI we used the oracle for MKTP only in step 1, we could use it

to facilitate steps 2 and 3 as well.

The first step for GI follows from the known search-to-decision reduction. It relies on

the fact that Colored Graph Isomorphism reduces to GI, where Colored Graph Isomorphism

allows one to assign colors to vertices with the understanding that the isomorphism needs

to preserve the colors. For all of the isomorphism problems in Table 3.1, finding a set of

generators for the automorphism group reduces to a natural colored version of the isomor-

phism problem, but it is not clear whether the colored version always reduces to the regular

version. The latter reduction is known for Linear Code Equivalence, but remains open for

problems like Permutation Group Conjugacy and Matrix Subspace Conjugacy.

However, there is a different, generic way to achieve step 1 above, namely based on

Lemma 3.3, i.e., the power of MKTP to efficiently invert on average any efficiently com-

putable function.

Lemma 3.20. Let Iso denote an isomorphism problem as in Definition 3.1 that satisfies con-

ditions 1 and 2 of Theorem 3.18, and such that products and inverses in Hx are computable

in BPPMKTP. There exists a randomized polynomial-time algorithm using oracle access to

MKTP with the following behavior: On input any instance x, and any ω ∈ Ωx, the algorithm

outputs a list of generators for a subgroup Γ of Aut(ω) such that Γ = Aut(ω) with probability

1 − 2−∣x∣.
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Proof. Consider an instance x of length n ≐ ∣x∣, and ω ∈ Ωx. We first argue that the uniform

distribution on Aut(ω) is uniformly samplable in polynomial time with oracle access to

MKTP.

Let Rω denote the random variable that maps h ∈ H to ν(h(ω)), and let M be the

machine from Lemma 3.3. As in the proof of Part 1 of Theorem 3.18, we can sample h

from H uniformly (to within a small constant factor) and run M(Rω, ν(h(ω))) to obtain,

with non-negligible probability, some h′ ∈ H such that h′(ω) = h(ω). In that case, h−1h′

is an automorphism of ω, and we say the process succeeds. The key observation is the

following: Since h′ =M(Rω, ν(h(ω))), the distribution of h′ conditioned on h only depends

on the coset of Aut(G) that h belongs to. It follows that if h were sampled perfectly

uniformly then, conditioned on success, the distribution of h−1h′ is uniform over Aut(ω). In

truth, h is sampled uniformly to within a factor 1 + δ; in that case h−1h′ is (conditioned on

success) likewise uniform on Aut(ω) to within a factor 1 + δ and, as argued in the proof of

Theorem 3.18, the probability of success is 1/poly(n/δ).

We run the process many times and retain the automorphism h−1h′ from the first success-

ful run (if any); poly(n/δ) runs suffice to obtain, with probability 1−2−2n, an automorphism

that is within a factor 1 + δ from uniform over Aut(ω). By the computability parts of con-

ditions 1 and 2, and by the condition that products and inverses in H can be computed

in BPPMKTP, each trial runs in time poly(n/δ). Success can be determined in ZPP as the

group action is computable in ZPP. It follows that the uniform distribution on Aut(ω) is

uniformly samplable in polynomial time with oracle access to MKTP.

Finally, we argue that a small number of independent samples h1, h2, . . . , hk for some

constant δ > 0 suffice to ensure that they generate all of Aut(ω) with very high probability.

Denote by Γi the subgroup of Hx generated by h1, . . . , hi. Note that Γi always is a subgroup

of Aut(ω). For i < k, if Γi is not all of Aut(ω), then ∣Γi∣ ≤ ∣Aut(ω)∣/2. Thus, with probability

at least 1
2 ⋅ 1

1+δ , hi+1 /∈ Γi, in which case ∣Γi+1∣ ≥ 2∣Γi∣. For any constant δ > 0, it follows that

k ≥ Θ(n+ log ∣Aut(ω)∣) = O(poly(n)) suffices to guarantee that Γk = Aut(ω) with probability
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at least 1 − 2−2n. The lemma follows. ∎

The second step for GI followed from the ability to efficiently compute the order of

permutation groups exactly. Efficient exact algorithms (perhaps with access to an oracle for

MKTP) are known for larger classes of groups in specific representations (see, e.g., [BBS09]

and subsequent work for matrix groups), but not for all. We work around this by showing

how to generically pac underestimate log ∣⟨L⟩∣ with small deviation (step 2), namely under

the prior conditions that only involve H, and the additional condition of a ZPP-computable

complete invariant ζ for H.

The construction hinges on the Entropy Estimator Corollary and viewing log ∣⟨L⟩∣ as the

entropy of the uniform distribution pL on ⟨L⟩.

(α) Provided that pL is samplable by circuits of polynomial size, the corollary allows us to

pac underestimate log ∣⟨L⟩∣ as KT(y)/t, where y is the concatenation of t independent

samples from pL.

(β) If we are able to uniformly sample {pL} exactly in polynomial time (possibly with access

to an oracle for MKTP), then we can evaluate the estimator KT(y)/t in polynomial

time with access to MKTP. This is because the oracle for MKTP lets us evaluate KT

in polynomial time.

Thus, if we were able to uniformly sample {pL} exactly in polynomial time, we’d be done.

We do not know how to do that, but we can do it approximately, which we argue is sufficient.

The need for a ZPP-computable complete invariant comes in when representing the

abstract group elements as strings. In order to formally state the requirement, we make the

underlying representation of group elements explicit; we denote it by η.

Lemma 3.21. Let {Hx} be an ensemble of groups. Suppose that the ensemble has a represen-

tation η such that the uniform distribution on Hx is uniformly samplable in polynomial-time,

products and inverses in Hx are computable in ZPP, and there exists a ZPP-computable com-

plete invariant for η. Then for any list L of elements of Hx, the logarithm of the order of the
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group generated by L, i.e., log ∣⟨L⟩∣, can be pac underestimated with any constant deviation

∆ > 0 in randomized time poly(∣x∣, ∣L∣) with oracle access to MKTP.

Proof. Let ζ be the ZPP-computable complete invariant for η. For each list L of elements of

Hx, let pL denote the distribution of ζ(h) when h is picked uniformly at random from ⟨L⟩.

Note that pL is flat with entropy s = log ∣⟨L⟩∣.

Claim 3.22. The ensemble of distributions {pL} is uniformly samplable in polynomial time.

For every constant δ > 0, the claim yields a family of random variables {RL,δ} computable

uniformly in polynomial time such that RL,δ induces a distribution pL,δ that approximates

pL to within a factor 1+δ. Note that the min-entropy of pL,δ is at least s− log(1+δ), and the

max-entropy of pL,δ at most s+ log(1+ δ), thus their difference is no more than 2 log(1+ δ).

Let Mδ(L) denote KT(y)/t, where y is the concatenation of t independent samples from

pL,δ.

(α) The Entropy Estimator Corollary guarantees that for any sufficiently large polynomial

t, Mδ is a pac underestimator for the entropy of pL,δ with deviation 2 log(1+ δ) + o(1),

and thus a pac underestimator for s = log ∣⟨L⟩∣ with deviation 3 log(1 + δ) + o(1).

(β) For any polynomial t, we can compute Mδ in polynomial time with access to an oracle

for MKTP. This is because RL,δ enables us to generate y in polynomial time. We then

use the oracle for MKTP to compute KT(y) exactly, and divide by t.

Thus, Mδ meets all the requirements for our estimator as long as 3 log(1 + δ) < ∆, which

holds for some positive constant δ.

This completes the proof of Lemma 3.21 modulo the proof of the claim. ∎

The proof of Claim 3.22 relies on the notion of Erdős–Rényi generators. A list of gen-

erators L = (h1, . . . , hk) is said to be Erdős–Rényi with factor 1 + δ if a random subproduct

of L approximates the uniform distribution on ⟨L⟩ within a factor 1 + δ, where a random
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subproduct is obtained by picking ri ∈ {0,1} for each i ∈ [k] uniformly at random, and

outputting hr1
1 h

r2
2 ⋯h

rk

k .

Proof of Claim 3.22. By definition, if L happens to be Erdős–Rényi with factor 1 + δ, then

pL can be sampled to within a factor 1 + δ with fewer than ∣L∣ products in Hx.

Erdős and Rényi [ER65] showed that, for any finite group Γ, with high probability, a

list of poly(log ∣Γ∣, log(1/δ)) random elements of Γ form an Erdős–Rényi list of generators

with factor 1 + δ. For Γ = ⟨L⟩, this gives a list L′ for which we can sample pL′ = pL. By

hard-wiring the list L′ into the sampler for pL′ , it follows that pL is samplable by circuits of

size poly(log ∣⟨L⟩∣, log(1/δ)) ≤ poly(∣L∣/δ).

As for uniformly sampling {pL} in polynomial time, Theorem 1.1 in [Bab91] gives a

randomized algorithm that, given L, generates a list L′ of elements from ⟨L⟩ that, with

probability 1 − ε, are Erdős–Rényi with factor 1 + δ. The running time of the algorithm is

poly(∣x∣, ∣L∣, log(1/δ), log(1/ε)) assuming products and inverses in Hx can be computed in

ZPP. For ε = δ/∣⟨L⟩∣, the overall distribution of a random subproduct of L′ is within a factor

1+ 2δ from pL, and can be generated in time poly(∣x∣, ∣L∣, log(1/δ)) ≤ poly(∣x∣, ∣L∣,1/δ). As δ

can be an arbitrary positive constant, it follows that pL is uniformly samplable in polynomial

time. ∎

Following the four steps listed at the beginning of this section, we can replace condition 3

in Theorem 3.18 by the conditions of Lemma 3.20 (for step 1), those of Lemma 3.21 (for

step 2), and the existence of an estimator for the size ∣H ∣ of the sample space as stated in

step 3. This gives the following result:

Theorem 3.23. Let Iso denote an isomorphism problem as in Definition 3.1. Suppose that

the ensemble {Hx} has a representation η such that conditions 1 and 2 of Theorem 3.18 hold

as well as the following additional conditions:

4. [Group Operations] Products and inverses in Hx are computable in ZPP.
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5. [Sample Space Estimator] The map x ↦ ∣Hx∣ has a pac overestimator with deviation

1/8 computable in ZPPMKTP.

6. [Complete Group Invariant] There exists a complete invariant ζ for the representation

η that is computable in ZPP.

Then Iso ∈ ZPPMKTP.

As was the case for Theorem 3.18, the conditions of Theorem 3.23 can be satisfied in

a straightforward way for GI. The representation η of the symmetric groups Sn meets all

the requirements that only involve the underlying group: uniform samplability as in the

first part of condition 1, efficient group operations as in condition 4, the sample space size

∣H ∣ = ∣Sn∣ = n! can be computed efficiently (condition 5), and the identity mapping can be

used as the complete group invariant ζ (condition 6). The efficiency of the action (the second

part of condition 1) and condition 2 about a complete universe invariant are also met in the

same way as before.

We remark that Claim 3.22 can be used to show that the uniform distribution on Hx

is uniformly samplable in polynomial time (the first part of condition 1), provided a set

of generators for Hx can be computed in ZPP. This constitutes another use of [Bab91,

Theorem 1.1].

On the other hand, the use of [Bab91, Theorem 1.1] in the proof of Theorem 3.23 can

be eliminated. Referring to parts (α) and (β) in the intuition and proof of Lemma 3.21, we

note the following:

(α) The first part of the proof of Claim 3.22 relies on [ER65] but not on [Bab91, Theorem

1.1]. It shows that pL is samplable by polynomial-size circuits, which is sufficient

for the Entropy Estimator Corollary to apply and show that Mδ(L) = KT(y)/t is

a pac underestimator for log ∣⟨L⟩∣ with deviation 3 log(1 + δ) + o(1), where y is the

concatenation of t independent samples from pL,δ for a sufficiently large polynomial t.
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(β) Specialized to the case where ⟨L⟩ = Aut(ω), the first part of the proof of Lemma 3.20

shows that, for any constant δ > 0, pL,δ is uniformly samplable in polynomial time with

access to an oracle for MKTP. Once we have generated y with the help of MKTP, we

use MKTP once more to evaluate KT(y) and output Mδ(L) = KT(y)/t.

This way, for any constant δ > 0 we obtain a pac underestimator Mδ for log ∣Aut(ω)∣ with

deviation 3 log(1 + δ) + o(1) that is computable in polynomial time with access to MKTP.

This alternate construction replaces steps 1 and 2 in the outline from the beginning of

this section. The resulting alternate proof of Theorem 3.23 is more elementary (as it does

not rely on [Bab91, Theorem 1.1]) but does not entirely follow the approach we used for GI

of first finding a list L of elements that likely generates Aut(ω) (and never generates more)

and then determining the size of the subgroup generated by L.

Remark 3.24. Remark 3.19 on relaxing the efficiency requirement in conditions 1 and 2 of

Theorem 3.18 extends similarly to Theorem 3.23. For Theorem 3.23, it suffices that all the

computations mentioned in conditions 1, 2, 4, and 6 be do-able by ZPPMKTP-constructible

ordinary circuits. ◂

3.6 Instantiations

In this section we argue that Theorem 3.23 applies to the example isomorphism problems

listed in Table 3.1 (other than GI, which we covered in Section 3.3). We describe each

problem, provide some background, and show that the conditions of Theorem 3.23 hold,

thus proving that the problem is in ZPPMKTP.

Linear Code Equivalence A linear code over the finite field Fq is a d-dimensional linear

subspace of Fn
q for some n. Two such codes are (permutationally) equivalent if there is a

permutation of the n coordinates that makes them equal as subspaces.
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Linear Code Equivalence is the problem of deciding whether two linear codes are equiv-

alent, where the codes are specified as the row-span of a d × n matrix (of rank d), called a

generator matrix. Note that two different inputs may represent the same code. There exists

a mapping reduction from GI to Linear Code Equivalence over any field [PR97; Gro12];

Linear Code Equivalence is generally thought to be harder than GI.

In order to cast Code Equivalence in our framework, we consider the family of actions

(Sn,Ωn,d,q) where Ωn,d,q denotes the linear codes of length n and dimension d over Fq, and

Sn acts by permuting the coordinates. To apply Theorem 3.23, as the underlying group is

Sn, we only need to check the efficiency of the action (second part of condition 1) and the

complete universe invariant (condition 2). The former holds because the action only involves

swapping columns in the generator matrix. For condition 2 we can define ν(z) to be the

reduced row echelon form of z. This choice works because two generator matrices define

the same code iff they have the same reduced row echelon form, and it can be computed in

polynomial time.

Corollary 3.25. Linear Code Equivalence is in ZPPMKTP.

Permutation Group Conjugacy Two permutation groups Γ0,Γ1 ≤ Sn are conjugate (or

permutationally isomorphic) if there exists a permutation π ∈ Sn such that Γ1 = πΓ0π−1; such

a π is called a conjugacy.

The Permutation Group Conjugacy problem is to decide whether two subgroups of Sn

are conjugate, where the subgroups are specified by a list of generators. The problem is

known to be in NP ∩ coAM, and is at least as hard as Linear Code Equivalence. Currently

the best known algorithm runs in time 2O(n) [Wie20].

Casting Permutation Group Conjugacy in the framework is similar to before: Sn acts on

the subgroup by conjugacy. The action is computable in polynomial time (second part of

condition 1) as it only involves inverting and composing permutations. It remains to check

condition 2. Note that there are many different lists that generate the same subgroup. We
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make use of the normal form provided by the following lemma.

Lemma 3.26. There is a poly(n)-time algorithm ν that takes as input a list L of elements of

Sn, and outputs a list of generators for the subgroup generated by the elements in L such that

for any two lists L0, L1 of elements of Sn that generate the same subgroup, ν(L0) = ν(L1).

The normal form from Lemma 3.26 was known to some experts (Babai, personal commu-

nication); for completeness we provide a proof in Section 3.7. By Theorem 3.23 we conclude:

Corollary 3.27. Permutation Group Conjugacy is in ZPPMKTP.

Matrix Subspace Conjugacy A linear matrix space over Fq is a d-dimensional linear

subspace of n×n matrices. Two such spaces V0 and V1 are conjugate if there is an invertible

n×n matrix X such that V1 =XV0X−1 ≐ {X ⋅M ⋅X−1 ∶M ∈ V0}, where “⋅” represents matrix

multiplication.

Matrix Subspace Conjugacy is the problem of deciding whether two linear matrix spaces

are conjugate, where the spaces are specified as the linear span of d linearly independent n×n

matrices. Many other isomorphism problems reduce to Matrix Subspace Conjugacy, and in

particular there exist mapping reductions from GI and Linear Code Equivalence to Matrix

Subspace Conjugacy [Gro12; GQ21]. Matrix Subspace Conjugacy is generally thought to be

harder than Linear Code Equivalence.

In order to cast Matrix Subspace Conjugacy in our framework, we consider the family

of actions (GLn(Fq),Ωn,d,q) where GLn(Fq) denotes the n-by-n general linear group over

Fq (consisting of all invertible n-by-n matrices over Fq with multiplication as the group

operation), Ωn,d,q represents the set of d-dimensional subspaces of Fn×n
q , and the action is by

conjugation. As was the case with Linear Code Equivalence, two inputs may represent the

same linear matrix space, and we use the reduced row echelon form of ω when viewed as a

matrix in Fd×n2
q as the complete universe invariant. This satisfies condition 2 of Theorem 3.23.

The action is computable in polynomial time (second part of condition 1) as it only involves

inverting and multiplying matrices in GLn(Fq).
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The remaining conditions only depend on the underlying group, which is different from

before, namely GLn(Fq) instead of Sn. Products and inverses in GLn(Fq) can be computed

in polynomial time (condition 4), and the identity mapping serves as the complete group in-

variant (condition 6). Thus, only the uniform sampler for GLn(Fq) (first part of condition 1)

and the pac overestimator for ∣GLn(Fq)∣ (condition 5) remain to be argued.

The standard way of constructing the elements of GLn(Fq) consists of n steps, where

the i-th step picks the i-th row as any row vector that is linearly independent of the (i −

1) prior ones. The number of choices in the i-th step is qn − qi−1. Thus, ∣GLn(Fq)∣ =

∏n
i=1(qn − qi−1), which can be computed in time poly(∣x∣) (condition 5). It also follows that

the probability that a random (n×n)-matrix over Fq is in GLn(Fq) is at least some positive

constant (independent of n and q), which implies that {Hx} can be uniformly sampled in

time poly(∣x∣), satisfying the first part of condition 1.

Corollary 3.28. Matrix Subspace Conjugacy is in ZPPMKTP.

Before closing, we note that there is an equivalent of the Lehmer code for GLn(Fq). We

do not need it for our results, but it may be of interest in other contexts. In general, Lehmer’s

approach works for indexing objects that consist of multiple components where the set of

possible values for the i-th component may depend on the values of the prior components,

but the number of possible values for the i-th component is independent of the values of

the prior components. An efficiently decodable indexing follows provided one can efficiently

index the possible values for the i-th component given the values of the prior components.

The latter is possible for GLn(Fq). We include a proof for completeness.

Proposition 3.29. For each n and prime power q, GLn(Fq) has an indexing that is uni-

formly decodable in time poly(n, log(q)).

Proof. Consider the above process. In the i-th step, we need to index the complement of the

subspace spanned by the i − 1 row vectors picked thus far, which are linearly independent.

This can be done by extending those i − 1 row vectors by n − i + 1 new row vectors to a full
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basis, and considering all qi−1 linear combinations of the i−1 row vectors already picked, and

all (qn−i+1 − 1) non-zero linear combinations of the other basis vectors, and outputting the

sum of the two components. More precisely, on input k ∈ [qn − qi−1], write k−1 as k0 +k1qi−1

where k0 and k1 are nonnegative integers with k0 < qi−1, and output v0 + v1 where v0 is the

combination of the i − 1 row vectors already picked with coefficients given by the binary

expansion of k0, and v1 is linear combination of the other basis vectors with coefficients

given by the binary expansion of k1 + 1. Using Gaussian elimination to construct the other

basis vectors, the process runs in time poly(n, log(q)). ∎

3.7 Coset Indexings and Normal Forms for

Permutation Groups

In this section we develop the efficiently decodable indexings for cosets of permutation sub-

groups claimed in Lemma 3.9, and also use some of the underlying ideas to establish the

normal form for permutation groups stated in Lemma 3.26.

Indexing Cosets The indexings are not strictly needed for our main results as the generic

encoding from the Encoding Lemma can be used as a substitute. However, the information-

theoretic optimality of the indexings may be useful in other contexts. In fact, we present a

further generalization that may be of independent interest, namely an efficiently decodable

indexing for cosets of permutation subgroups within another permutation subgroup.

Lemma 3.30. For all Γ ≤H ≤ Sn, there exists an indexing of the cosets of Γ within H that

is uniformly decodable in polynomial time when Γ and H are given by a list of generators.

Lemma 3.9 is just the instantiation of Lemma 3.30 with H = Sn.

In the following, we arbitrarily work with left (πΓ) as opposed to right (Γπ) cosets; all

our results hold for both, however, as one can switch from one statement to the other by

taking inverses. Related to this, there is an ambiguity regarding the order of application
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in the composition gh of two permutations: first apply g and then h, or vice versa. Both

interpretations are fine. For concreteness, we assume the former.

The proof of Lemma 3.30 requires some elements of the theory of permutation groups.

Given a list of permutations π1, . . . , πk ∈ Sn, we write Γ = ⟨π1, . . . , πk⟩ ≤ Sn for the subgroup

they generate. Given a permutation group Γ ≤ Sn and a point i ∈ [n], the Γ-orbit of i is the

set {g(i) ∶ g ∈ Γ}, and the Γ-stabilizer of i is the subgroup {g ∈ Γ ∶ g(i) = i} ≤ Γ.

We make use of the fact that (a) the number of cosets of a subgroup Γ of a group H

equals ∣H ∣/∣Γ∣, and (b) the orbits of a subgroup Γ of H form a refinement of the orbits of

H. We also need the following basic routines from computational group theory (see, for

example, [HEO05; Ser03]).

Proposition 3.31. Given a set of permutations that generate a subgroup Γ ≤ Sn, the fol-

lowing can be computed in time polynomial in n:

(1) the cardinality ∣Γ∣,

(2) a permutation in Γ that maps u to v for given u, v ∈ [n], or report that no such

permutation exists in Γ, and

(3) a list of generators for the subgroup Γv of Γ that stabilizes a given element v ∈ [n].

The proof of Lemma 3.30 makes implicit use of an efficient process for finding a canonical

representative of πΓ for a given permutation π ∈ H, where “canonical” means that the

representative depends on the coset πΓ only. The particular canonical representative the

process produces can be specified as follows.

Definition 3.32. For a permutation π ∈ Sn and a subgroup Γ ≤ Sn, the canonical represen-

tative of π modulo Γ, denoted π mod Γ, is the least π′ ∈ πΓ, with respect to the lexicographic

order of the sequence (π′(1), π′(2), . . . , π′(n)). ◂

The process is well-known. We spell it out in the proof of the following lemma as it

provides intuition for the proof of Lemma 3.30.
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Lemma 3.33 (Theorem 10 in [AK06]). There exists a polynomial-time algorithm that

takes as input a generating set for a subgroup Γ ≤ Sn and a permutation π ∈ Sn, and outputs

the canonical representative π mod Γ.

Proof of Lemma 3.33. Consider the element 1 of [n]. Permutations in πΓ map 1 to an

element v in the same Γ-orbit as π(1), and for every element v in the Γ-orbit of π(1) there

exists a permutation in πΓ that maps 1 to v. We can canonize the behavior of π on the

element 1 by replacing π with a permutation π1 ∈ πΓ that maps 1 to the minimum element m

in the Γ-orbit of π(1). This can be achieved by multiplying π to the right with a permutation

in Γ that maps π(1) to m.

Next we apply the same process to π1 but consider the behavior on the element 2 of [n].

Since we are no longer allowed to change the value of π1(1), which equals m, the canonization

of the behavior on 2 can only use multiplication on the right with permutations in Γm, i.e.,

permutations in Γ that stabilize the element m. Doing so results in a permutation π2 ∈ π1Γ.

We repeat this process for all elements k ∈ [n] in order. In the k-th step, we canonize

the behavior on the element k by multiplying on the right with permutations in Γπk−1([k−1]),

i.e., permutations in Γ that pointwise stabilize all of the elements πk−1(ℓ) for ℓ ∈ [k − 1]. ∎

Proof of Lemma 3.30. The number of canonical representatives modulo Γ in H equals the

number of distinct (left) cosets of Γ in H, which is ∣H ∣/∣Γ∣. We construct an algorithm that

takes as input a list of generators for Γ and H, and an index i ∈ [∣H ∣/∣Γ∣], and outputs the

permutation σ that is the lexicographically i-th canonical representative modulo Γ in H.

The algorithm uses a prefix search to construct σ. In the k-th step, it knows the prefix

(σ(1), σ(2), . . . , σ(k − 1)) of length k − 1, and needs to figure out the correct value v ∈ [n] to

extend the prefix with. In order to do so, the algorithm needs to compute for each v ∈ [n] the

count cv of canonical representatives modulo Γ in H that agree with σ on [k−1] and take the

value v at k. The following claims allow us to do that efficiently when given a permutation

σk−1 ∈ H that agrees with σ on [k − 1]. The claims use the notation Tk−1 ≐ σk−1([k − 1]),
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which also equals σ([k − 1]).

Claim 3.34. The canonical representatives modulo Γ in H that agree with σ ∈H on [k − 1]

are exactly the canonical representatives modulo ΓTk−1 in σk−1HTk−1.

Proof. The following two observations imply Claim 3.34.

(i) A permutation π ∈H agrees with σ ∈H on [k − 1]

⇔ π agrees with σk−1 on [k − 1]

⇔ σ−1
k−1π ∈HTk−1

⇔ π ∈ σk−1HTk−1 .

(ii) Two permutations in σk−1HTk−1 , say π ≐ σk−1g and π′ ≐ σk−1g′ for g, g′ ∈ HTk−1 , belong

to the same left coset of Γ iff they belong to the same left coset of ΓTk−1 . This follows

because if σk−1g′ = σk−1gh for some h ∈ Γ, then h equals g−1g′ ∈HTk−1 , so h ∈ Γ∩HTk−1 =

ΓTk−1 .

∎

Claim 3.35. The count cv for v ∈ [n] is nonzero iff v is the minimum of some ΓTk−1-orbit

contained in the HTk−1-orbit of σk−1(k).

Proof. The set of values of π(k) when π ranges over σk−1HTk−1 is the HTk−1-orbit of σk−1(k).

Since ΓTk−1 is a subgroup of HTk−1 , this orbit is the union of some ΓTk−1-orbits. Combined

with Claim 3.34 and the construction of the canonical representatives modulo ΓTk−1 , this

implies Claim 3.35. ∎

Claim 3.36. If a count cv is nonzero then it equals ∣HTk−1∪{v}∣/∣ΓTk−1∪{v}∣.

Proof. Since the count is nonzero, there exists a permutation σ′ ∈ H that is a canonical

representative modulo Γ that agrees with σk−1 on [k − 1] and satisfies σ′(k) = v. Applying

Claim 3.34 with σ replaced by σ′, k by k′ ≐ k + 1, Tk−1 by T ′k ≐ Tk−1 ∪ {v}, and σk−1 by

any permutation σ′k ∈ H that agrees with σ′ on [k], yields Claim 3.36. This is because the
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Algorithm 1
Input: positive integer n, Γ ≤H ≤ Sn, i ∈ [∣H ∣/∣Γ∣]
Output: lexicographically i-th canonical representative modulo Γ in H

1: σ0 ← id
2: for k = 1 to n do
3: O1,O2, . . . ← Γ-orbits contained in the H-orbit of σk−1(k), in increasing order of

min(Oi)
4: find integer ℓ such that ∑ℓ−1

j=1 cmin(Oj) < i ≤ ∑ℓ
j=1 cmin(Oj), where cv ≐ ∣Hv ∣/∣Γv ∣

5: i← i −∑ℓ−1
i=1 cmin(Oj)

6: m←min(Oℓ)
7: find τ ∈H such that τ(σk−1(k)) =m
8: σk ← σk−1τ
9: H ←Hm; Γ← Γm

10: return σn

number of canonical representatives modulo ΓT ′
k

in σ′kHT ′
k

equals the number of (left) cosets

of ΓT ′
k

in HT ′
k
, which is the quantity stated in Claim 3.36. ∎

The algorithm builds a sequence of permutations σ0, σ1, . . . , σn ∈ H such that σk agrees

with σ on [k]. It starts with the identity permutation σ0 = id, builds σk out of σk−1 for

increasing values of k ∈ [n], and outputs the permutation σn = σ.

Pseudocode for the algorithm is presented in Algorithm 1. Note that the pseudocode

modifies the arguments Γ, H, and i along the way. Whenever a group is referenced in the

pseudocode, the actual reference is to a list of generators for that group.

The correctness of the algorithm follows from Claims 3.35 and 3.36. The fact that the

algorithm runs in polynomial time follows from Proposition 3.31. ∎

Normal Form Finally, the canonization captured in Definition 3.32 and Lemma 3.33 is

used to establish the normal form for permutation groups given by Lemma 3.26 (restated

below):

Lemma 3.37 (Lemma 3.26, restated). There is a polynomial-time algorithm ν that takes

as input a list L of elements of Sn, and outputs a list of generators for the subgroup generated
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by the elements in L such that for any two lists L0, L1 of elements of Sn that generate the

same subgroup, ν(L0) = ν(L1).

Proof. Let Γ denote the subgroup generated by L, and recall that Γ[i] denotes the subgroup

of Γ that stabilizes each element in [i], for i ∈ {0,1, . . . , n}. We have that Γ[0] = Γ, and Γ[n−1]

consists of the identity only.

We define ν(L) as follows. Start with ν being the empty list. For i ∈ [n − 1], in the i-th

step we consider each j ∈ [n] that is in the Γ[i−1]-orbit of i in order. Note that for each such

j, the permutations in Γ[i−1] that map i to j form a coset of Γ[i−1] mod Γ[i]. We append the

canonical representative of this coset to ν. ν(L) is the value of ν after step n − 1.

As we only include permutations from Γ, ν(L) generates a subgroup of Γ. By construc-

tion, for each i ∈ [n − 1], the permutations we add in the i-th step represent all cosets of

Γ[i−1] mod Γ[i]. It follows by induction on n− i that the permutations added to ν during and

after the i-th step generate Γ[i−1] for i ∈ [n]. Thus, ν(L) generates Γ[0] = Γ.

That ν(L) only depends on the subgroup Γ generated by L follows from its definition,

which only refers to the abstract groups Γ[i], their cosets, and their canonical representatives.

That ν(L) can be computed in polynomial time follows by tracking a set of generators for the

subgroups Γ[i] based on Proposition 3.31. More specifically, we use item 2 to check whether

a given j is in the Γ[i−1]-orbit of i, and item 3 to obtain Γ[i] out of Γ[i−1] as Γ[i] = (Γ[i−1])i. ∎
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Chapter 4

Inversion Minimization

4.1 Overview

In this chapter, we present some theory developed for the comparison-query model of com-

putation. In this model, there is a set of n items. The input is an unknown ranking of the

items: one item is “first” (rank 1), another is “second” (rank 2), and so on, until the final

item which is “last” (rank n). Initially we know nothing about the ranking, and we want

to solve some problem that requires us to uncover some information about the ranking. We

may learn about the ranking through queries with a particular form: select two distinct

items, i and j, and ask, “how does the rank of i compare to the rank of j?”. The response

is either “the rank of i is less than the rank of j” or “the rank of i is more than the rank of

j”. By asking enough queries, we can distinguish any one ranking from any other; thus any

function from rankings to some codomain can be computed in this model. The question is,

for each problem of interest, how many queries are necessary and sufficient to solve it?

For some problems, we have good answers to this question.

○ The canonical example is sorting, which is tantamount to outputting the entire input

ranking. Standard algorithms such as mergesort and heapsort give an upper bound

of log2(n!) + O(n) queries. This has been improved to log2(n!) + o(n) [Ser21]. The
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folklore lower bound says that it is necessary to make at least log2(n!) queries, because

each of the n! input rankings requires a distinct execution trace, each execution trace is

determined by the results of its queries, and each query has only two possible outcomes.

○ In selection we are told a rank r, and then must identify the item with rank r. It

is known that Θ(n) comparisons are necessary and sufficient for selection [BFP+73;

DZ99; DZ01].

There is also multiple selection in which one is given multiple ranks r1, r2, . . . , rk, and

must identify the item with rank r1, the item with rank r2, etc, up to the item with

rank rk. The complexity of multiple selection is likewise known up to a Θ(n) gap

between the upper and lower bounds [KMM+05].

○ In min-heap construction, we must arrange the items as nodes in a complete binary

tree such that every node besides the root is greater than its parent. It is known that

Θ(n) comparisons are necessary and sufficient for min-heap construction. Max-heap

construction is symmetric.

All the problems above can be cast as instantiations of a general framework, known

as Partial Order Production, introduced by Schönhage [Sch76]. Here, in addition to the

unknown ranking of the items, we are given n slots as well as a known partial order on the

slots, <s. The objective of partial order production is to put each item into a slot, one item

per slot, so that whenever two slots s1, s2 are related by s1 <s s2, the item in s1 is ranked

less than the item in s2.

Sorting coincides with the case where <s is a total order. In selection of rank r, there is

a designated slot s, and there are exactly r − 1 slots s′ with s′ <s s and exactly n − r slots

s′ with s′ >s s; there are no other relations in <s. Multiple selection is similar. For heap

construction, <s matches the complete binary tree arrangement.

There is a generic lower bound for partial order production, the information-theoretic

limit. For each way of putting items into slots, the number of input rankings for which that
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way is a correct answer is bounded by e(<s), the number of ways to extend <s to a total order.

Therefore there must be at least n!/e(<s) distinct execution traces. Since each execution

trace is determined by the results of its queries, and each query has only two outcomes, we

conclude that L(<s) ≐ log2(n!/e(<s)) queries are necessary to solve partial order production.

Complementing this lower bound is an upper bound of (1 + o(1)) ⋅L(<s) +O(n) queries

[CFJ+10]. One may assume without loss of generality the relationship L(<s) ≥ n−1, in which

case O(L(<s)) queries always suffices. Thus the complexity of partial order production is

Θ(L).

Not every problem of interest is an instance of partial order production. Here are a few

examples.

○ In rank finding, there is a designated item, and we have to compute its rank. For this

it is necessary and sufficient to perform n − 1 comparisons.

○ In counting inversions, the items are arranged in some known order, independent of

the input ranking, and the objective is to count the number of inversions between that

order and the input ranking. An inversion is a pair of items such that their order in

the arrangement is opposite the order of their ranks. As we discuss later, counting

inversions has exactly the same complexity as sorting.

○ The problem of inversion parity is the same as counting inversions except that one need

only count the number of inversions modulo 2. This problem, as well as variations like

counting inversions modulo m for any m > 1, likewise turns out to have exactly the

same complexity as sorting.

For each of the problems above, information theory does not provide a satisfactory lower

bound. For example, in the inversion parity problem there are only two possible answers, so

information theory only gives a lower bound of one query, whereas the right complexity is

Θ(n logn). It so happens that for each of the preceding three examples, the query complexity

is known quite precisely; however, in each case the arguments are quite problem-specific.
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Minimum Inversions in a Tree A less well-understood problem is minimum inversions

in a tree. Following how the problem appeared in an article by Degerman in the psychology

literature [Deg82], we imagine that a clustering analysis has been done on n items, yielding

a binary tree with the items at the leaves, and we want to visualize the tree. The usual way

to visualize a tree requires that we first choose an arrangement for it, i.e., for every internal

node of the tree, what shall be the left-to-right order of its children. As an example, consider

n = 3 items, A, B, and C, that have been clustered such that A is first merged with B and then

they are merged with C. There are four possible arrangements:

A B C B A C C A B C B A

In general there are many ways to arrange the tree, and the choice can affect the utility of

the visualization. The question thus becomes how to choose the best arrangement. In the

presence of some external ranking of the items, Degerman proposes to minimize the number

of inversions between the order of the items in the arrangement and in the external ranking.

Among other benefits, note that the minimum number of inversions behaves as a measure

of correlation between the external ranking and the clustering: the smaller the number of

inversions, the more correlated the ranking and the clustering are.

There are a number of variations on this problem according to whether one wants to

find an optimal arrangement, the minimum number of inversions, or both, and according to

whether one wants to allow for more general tree shapes than just binary. When general

tree shapes are allowed, finding the optimal arrangement can be as hard as sorting. Lower

bounds for computing only the minimum number of inversions, however, is less clear. Thus

for the purposes of this chapter, we consider the following problem.

Definition 4.1. The minimum inversions in a tree problem is the following. The input

consists of a rooted tree T and a ranking of the leaves of T , and the output is the minimum

number of inversions between some arrangement of T and the input ranking. ◂
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Here is a nontrivial example.

Example 4.2. Consider the tree whose root has two children, one of which is a leaf, and the

other of which has the other n−1 leaves as its children. Here are two relevant arrangements

of the tree, where the label of each leaf is its rank in the input ranking:

r 1 2 ⋯ n r1 2 ⋯ n

Arranging the tree amounts to deciding whether to put the lone leaf before or after all the

other leaves, and then deciding how to order the others. When the rank of the lone leaf is

r, the number of inversions between the lone leaf and the others is r−1 (if placed before the

others) or n − r (if placed after). By sorting the other leaves, we can ensure that there are

zero inversions among them. The answer is thus min(r − 1, n − r). We can compute this in

n−1 comparisons by comparing the lone leaf to all the other leaves, which determines r. ◂

One way to solve minimum inversions in a tree is just to learn the entire input ranking

via a sorting algorithm. This gives an upper bound of log2(n!) + o(n) comparisons [Ser21].

As Example 4.2 shows, better algorithms can exist for specific tree shapes, but it is not clear

whether it is possible to improve over sorting in the general case.

Lower bounds, on the other hand, seem to be entirely unexplored. Information theory

does not give a convincing bound: since the number of inversions is no more than (n2), the best

lower bound one can get is log2 (n2) = 2 log2(n) −O(1). Moreover, as we see in Example 4.2,

it is possible in some cases to do significantly better than log2(n!) comparisons. Thus we

cannot hope that in general the problem will turn out to be equivalent to sorting, as is the

case for counting inversions and inversion parity.

Lower Bound Framework Toward proving lower bounds for the minimum inversions

in a tree problem, we formulate a general-purpose framework for proving lower bounds in
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the comparison model. First of all, we use the standard comparison-based decision trees to

formalize algorithms in the model. We will be interested in lower bounds for the height of

decision trees that compute various functions from the set of rankings of a fixed set of items

to some codomain. Our lower bounds for the height always come by proving lower bounds

on the number of leaves, the binary logarithm of which is a lower bound for the height.

The conceptual fulcrum in our framework is a form of certificate complexity suited to

the comparison model. Fix a decision tree and a leaf ℓ in the tree, and let Q denote the

set of queries and their results along the path from the root to ℓ. Every input ranking that

is consistent with Q of course follows this root-to-leaf path and winds up at ℓ, whence the

output is some y. In short, consistency of the input with Q implies the output is y. In this

manner, we say that Q certifies that the output is y.

Since the rankings are all orders, we can equivalently convert Q into a partial order <q

such that the consistency of a ranking with Q is equivalent to the ranking being a linear

extension of <q. That is, the set of rankings that reach ℓ is precisely the set of rankings

that extend <q. As we vary ℓ, the sets of rankings that reach ℓ form a partition of the set

of all rankings. As we just discussed, this partition satisfies two properties: first, every part

of this partition equals the set of linear extensions of some partial order; second, for every

part of the partition, the algorithm produces the same output. Since moreover the number

of parts in the partition is at most (and without loss of generality equal to) the number of

leaves in the decision tree, we are led to the following complexity measure.

Definition 4.3. Let I be a set of items. For any function Π from rankings of I to some

codomain, the partial-order certificate complexity (p.o.-certificate complexity) of Π is the

fewest number of parts in any partition Λ of the rankings of I such that

○ Π is constant on each part of Λ, and

○ for every part R of Λ, there is a partial order <q of I such that R equals the set of

rankings that extend <q.
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◂

For any problem, the partial-order certificate complexity is a lower bound on the number

of leaves in any decision tree that solves the problem. However, the partial-order certificate

complexity can be much lower than the minimum number of leaves in a decision tree solving

the problem; see Example 4.20 in Section 4.4.

From here, it suffices to prove lower bounds on the partial-order certificate complexity of

problems of interest. We present two approaches to doing so. Both proceed by considering

the effect on the output of perturbations to the input that are hard for queries to observe.

More specifically, we consider the following perturbations:

Definition 4.4. An adjacent-rank transposition is a permutation σ of the set [n] of ranks

of the form σ = (r s) with ∣r − s∣ = 1. ◂

As with any permutation of the set of ranks, adjacent-rank transpositions act on the

rankings of the items by changing the rank of each item according to the permutation.

For example, (2 3) swaps the order of the items that have ranks 2 and 3. Adjacent-rank

transpositions are the least noticeable perturbations one can apply to a ranking in the

following sense: if two rankings differ by an adjacent-rank transposition, then the only

query that distinguishes them is the query that compares the two items with the affected

ranks.

Connectivity We start with an approach that looks at connectivity in the graph with

rankings as vertices and the adjacent-rank transpositions as edges. The following lemma

states that each partition class of Λ in Definition 4.3 induces a connected subgraph of this

graph.

Lemma 4.5 (Connectivity Lemma). Let I be a set of items, and let <q be a partial order

of the items. For any two rankings that extend <q, there exists a sequence of adjacent-rank
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transpositions taking one ranking to the other such that every intermediate rankings is also

consistent with <q.

One particular consequence of the Connectivity Lemma is that whenever an algorithm

fails to distinguish a pair of rankings, it fails to distinguish a pair of rankings that differ

by an adjacent-rank transposition. This allows for a simple exposition of the lower bound

for counting inversions as well as inversion parity, as follows. Every adjacent-rank trans-

position changes the number of inversions by exactly one (up or down), so every algorithm

must distinguish every pair of rankings that differ by an adjacent-rank transposition. By

the Connectivity Lemma, this means the algorithm must in fact distinguish every pair of

rankings. Meanwhile, distinguishing every pair of rankings is equivalently sorting the input.

This and additional consequences of the Connectivity Lemma are discussed in Section 4.4.

One other consequence of the Connectivity Lemma is a lower bound for special cases of

minimizing inversions in trees. In the particular case of a perfect binary tree, the required

number of comparisons is at least log2(n!) −O(n) (Corollary 4.46). The argument relies on

fragile parity conditions that happen to hold in the case of perfect binary trees but breaks

down for more general tree shapes. We present a more robust argument with our next tool.

Sensitivity We adapt the complexity measure sensitivity from Boolean query complexity

to the comparison model. Broadly, a problem is sensitive if many ways of perturbing the

input cause a change in the output. Depending on how the input and perturbation are quan-

tified, one gets different sensitivity measures. The common intuition in query complexity

is that, as long as the perturbations are hard for queries to notice, sensitive problems will

require many queries.

We specifically study the average sensitivity to adjacent-rank transpositions. That is, the

input ranking is a uniformly random ranking, and we consider perturbing it by adjacent-rank

transpositions.
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Definition 4.6. Let I be a set of items, and let Π be any function from the rankings of I

to some codomain. For a fixed input ranking <i and adjacent-rank transposition σ, we say

that Π is sensitive to σ at <i if Π(<i) ≠ Π(σ(<i)). The average sensitivity of Π, denoted

s(Π), is the average number of adjacent-rank transpositions σ such that Π is sensitive to σ

at <i, when <i is drawn uniformly from all rankings of I. ◂

Sorting, counting inversions, and inversion parity have full sensitivity n−1 at every input

ranking <i and thus achieve the maximum average sensitivity of n−1. In contrast, selection

of rank 1 or n has sensitivity 1 at every input ranking <i, so the overall average sensitivity is

1. For selection of other ranks, the sensitivity is 2 at every input ranking <i, so the overall

average sensitivity is 2.

We show that if the average sensitivity of a problem is high, then the partial-order

certificate complexity of the problem must be high, and therefore the problem requires

many queries to compute.

Lemma 4.7 (Sensitivity Lemma). Let I be a set of n items, and let Φ ∶ [1, n] → R be

any nondecreasing convex function with Φ(k) = k! for k = 1, . . . , n. For any function Π from

the rankings of I to some codomain, every comparison-based decision tree that computes Π

must have at least
1
n

Φ(1 + s(Π)) (4.1)

leaves, and hence have height at least

log2 Φ(1 + s(Π)) − log2 n. (4.2)

For sorting, counting inversions, and inversion parity, this recovers the standard lower

bound up to a small loss. For selection, the bound is not so good, reflecting that the average

sensitivity is not always capable of proving strong lower bounds. However, a substantial

advantage of going through sensitivity is that it is can often be easier to estimate the average

sensitivity than it is to argue a query lower bound from scratch.
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Using the Sensitivity Lemma, we prove lower bounds on the complexity of minimum

inversions in a tree. We show that the sensitivity is unconditionally at least n/3 in binary

trees, which by the Sensitivity Lemma entails an Ω(n logn) lower bound for the problem.

Assuming moreover a conjecture on the so-called Gaussian binomial coefficients, we show

that the sensitivity in the case of binary trees is in fact n −O(1), and this entails a lower

bound of log2(n!) −O(logn). The conjecture is known to be true in some special cases, and

in particular the improved bound holds unconditionally in the case of a perfect binary tree.

Our results extend beyond binary trees as well.

Organization We formally introduce the comparison model in Section 4.2. Section 4.3

presents the lower bound framework, and then Sections 4.4 and 4.5 develop the Connectivity

Lemma and the Sensitivity Lemma, respectively. We give a first analysis of the sensitivity

of the minimum inversions in a tree problem in Section 4.6, and then refine the analysis in

Section 4.7.

4.2 Comparison-Query Model of Computation

In this section we formally describe the standard comparison-query model of computation.

As a query model, computational state can be understood in terms of what the computer

“knows” at various points in time.

Initially, there is some context of information that the computer knows. In the comparison

query model, the context always includes (but is not limited to) a finite set, I. The elements

of I are referred to as the items, and the size of I is denoted by n. What the computer

does not know is its input. In the comparison model, the input is always just a total order

on I. We denote the input order with the subscript i, e.g., <i. In some problems, such as

selection, there is additional information that is part of the “input”, such as the rank of the

item to select. We treat this information as part of the context.
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As time progresses, the computation evolves by querying the input and thus growing its

knowledge about it. In the comparison model, queries take the following form.

Definition 4.8. Let I be a set of items. A comparison query (or query for short) is any

ordered pair (i, j) of two distinct items i, j ∈ I.

Relative to a total order <i on I, every query has a result. If i <i j, then the result is

“<”; otherwise, i >i j, and the result is “>”. ◂

With each query, a computation learns the result of the query relative to the hidden

input and can use the result (and all past results) to determine the next query that it makes.

Eventually, the computation halts and produces an output, which can likewise depend on

all preceding results. Formally, the model is a decision tree.

Definition 4.9. Let I be a set of items. A comparison-based decision tree with queries in

I is a rooted tree extended with the following data. Every non-leaf vertex is labeled by a

comparison query with items in I and has exactly two children, one for “<” and one for “>”.

Every leaf has a piece of arbitrary data called its output label. ◂

Every comparison-based decision tree T computes a function from the set of total orders

of I to the set of output labels of its leaves. Given a total order <i as input, one starts at

the root and follows the results of the queries until one arrives at a leaf, whence T (<i) is

the output label of that leaf.

We are interested in understanding the performance of comparison-based decision trees

at solving various problems of interest. One can formalize a problem as a class Ξ of contexts,

where for each context ξ ∈ Ξ, there is a set of items Iξ, a set of outputs Oξ, and a function

Πξ from the total orders of Iξ to Oξ. To solve a problem, one provides for every ξ ∈ Ξ a

comparison-based decision tree Tξ with queries in Iξ such that Tξ computes Πξ.

Example 4.10. We demonstrate the above formalism in the case of sorting. A context for

sorting consists of a set Iξ of n items as well as a totally-ordered set Sξ of n slots. We denote
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the order on Sξ by <s. The set of outputs is the set of bijections f ∶ Iξ → Sξ. For each input

total order <i, Πξ(<i) is the bijection f such that f(i) <s f(j) holds whenever i <i j. ◂

For our purposes, we will generally fix the context and suppress notation that refers to

it. Thus we fix the set I of items and consider a “problem” as just a single function Π from

the total orders of I to some codomain. To solve a problem, one provides a single decision

tree T with queries in I that computes Π.

In this chapter, we will measure the performance of a comparison-based decision tree T

in two ways: the height of T , denoted ht(T ), and the number of leaves in T , denoted L(T ).

The height captures the worst-case number of queries that are performed over all inputs.

The number of leaves counts the number of possible executions and is useful as a proxy

toward lower bounds on the height. In particular, all our lower bounds on ht(T ) follow from

the relationship

ht(T ) ≥ log2 L(T ). (4.3)

4.3 Lower Bound Framework

In this section, we introduce the framework for our lower bounds. For the remainder of the

section, fix a set I of n items.

We begin with a shift in perspective. Rather than use the relational <i notation for the

input order, we change to a notation that makes the ranks of the items more explicit.

Definition 4.11. Let I be a set of n items. A ranking is any bijection ρ ∶ I → [n]. ◂

We refer to the elements of the codomain [n] as ranks; a ranking is thus an assignment

of a unique rank to every position. The ranks are always taken to have their usual total

order 1 < 2 < ⋯ < n. Every ranking ρ encodes a total order <i of the items according to i <i j

if and only if ρ(i) < ρ(j). For every total order of the items, there is exactly one ranking

that encodes it. Thus the set of total orders of the items is equivalently the set of rankings

of the items.
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Definition 4.12. For a set of n items I, define R(I) to be the set of rankings ρ ∶ I → [n]. ◂

Next, we note that a critical limitation of decision trees is that any two inputs that lead

to the same leaf of the tree must have the same output. That is, the decision tree cannot

distinguish the two inputs. This leads to the following notion.

Definition 4.13. Let I be a set of items, and let T be a comparison-based decision tree

with queries in I. The indistinguishability partition of T , denoted ΛT , is the partition of

R(I) where two rankings are in the same part of the partition if and only if they lead to the

same leaf of T . ◂

The function computed by T is necessarily constant on every part of ΛT . We use the

terminology part-wise constant to refer to such a function. The indistinguishability partition

in fact completely captures the complexity of T . This is because the output labels of T can

be changed at no cost, and thus T can be adapted to compute any function that is part-wise

constant on ΛT .

The following elementary relationships connect the complexity measures of T to its in-

distinguishability partition:

Fact 4.14. Let T be a comparison based decision tree, and let ΛT be its leaf partition. The

following relationships hold:

L(T ) ≥#ΛT (4.4)

ht(T ) ≥ log2 #ΛT (4.5)

where #ΛT is the number of parts in ΛT .

Proof. The first inequality follows from the definition of ΛT , and the second follows from

(4.3). ∎

Now we relate the structure of ΛT to the computation in T . Let R be one of the parts

of ΛT . Every ranking in R follows the same root-to-leaf path through T . Along that path
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is a set of queries, and for all of those queries, every ranking in R has the same result. Let

Q be the set of pairs (i, j) such that either (i, j) is a query along that path and its result

is “<”, or else (j, i) is a query along that path and its result is “>”. By construction, every

ranking ρ in R has ρ(i) < ρ(j) for every (i, j) ∈ Q. Moreover, R contains every ranking with

that property.

From here, we close Q under “logical inference”, in the sense that we add to Q any pairs

(i, j) such that ρ(i) < ρ(j) for every ρ ∈ R. The resulting set of pairs is equivalently the

partial order <q generated by i <q j whenever (i, j) ∈ Q. This leads us to the following

definitions.

Definition 4.15. Let I be a set of items, <q any partial order on I, and ρ ∈ R(I) a ranking.

We say that ρ is consistent with <q if for every i, j ∈ I with i <q j, we have ρ(i) < ρ(j). ◂

Definition 4.16. Let I be a set of items. A subset R of R(I) is partial-order describable

(p.o.-describable) if there is a partial order <q on I so that R equals the set of all the rankings

that are consistent with <q. A partition Λ of R(I) is partial-order describable if every part

of Λ is p.o.-describable. ◂

In these terms, we can summarize the previous discussion.

Fact 4.17. Let T be a comparison-based decision tree, and let ΛT be its indistinguishability

partition. Then ΛT is p.o.-describable.

As we discussed in the introduction, this leads to the partial-order certificate complexity

of a function. The following definition restates Definition 4.3 from the introduction.

Definition 4.18. Let I be a set of items, and let Π be a function from R(I) to some

codomain. The partial-order certificate complexity (p.o.-certificate complexity) of Π is the

fewest number of parts in any partial-order describable partition Λ such that Π has a part-

wise constant correct answer. ◂
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We denote the measure by Cpo-cert(Π).

Fact 4.14 implies that the p.o.-certificate complexity of a problem is a lower bound for

the complexity of decisions trees that solve that problem.

Fact 4.19. Let Π be any comparison-based problem. For any comparison-based decision tree

T that solves Π, we have

L(T ) ≥ Cpo-cert(Π) (4.6)

ht(T ) ≥ log2 (Cpo-cert(Π)) (4.7)

All of our lower bounds will ultimately be lower bounds on Cpo-cert(Π).

As we discussed in the introduction, the key players in our lower bounds are adjacent-

rank transpositions (Definition 4.4). For any ranking ρ and permutation σ ∶ [n] → [n] of

the ranks, σ ○ ρ is again a ranking. Adjacent-rank transpositions are the special case of this

where σ is the transposition of two adjacent ranks. For concision, we will drop the ‘○’ in

σ ○ ρ and just write σρ.

Before moving on, we point out one limitation of going through p.o.-certificate complexity.

As the following example shows, there are problems that have low p.o.-certificate complexity,

but for which every comparison-based decision tree has many leaves. In particular, both the

connectivity and sensitivity approaches are subject to this limitation as they both operate

by lower bounding the p.o.-certificate complexity. Nevertheless, the framework (and two

approaches) turn out to be powerful enough in several settings, in particular the one of

minimizing inversions in trees.

Example 4.20. Let Π be selection with rank r = 1 (i.e., computing the minimum). Let

Λ be the partition of R(I) according to which item is the minimum. Each part of Λ is

p.o.-describable, so Λ is as well. Since Π is (by construction) part-wise constant on Λ, we

have Cpo-cert(Π) ≤#Λ = n.

On the other hand, let us consider any decision tree T such that there exists a root-to-leaf

path through T that makes fewer than n − 1 queries. Let <q be the partial order encoding
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the queries and their results along such a path. Since there were fewer than n − 1 queries,

<q does not have a unique minimal element. It follows that there are two rankings ρ1 and

ρ2 that are both consistent with <q—both lead to the same leaf of T—yet have distinct

minimums, and hence Π is not part-wise constant on ΛT . Consequently, in any decision tree

T that computes Π, every root-to-leaf path must make at least n − 1 queries. This implies

that there must be at least 2n−1 leaves in the tree. ◂

4.4 Connectivity

In this section, we prove the Connectivity Lemma and demonstrate its utility for under-

standing the comparison model. As in previous sections, we fix a set I of n items. We start

with a proof of the Connectivity Lemma.

Proof of the Connectivity Lemma. Let <q be the partial order such that R is the set of

rankings consistent with <q, and let ρ, ρ′ ∈ R be any two rankings. We need to connect

ρ to ρ′ by a sequence of adjacent-rank transpositions so that all the intermediate steps are in

R. We do this by a recursive argument. In the base case, ρ = ρ′, where the empty sequence

suffices.

In the recursive case, ρ ≠ ρ′. Let ir ≐ ρ−1(r) for r = 1, . . . , n, and let j1, . . . , jn be defined

similarly in terms of ρ′. As sequences, both enumerate I such that every item appears

exactly once. We have depicted the sequences below to aid following the proof:

rank 1 ⋯ r − 1 r ⋯ t ⋯ s ⋯ n

ρ−1 i1 ⋯ ir−1 ⋯ it ⋯ x ⋯

ρ′−1 j1 ⋯ jr−1 x ⋯ ⋯ ⋯

Since ρ ≠ ρ′, the sequences differ. Let r be the least rank for which ir ≠ jr; hence i1 = j1,

i2 = j2, . . . , and ir−1 = jr−1. Let x = jr, and let s = ρ(x) be the rank for which is = x.

Since x /∈ {j1, . . . , jr−1} = {i1, . . . , ir−1}, it must be that s ≥ r. Because the items at rank r

do not coincide, we moreover have s > r. Fix any t with r ≤ t < s. Evidently it holds that
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ρ(it) < ρ(x). Meanwhile, since it /∈ {i1 . . . , ir−1} = {j1, . . . , jr−1}, ρ′(it) must be at least r, and

cannot equal r since it ≠ x; thus ρ′(it) > r = ρ′(x). Since ρ and ρ′ are consistent with <q, we

conclude that it and x are incomparable in <q. This holds for all t with r ≤ t < s.

This leads us to apply the sequence of adjacent-rank transpositions σt ≐ (t t + 1) for

t = s− 1, s− 2, . . . r, in that order, to ρ, producing ρ′′ ≐ σrσr+1⋯σs−1ρ. Each step moves x one

position to the left, and the displaced item moves one position to the right. Because x is

incomparable with each of ir, . . . , is−1 in <q, consistency with <q is preserved at every step.

In the end, x is in the r-th spot, and so ρ′′ agrees with ρ′ on a longer prefix. Thus we recurse

on ρ′′ and ρ′ and know that we will eventually reach the base case. ∎

The following examples demonstrate the Connectivity Lemma.

Example 4.21. Let Π be the inversion parity problem. We have in context a total order <s

of the items, and we have to decide whether the number of inversions between <s and the

input ranking ρ is even or odd.

For any ρ, applying an adjacent rank transposition to ρ either increases the number of

inversions by 1 or else decreases the number of inversions by 1; in either case, the parity

changes. It follows that for any p.o.-describable partition on which Π is part-wise constant,

there can be no two rankings ρ1 and ρ2 that differ by an adjacent-rank transposition yet

belong to the same part of the partition. By the Connectivity Lemma, the only such partition

is the trivial partition that has exactly one ranking in each part. It follows that Cpo-cert(Π) ≥

∣R(I)∣ = n!. ◂

Example 4.22. Let Π be the selection problem with rank r = ⌈n/2⌉ (i.e., finding the median).

For any ranking ρ, both of the adjacent-rank transpositions that affect rank r change the

median. All the other adjacent-rank transpositions do not change the median. Let G be the

graph whose vertex set is R(I) and with edges between ρ1 and ρ2 whenever they differ by an

adjacent rank transposition that does not affect rank r. The Connectivity Lemma implies

that every part of a p.o.-describable partition on which Π is part-wise constant must be a
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subset of a connected component in G. It follows that the p.o.-certificate complexity of Π is

at least the number of connected components in G.

Meanwhile, for any two rankings ρ1 and ρ2, they belong to the same connected component

of G if and only if they have the same median as well as the same set of items that have

rank less than r (and hence also the same set of items that have rank greater than r). As

there are n possibilities for the median, and, for each median, (n−1
r−1) possibilities for the set

of items that have rank less than r, G has n ⋅ (n−1
r−1) connected components. Thus we have

Cpo-cert(Π) ≥ n ⋅ (
n − 1
r − 1) (4.8)

= Ω(
√
n ⋅ 2n). (4.9)

In fact, the above characterization of the connected components of G implies that each

connected component of G is p.o.-describable. Thus the partition of R(I) formed by taking

connected components in G is p.o.-describable. Therefore (4.8) is actually an equality. ◂

Example 4.22 moreover shows how the Connectivity Lemma clarifies a subtlety in the

equivalence between ordinary selection and the instantiation of partial order production

that is considered equivalent to selection. Whereas selection of rank r ordinarily requires

outputting only the item of rank r, the instantiation of partial order production additionally

requires partitioning the remaining items according to whether their ranks are less than or

greater than r. The analysis in Example 4.22, however, implies that it is impossible for the

algorithm to know the item of rank r without also knowing how to partition the remaining

items into those of rank less than and greater than r. It follows that, in the comparison

model, ordinary selection and the instantiation of partial order production are equivalent.

4.5 Sensitivity

In this section we prove the Sensitivity Lemma. As in previous sections, we fix a set I of

n items. Our proof proceeds by showing that high average sensitivity implies high p.o.-
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certificate complexity.

Lemma 4.23. Let I be a set of n items, and let Φ ∶ [1, n] → R be any nondecreasing convex

function with Φ(k) = k! for k = 1, . . . , n. For any problem Π ∶ R(I) → O, the p.o.-certificate

complexity of Π is related to the average sensitivity of Π by

Cpo-cert(Π) ≥
1
n

Φ(1 + s(Π)). (4.10)

The Sensitivity Lemma follows from Lemma 4.23 by combining with Fact 4.19.

Remark 4.24. There exists a particular choice of Φ for which the Sensitivity Lemma

and Lemma 4.23 are strongest, namely

Φ(x) ≐ (x − ⌊x⌋) ⋅ (⌈x⌉!) + (1 − (x − ⌊x⌋)) ⋅ (⌊x⌋!). (4.11)

It takes the prescribed values at integral x, and the remaining values are linearly interpolated.

◂

The remainder of this section details a proof of Lemma 4.23. We take intuition from a

similar fact in the Boolean setting (cf. Exercise 8.43 from [ODo14]).

Proposition 4.25. Let B = {0,1}n be the Boolean hypercube, and let Λ be a partition of B

into subcubes. For each b ∈ B, let mb be the number of b′ that differ from b by exactly one

bit, yet belong to a different part of Λ than b. The dimension of the subcube containing b

equals n −mb. Let m ≐ Eb∼B[mb]. Then the number of parts of Λ must be at least 2m.

One way to prove this is to think of assigning to each b ∈ B as large a weight as possible

subject to ensuring that the total weight on each part of Λ is at most 1. Then the number

of parts in Λ must be at least the sum of all the weights. Since the part of Λ containing b

is a subcube of dimension n −mb, a natural choice for the weight of b is 2mb−n. Because the

function W (x) = 2x−n is convex, the total weight is at least 2n ⋅W (m), as desired.

Proof of Lemma 4.23. Fix Π, and fix a p.o.-describable partition Λ such that Π is part-wise

constant on Λ. We need to show #Λ ≥ 1/n ⋅Φ(1 + s(Π)).
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For each ranking ρ ∈ R(I), let mρ ∈ N be the number of adjacent-rank transpositions σ

such that σρ and ρ are in different parts of Λ. Let m be the average value of mρ over a

uniformly random ρ ∼ R(I). Since Π is part-wise constant on Λ, we have

s(Π) ≤ Eρ∼R(I)[mρ]

=m.
(4.12)

For a fixed part R of Λ, we need to ensure that the total weight on rankings in R is not

too large. The following claim, to be proven later, is the crux of this.

Claim 4.26. Let R be any part of Λ, and let m ∈ {0, . . . , n − 1}. The number of rankings

ρ ∈ R with mρ =m is at most n!/(m + 1)!.

Let W ∶ [0, n − 1] → R be the function W (x) = 1
n!Φ(1 + x). W is convex, and for integral

x, W (x) = (1+x)!/n!. By Claim 4.26, the number of rankings ρ in R with mρ =m is at most

1/W (m). The total weight of the rankings ρ with mρ = m is thus at most 1. By summing

over m = 0, . . . , n − 1, we obtain

∑
ρ∈R

W (mρ) ≤ n. (4.13)

Up to the factor of n, the number of parts in Λ is bounded by the sum of W (mρ) over

all ρ ∈ R(I). Thus we complete our analysis:

#Λ = ∑
R ∈Λ

1 (R ranges over the parts of Λ) (4.14)

≥ ∑
R ∈Λ

1
n
∑

ρ ∈R

W (mρ) (eq. (4.13)) (4.15)

= 1
n
∑

ρ ∈R(I)
W (mρ) (4.16)

≥ 1
n
⋅ n! ⋅W (m) (W is convex) (4.17)

≥ 1
n

Φ(1 + s(Π)). (eq. (4.12), Φ is nondecreasing) (4.18)

∎
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We now turn to proving Claim 4.26. Recall that R is the set of all rankings that are

consistent with some fixed partial order <q. In terms of <q, mρ can be interpreted as counting

the number of items i such that ρ(i) > 1 and such that the item j with ρ(j) = ρ(i) − 1 has

j <q i. We say i is a border item in that case. We also call the item of rank 1 a border item,

and no other items. Thus the number of border items is 1 +mρ. Our strategy is to give a

compressed encoding of the rankings consistent with <q such that there is more compression

as the number of border items increases. The quantitative dependence we achieved is given

in the claim statement.

Our encoding is based on the well-known algorithm that, given a partial order, computes

a ranking that is consistent with it. (This algorithm equivalently solves the problem of

topologically sorting a directed acyclic graph.) Algorithm 2 provides pseudocode for the

latter algorithm, herein named BuildRanking.

Algorithm 2
Input: A partial order <q on a set of items I
Output: A ranking of I that is consistent with <q

1: procedure BuildRanking(<q)
2: T ← ∅
3: S ← {i ∈M ∣ there is no j ∈M ∖ T with j <q i}
4: for r = 1 to n do
5: Remove an arbitrary item i from S
6: Declare i has rank r
7: Add i to T and update S to match

In our formulation, BuildRanking is nondeterministic: There is a choice to make in

Line 5 for each r = 1, . . . , n. As the choices vary, the resulting rankings vary as well, but

always the result is consistent with <q. Through suitable choices, any ranking ρ consistent

with <q is a possible output of BuildRanking. Conversely, no two distinct sequences of

choices produce the same ranking. Hence the rankings consistent with <q are in natural

bijection with the possible executions of BuildRanking.

Our encoding is a compressed description of how to make the decisions in BuildRanking

such that the output is ρ. To get the encoding efficiency we seek, the critical observation
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considers the behavior of BuildRanking with respect to border items. Note that, when

building ρ with BuildRanking, at the beginning of the r-th iteration, T contains precisely

all the items whose rank is less than r, for every r. For any border item i0, we conclude that

i0 is not in S until just before the r = ρ(i0) step. Meanwhile, for the r = ρ(i0) step, i0 is in

S, whence BuildRanking proceeds to select i = i0. In summary, as soon as a border item

enters S, it is taken out and used right away. For the purposes of decoding, this means we

need merely to be able to recognize when an item added to S is a border item; any other

information concerning border items can be discarded.

This leads to the following encoding. For each ranking ρ, form the set of items that are

not border items in ρ, and then arrange them in a sequence, Lρ, according to the order of

their ranking by ρ. Our encoding of ρ is precisely Lρ. We can recognize the border items as

those not appearing in Lρ, while the ordering information in Lρ tells us how to treat what

remains. More precisely, given a sequence L of items, our decoder makes the decision at

Line 5 of BuildRanking according to the following (mutually exclusive) rules:

1. If there are at least two items in S that do not appear in L, then abort.

2. If there is a unique item i ∈ S that does not appear in L, then select i.

3. If every item in S appears in L, and the first item i in L ∖ T is in S, then take i.

4. If every item in S appears in L, but the first item in L ∖ T is not in S, then abort.

We show below that for every ρ, running the decoder on input Lρ does not abort and

produces ρ. Thus no two rankings consistent with <q have the same encoding. Therefore, for

each m, we can bound the number of rankings for which mρ =m by the number of ordered

sequences of n −m − 1 items. The number of such sequences is precisely n!/(m + 1)!.

Proof of Claim 4.26. We have described much of the proof in the above discussion. It re-

mains to show the correctness of the decoder.
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We need to show that, for any ranking ρ consistent with <q, running the decoder on Lρ

does not abort and outputs ρ. For this it suffices to show that, in each iteration, when the

decoder applies its rules to make the decision on Line 5, it does not abort and its decision

coincides with the decision made during the execution of BuildRanking that produces ρ.

We proceed by induction on the iteration count, r. Thus fix r ∈ {1, . . . , n}, and assume

all iterations prior to the r-th are successful. Let i0 be the item with ρ(i0) = r. Since the

prior iterations succeeded, at the beginning of iteration r, T equals the set of items with

rank less than r. In particular, all the border items with rank less than r are in T , i0 is in

S, and no other item in S is a border item. We now consider two cases.

○ In the first case, i0 is a border item. In this case, rule 2 applies, and selects i = i0.

○ In the second case, i0 is not a border item. Hence, no item in S is a border item.

Moreover all the items in Lρ that precede i0 are in T , so i0 is the first item in Lρ ∖ T .

Therefore rule 3 applies and selects i = i0.

In both cases, the decoder does not abort and the decoder selects i = i0. This coincides with

the behavior of BuildRanking while building ρ, as desired. ∎

4.6 Minimizing Inversions in Trees

In this section, we apply our theory to a previously unanalyzed problem, minimum inversions

in a tree. In this problem, we are given a rooted tree, T , as well as a ranking, ρ, of its leaves.

We have the freedom to arrange T into an ordered tree.

Definition 4.27. For a rooted tree T , an arrangement of T is any way to choose, for every

node v of T , a total order of the children of v. ◂

That is, an arrangement of T is any way of turning T from an unordered rooted tree

into an ordered rooted tree. Each arrangement of T determines a traversal of T by visiting

the root and then recursing into each of its children in their order in the arrangement. By
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looking at the order in which the leaves of T are visited in the traversal, the arrangement

determines a total order on the leaves; we refer to this as the order of the leaves in the

arrangement.

With respect to the ranking ρ and an arrangement of T , an inversion is any pair of

leaves i and j for which i appears before j in the arrangement, but ρ(i) > ρ(j). In minimum

inversions in a tree, we want to compute the minimum number of inversions that exist in

some arrangement of T .

In the terms of our framework, T determines a problem ΠT . The items are the leaves of

T , and thus the inputs of ΠT are the rankings ρ of the leaves of T . We overload notation

and write R(T ) to refer to the set of rankings of the leaves of T . ΠT asks us to compute, for

each ρ ∈ R(T ), among all the arrangements of M , what is the fewest number of inversions

with respect to ρ.

ΠT is easiest when T can be arranged to put the leaves in any order. This is because it is

always possible to put the leaves in the order of their rank, and thus have no inversions. As

such, when T falls into this case, there is a comparison-based decision tree computing the

minimum number of inversions in T with zero queries. Note that while the related problem

of finding the minimizing arrangement in this case is identically sorting, we are only required

to output the number of inversions.

Trees whose leaves may be arranged into any order play an important role in our analysis,

especially as subtrees of larger trees.

Definition 4.28. A rooted tree T is freely arrangeable if every order of its leaves is the order

in some arrangement. ◂

We can characterize the freely arrangeable rooted trees. First, we envision our trees as

growing down; thus nodes are ‘under’, ‘below’, etc. their ancestors. Given a leaf of T , there

is a unique path from the root to the leaf. For a nonempty set L of leaves, the associated

paths have an initial segment in common; we refer to the last node in this segment as the

lowest common ancestor (LCA) of L, and denote it by LCA(L). A common case is the LCA
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of two (possibly indistinct) leaves ℓ1 and ℓ2, for which we often write LCA(ℓ1, ℓ2). We also

define LCA(T ) to be the LCA of all the leaves in T .

Definition 4.29. For a rooted tree T , a leaf ℓ of T , and an ancestor v of ℓ, we say that ℓ is

isolated under v if for every other leaf ℓ′ under v, we have LCA(ℓ, ℓ′) = v. ◂

Equivalently, ℓ is isolated under v if every ancestor of ℓ strictly between ℓ and v has

exactly one child.

The freely arrangeable trees are characterized as follows.

Fact 4.30. T is freely arrangeable if and only if all of its leaves are isolated under LCA(T ).

Proof. First, in the special case where T has only one leaf, there is only one order of the

leaves possible, so T is necessarily fully arrangeable. Meanwhile, LCA(T ) is the leaf, and a

leaf is always isolated under itself. Thus we can assume there are n ≥ 2 leaves, and hence

LCA(T ) is not itself a leaf.

Suppose that every leaf of T is isolated under LCA(T ). For each leaf ℓ, let uℓ be the

child of LCA(T ) that is an ancestor to ℓ. Since every leaf is isolated below LCA(T ), the uℓ’s

are all distinct. Therefore, in the traversal of T , the order in which the leaves are visited

coincides with the order of the uℓ’s in the arrangement. Since we are free to choose the

latter, T is freely arrangeable.

Suppose conversely that not every leaf of T is isolated below LCA(T ). Then there exist

leaves ℓ1, ℓ2 such that LCA(ℓ1, ℓ2) lies strictly below LCA(T ). Moreover, from the definition

of LCA(T ), there must be at least one more leaf, ℓ3, that is below a different child of LCA(T )

than LCA(ℓ1, ℓ2) is. Let u12 be the child of LCA(T ) that is an ancestor to LCA(ℓ1, ℓ2), and

let u3 be the child of LCA(T ) that is an ancestor to ℓ3. In every arrangement of T , either u12

precedes u3 or vice-versa. In the former case, both ℓ1 and ℓ2 precede ℓ3 in the arrangement;

in the latter case, ℓ3 precedes both ℓ1 and ℓ2 in the arrangement. Thus no arrangement of

T can put ℓ3 between ℓ1 and ℓ2. We conclude that T is not freely arrangeable. ∎
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When T is not freely arrangeable, ΠT seems to become substantially more complex. We

prove this using our lower bound framework. For some specific tree shapes, it suffices to

use the Connectivity Lemma; we defer a discussion on this to Subsection 4.6.2, specifically

Corollary 4.46. Our primary focus, however, will be on more general shapes, where the lower

bounds follow by analyzing the sensitivity of ΠT .

As a starting point, consider that when T is freely arrangeable, the sensitivity is zero.

One explanation for this is the following. Any adjacent-rank transposition involves the ranks

of a pair of leaves. Because M is freely arrangeable, those leaves are both isolated under their

LCA. Thus they can be freely swapped in any arrangement of T . Since swapping cancels

the action of the adjacent-rank transposition, the problem is insensitive.

This reasoning carries over to general T as well. If an adjacent-rank transposition swaps

the ranks of two leaves that are both isolated under their LCA, then ΠT is insensitive to

it. When the input ranking is uniformly random, the affected pair of leaves are themselves

uniformly random, so we are led to the following quantity.

Definition 4.31. Let T be a rooted tree. We say that two distinct leaves of T are coisolated

if they are both isolated under their LCA.

The coisolation probability of T is the probability that, when selecting two distinct leaves

uniformly at random from among all such pairs, they are coisolated. We denote the coisola-

tion probability by I(2)(T ). ◂

The preceding discussion says that when the coisolation probability of T is large, the

sensitivity of ΠT must be low. The precise relationship is the following.

Fact 4.32. For any rooted tree T , we have

s (ΠT ) ≤ (1 − I(2) (T )) ⋅ (n − 1) (4.19)

Proof. Consider sampling a ranking ρ uniformly at random, and, independently, an adjacent-

rank transposition σ uniformly at random. Let ℓ1 and ℓ2 be the two leaves whose ranks with
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respect to ρ are changed by σ. The probability that ΠT is sensitive to σ at ρ equals 1
n−1s(ΠT ).

Meanwhile, as discussed above, if ℓ1 and ℓ2 are both isolated under their LCA, then ΠT is

insensitive to σ. It follows that 1
n−1s(ΠT ) and I(2)(T ) measure the probabilities of disjoint

events, and so their sum must be at most 1. The fact now follows by rearranging. ∎

Whereas Fact 4.32 says I(2)(T ) determines an upper bound on the sensitivity, we show

that, at least in a special case, the upper bound is also not far from a lower bound. Our

proof requires us to restrict to trees in which every subtree that is not freely arrangeable has

top fan-in at most two. Freely arrangeable subtrees are still permitted arbitrary fan-in.

Theorem 4.33. Let T be a rooted tree with n leaves such that the root of every subtree

that is not freely arrangeable has at most two children. Then the average sensitivity of the

minimum number of inversions among arrangements of T satisfies

ν(T ) ≥ s(ΠT ) ≥
1
3ν(T ), (4.20)

where ν(T ) ≐ (1 − I(2)(T )) ⋅ (n − 1).

Combined with the Sensitivity Lemma we obtain the following lower bound.

Theorem 4.34. Let T be a rooted tree with n leaves such that the root of every subtree that

is not freely arrangeable has at most two children, and let Φ ∶ [1, n] → R be any nondecreasing

convex function with Φ(k) = k! for k = 1, . . . , n. Every comparison decision tree Tdec that

computes the minimum number of inversions among arrangements of T satisfies

L(Tdec) ≥
1
n

Φ(1 + 1 − I(2)(T )
3 (n − 1)) , (4.21)

and hence

ht(Tdec) ≥ log2 Φ(1 + 1 − I(2)(T )
3 (n − 1)) − log2(n). (4.22)

Before moving on to a proof of Theorem 4.34, we apply the theorem to the special case

where T is a binary tree.
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Corollary 4.35. Let T be a binary tree. Every comparison decision tree Tdec that computes

the minimum number of inversions among arrangements of T satisfies

L(Tdec) ≥
1
n
⌈n3 ⌉!, (4.23)

and hence

ht(Tdec) ≥ log2 ⌈
n

3 ⌉! − log2 n (4.24)

= Ω(n logn). (4.25)

Proof. Since T is binary, for any leaf ℓ, there is at most one other leaf ℓ′ such that ℓ and ℓ′

are coisolated. It follows that the coisolation probability for binary trees is at most 1/(n−1).

Corollary 4.35 now follows from Theorem 4.34. ∎

Thus the number of queries required to compute the minimum number of inversions in

binary trees is, up to constants, on par with sorting. Later, we will see Corollaries 4.46

and 4.49, which provide stronger bounds in special cases.

4.6.1 Proof of Theorem 4.33

The remainder of this section is dedicated to proving Theorem 4.33. We begin by observing

that ΠT can be decomposed into simpler subproblems. Recall that an arrangement of T

consists of a choice for each node v in T , how to order of the children of v. Importantly, the

choices are independent across different v. Meanwhile, for any pair of distinct leaves ℓ1, ℓ2,

whether the pair constitutes an inversion depends on exactly one of the choices, namely the

choice for v = LCA(ℓ1, ℓ2). It follows that minimizing the overall number of inversions is

equivalent to minimizing separately, for each v in T , the number of inversions whose LCA is

v.

Thus we define the following quantities, one for each v in T , that capture the subproblem

at v.
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Definition 4.36. Let T be a rooted tree, and let v be a node in T . Relative to a ranking ρ of

the leaves of T and an arrangement of T , a cross-inversion at v is any pair of distinct leaves

ℓ1, ℓ2 with LCA(ℓ1, ℓ2) = v such that ℓ1 precedes ℓ2 in the arrangement and ρ(ℓ1) > ρ(ℓ2).

Define XT,v to be the function that takes in a ranking ρ of the leaves of T and outputs

the minimum, over arrangements of T , of the number of cross-inversions at v with respect

to ρ. ◂

To emphasize, when selecting an arrangement of T , the only choice that can influence

the number of cross-inversions at v is how the arrangement orders the children of v.

The following fact formalizes the observations above.

Fact 4.37. Let T be a rooted tree. For every ranking ρ of the leaves of T , we have

ΠT (ρ) = ∑
v∈T

XT,v(ρ). (4.26)

Whereas this decomposition is manifestly useful for algorithm design, it is also useful for

studying sensitivity. This is because the application of any one adjacent-rank transposition

can change at most one term in (4.26). Namely, if the adjacent-rank transposition changes

the ranks of leaves ℓ1 and ℓ2, then only the term for v = LCA(ℓ1, ℓ2) can change.

This suggests we analyze the sensitivity on a “node-by-node basis”. To make sense of this,

we first recall the distribution used in the proof of Fact 4.32, as it will be useful throughout

the proof of Theorem 4.33.

Definition 4.38. For a rooted tree T , let DT denote the uniform distribution on pairs (ρ, σ)

where ρ is a ranking of the leaves of T and σ is an adjacent-rank transposition.

We moreover define the related random variables ℓlo and ℓhi to be the leaves of T with

ρ(ℓlo) < ρ(ℓhi) such that σ = (ρ(ℓlo) ρ(ℓhi)). We refer to these as the affected leaves of σ with

respect to ρ. ◂

As we stated in the proof of Fact 4.32, 1
n−1s(ΠT ) equals the probability that ΠT is sensitive

to σ at ρ when ρ and σ are drawn from DT . This probability can be broken up according to
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which node is LCA(ℓlo, ℓhi). Together with Fact 4.37, we have the following.

1
n − 1s(ΠT ) = ∑

v∈T
Pr [LCA(ℓlo, ℓhi) = v and ΠT (ρ) ≠ ΠT (σρ)] (4.27)

= ∑
v∈T

Pr [LCA(ℓlo, ℓhi) = v and XT,v(ρ) ≠XT,v(σρ)] (4.28)

For v that have fewer than two children, the probability constituting the v-th term above

is necessarily zero, because v can never be the LCA of two distinct leaves. Likewise, if the

subtree rooted at v is freely arrangeable, then the probability is zero, because XT,v(ρ) is

zero for every ρ. For v that do not fall into these two cases, we can decompose the v-th term

using the following quantities.

Definition 4.39. Let T be a rooted tree with n leaves, and let v be a node in T such that v

has at least two children and such that the subtree of T rooted at v is not freely arrangeable.

We name the following probabilities, where ρ, σ are drawn from DT , and ℓlo and ℓhi are the

affected leaves.

pT,v ≐ Pr[LCA(ℓlo, ℓhi) = v] (4.29)

I
(2)
T,v ≐ Pr[ℓlo and ℓhi are coisolated ∣ LCA(ℓlo, ℓhi) = v] (4.30)

ŝT,v ≐ Pr[XT,v(ρ) ≠XT,v(σρ) ∣ LCA(ℓlo, ℓhi) = v & ℓlo, ℓhi are not coisolated] (4.31)

◂

The following lemma collects the preceding discussion.

Lemma 4.40. Let T be a rooted tree with n leaves. With respect to the quantities defined

in Definition 4.39, we have

s(ΠT ) = (n − 1)∑
v

pT,v(1 − I(2)T,v)ŝT,v (4.32)

where in the sum v ranges over the nodes in T such that v has at least two children and such

that the subtree rooted at v is not freely arrangeable.
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We note also that the coisolation probability of T equals the probability that ℓlo and

ℓhi are coisolated, which is equivalently the sum of pT,v ⋅ I(2)T,v over the v in T where those

quantities are defined. In symbols, we have

I(2)(T ) = ∑
v

pT,vI
(2)
T,v , (4.33)

where again v ranges over the nodes of T such that the subtree rooted at v is not freely

arrangeable and such that v has at least two children.

From here, we analyze the quantities in Lemma 4.40. The trickiest quantities are the

ŝT,v. The following lemma establishes the bound we obtain in this section.

Lemma 4.41. Let T be a rooted tree, and let v be a node in T such that v has exactly two

children and such that the subtree rooted at v is not freely arrangeable. Then

ŝT,v ≥
1
3 (4.34)

We prove Lemma 4.41 in the next subsection. In the meantime, it is a short calculation

to prove Theorem 4.33 from Lemma 4.41.

Proof of Theorem 4.33. Lemma 4.41 says each of the quantities ŝT,v in Definition 4.39 is

bounded below by 1/3. By Lemma 4.40, we have

s(ΠT ) ≥
1
3(n − 1)∑

v

pT,v ⋅ (1 − I(2)T,v) (4.35)

= 1
3(n − 1)(1 − I(2)(T )), (4.36)

which combined with Fact 4.32 proves Theorem 4.33. ∎

4.6.2 Proof of Lemma 4.41

It now remains to prove Lemma 4.41. To analyze the quantities ŝT,v, our first step is to char-

acterize the event that underlies ŝT,v. We do this in Lemma 4.44 below. The characterization

applies to the particular case where v has exactly two children.
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In order to state Lemma 4.44, it will be helpful to have the following notation for counting

cross inversions.

Definition 4.42. Let T be a rooted tree, and let ℓ1 and ℓ2 be two distinct leaves of T . For

a ranking ρ of the leaves of T , we define

δρ (ℓ1 ∶ ℓ2) ≐

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+1 if ρ(ℓ1) < ρ(ℓ2)

−1 if ρ(ℓ1) > ρ(ℓ2)
. (4.37)

For two disjoint sets A,B of leaves, set

δρ (A ∶ B) ≐ ∑
ℓ1∈A
ℓ2∈B

δρ (ℓ1 ∶ ℓ2) . (4.38)

◂

For any arrangement of T , when ℓ1 precedes ℓ2 in the arrangement, δρ (ℓ1 ∶ ℓ2) takes

the value −1 when those leaves constitute an inversion, and takes the value +1 otherwise.

Note that δρ (ℓ1 ∶ ℓ2) = −δρ (ℓ2 ∶ ℓ1) as well as δρ (A ∶ B) = −δρ (B ∶ A). It is also true that

δρ (A ∶ B) ≡ ∣A∣∣B∣ (mod 2).

It will also be helpful to name a few other quantities associated to samples from DT .

Definition 4.43. Let T be a rooted tree. Let ρ be a ranking of the leaves of T , let σ be

an adjacent-rank transposition, let ℓlo and ℓhi be the affected leaves. Let ulo be the child of

LCA(ℓlo, ℓhi) that is an ancestor of ℓlo, and let uhi be the same with respect to ℓhi, where

note ulo ≠ uhi. We name the following sets:

○ A is the set of leaves below ulo except ℓlo.

○ B is the set of leaves below uhi except ℓhi.

○ A< is the set of leaves in A that have rank less than ρ(ℓlo).

○ A> is the set of leaves in A that have rank greater than ρ(ℓlo).
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○ B< is the set of leaves in B that have rank less than ρ(ℓhi).

○ B> is the set of leaves in B that have rank greater than ρ(ℓhi).

When ρ and σ are sampled from DT , the above sets are likewise random variables. ◂

Note that since ℓlo and ℓhi have adjacent ranks, every leaf in A is in exactly one of A< or

A>, and every leaf in B is in exactly one of B< or B>.

Lemma 4.44. Let T be a rooted tree, and let v be a node in T such that v has exactly two

children and such that the subtree rooted at v is not freely arrangeable. For any ranking ρ

of the leaves of T and any adjacent-rank transposition σ, we have XT,v(ρ) ≠XT,v(σρ) if and

only if

δρ (A ∶ B) ≠ −∣A<∣ + ∣A>∣ + ∣B<∣ − ∣B>∣, (4.39)

where the quantities in (4.39) are those defined in Definition 4.43.

Proof. Since v has exactly two children, there are only two ways to order them. XT,v is

the fewer number cross inversions among the two options. In terms of the notation in

Definition 4.42, we thus have

XT,v(ρ′) =min(∣A
+∣∣B+∣ − δρ′ (A+ ∶ B+)

2 ,
∣B+∣∣A+∣ − δρ′ (B+ ∶ A+)

2 ) , (4.40)

where A+ ≐ A ∪ {ℓlo}, and B+ ≐ B ∪ {ℓhi}. Writing the minimum as the average of its two

inputs minus half their difference, we obtain

XT,v(ρ′) =
1
2 ∣A

+∣∣B+∣ − 1
4 ∣δρ′ (A+ ∶ B+) − δρ′ (B+ ∶ A+)∣ (4.41)

= 1
2 ∣A

+∣∣B+∣ − 1
2 ∣δρ′ (A+ ∶ B+)∣ , (4.42)

where we have used that δρ′ (B+ ∶ A+) = −δρ′ (A+ ∶ B+). Restricting ρ′ to one of the values in

{ρ, σρ}, we compute the second term as follows.

δρ′ (A+ ∶ B+) = δρ′ (A ∶ B) + δρ′ (ℓlo ∶ B) + δρ′ (A ∶ ℓhi) + δρ′ (ℓlo ∶ ℓhi) (4.43)

= V − [∣B<∣ − ∣B>∣ − ∣A<∣ + ∣A>∣] + δρ′ (ℓlo ∶ ℓhi) (4.44)
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where V ≐ δρ (A ∶ B) = δσρ (A ∶ B) is independent of the choice of ρ′. It follows that the

dependence on ρ′ in XT,v(ρ′) is limited to the term δρ′ (ℓlo ∶ ℓhi) in an absolute value. Since

we have δρ (ℓlo ∶ ℓhi) = −δσρ (ℓlo ∶ ℓhi) ≠ 0, it follows that XT,v(ρ) = XT,v(σρ) if and only if the

other terms in the absolute value are zero. Up to rearranging, this is precisely (4.39). ∎

Our proof of Lemma 4.41 relies on independence among the quantities in (4.39) when

ρ and σ are drawn from DT . It is easiest to see the independence when the samples are

generated in a particular way, namely according to Sample−DT as described in Algorithm 3.

The following fact asserts the correctness of the sampler.

Fact 4.45. For every ordered tree T , Sample−DT samples DT .

Proof. Every possible execution of Sample−DT produces a valid ranking of the leaves of T , a

valid adjacent-rank transposition, and the correct pair of affected leaves. Every ranking and

adjacent-rank transposition (and thus also the pair of affected leaves) is output by exactly

one possible execution of Sample−DT . Since every possible execution is equally likely, it

follows that Sample−DT samples the uniform distribution over all pairs of rankings and

adjacent-rank transpositions, and this is precisely DT . ∎

Algorithm 3
Input: An ordered tree T with at least two leaves.
Output: A ranking ρ of the leaves of T , an adjacent-rank transposition σ, and the affected

leaves ℓlo and ℓhi, all sampled according to DT .
1: procedure Sample−DT

2: Set ℓlo, ℓhi ← uniformly random pair of distinct leaves in T
3: Set v ← LCA(ℓlo, ℓhi)
4: Set R ← a list containing every leaf of T that is below v, except for ℓlo and ℓhi, in a

uniformly random order
5: Insert the symbol ∗ at a uniformly random location in R
6: For each leaf of T not below v, insert it into R at a uniformly random location
7: Replace the ∗ in R by ℓlo and ℓhi, with ℓlo before ℓhi
8: Set ρ← the ranking where the r-th leaf in R has rank r
9: Set σ ← (ρ(ℓlo) ρ(ℓhi))

10: Output ρ, σ, ℓlo, and ℓhi
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To prove Lemma 4.41, we focus on the random choice made in Line 5 of Sample−DT .

Following the completion of Line 4, the left-hand side of (4.39) is fixed, and the right-hand

side will be determined subsequent to Line 5. By considering (4.39) modulo 2 and 4, we can

argue that ŝT,v is either necessarily 1, or else must be at least a quantity slightly less than

half when v has many nodes below it. Accounting for cases where v has few leaves below it,

we get the bound of 1/3.

Proof of Lemma 4.41. Fix v as in the lemma statement. We consider the execution of

Sample−DT when conditioning on ℓlo and ℓhi subject to LCA(ℓlo, ℓhi) = v, and conditioning

on the order for R after Line 4. The left-hand side of (4.39) is determined, while the right-

hand side depends on the choice in Line 5. Critically, as the position of the ∗ varies by one

spot, either ∣A<∣ − ∣A>∣ or ∣B<∣ − ∣B>∣ changes by exactly 2 (up or down) and the other does

not change. Thus, modulo 4, the right-hand side of (4.39) changes by exactly 2. It follows

that the left- and right-hand sides of (4.39) must be different from any particular value for

at least half of the possible executions at Line 5, rounded down. Thus we have the bound

ŝT,v ≥
1
2 −

1
2(∣A∣ + ∣B∣ + 1) . (4.45)

Since v is not freely arrangeable, we have ∣A∣ + ∣B∣ ≥ 1. By considering (4.39) modulo 2,

the left-hand side is ∣A∣∣B∣, and the right-hand side is ∣A∣ + ∣B∣. If ∣A∣ + ∣B∣ = 1, we conclude

ŝT,v = 1. Thus we can take ∣A∣ + ∣B∣ ≥ 2 in (4.45), leading to ŝT,v ≥ 1/3 as desired. ∎

In the last step of the preceding proof, we see that there are circumstances where ŝT,v

must actually equal 1, in particular whenever either ∣A∣ or ∣B∣ is odd. For trees where

these circumstances always apply, we can actually prove a strong lower bound based on the

Connectivity Lemma, with no use of our sensitivity machinery. We demonstrate this in the

case of perfect binary trees.

Corollary 4.46. Let T be a perfect binary tree with n leaves. Every comparison-based

decision tree Tdec that computes the minimum number of inversions among arrangements
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of T satisfies

L(Tdec) ≥
n!

2n/2 , (4.46)

and hence

ht(Tdec) ≥ log2(n!) − n/2. (4.47)

Compared to Corollary 4.35, the bound in Corollary 4.46 is stronger, close to the bound

obtained by Corollary 4.49, and the argument is simpler than both of those. However, unlike

Corollaries 4.35 and 4.49, the argument is fragile and does not generalize to as many tree

shapes.

Proof. Let Λ be an arbitrary partial-order describable partition of the rankings of the leaves

of T on which the minimum number of inversions, ΠT , is part-wise constant. We show that

no part of Λ can have more than 2n/2 rankings, and therefore Cpo-cert(ΠT ) must be at least

n!/2n/2. Corollary 4.46 then follows by Fact 4.19.

Let ρ be any ranking of the leaves of T and let σ be an adjacent-rank transposition. Let

ℓlo and ℓhi be the affected leaves, and let v be their LCA. If v is in the layer of T just above

the leaves (i.e., ℓlo and ℓhi are siblings), then the subtree rooted at v is freely arrangeable,

and the minimum number of inversions is the same with respect to both ρ and σρ. Therefore

we consider the case where v is in a higher layer of T .

In this case, because T is a perfect binary tree, both children of v have an even number

of leaves beneath them. In terms of Lemma 4.44, the sets A and B have odd cardinality,

since they respectively exclude ℓlo and ℓhi. Considering (4.39) modulo 2, it follows that

XT,v(ρ) ≠XT,v(σρ), and hence ΠT (ρ) ≠ ΠT (σρ). We conclude that ρ and σρ must belong to

different parts of Λ.

In other words, the only adjacent-rank transpositions that connect rankings in the same

part of Λ are those that swap two leaves that are siblings. From any ranking, there are

at most 2n/2 rankings that can be reached by such adjacent-rank transpositions. By the

Connectivity Lemma, each part of Λ has at most 2n/2 rankings in it, as desired. ∎
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4.7 Refined Sensitivity Analysis

In this section, we present a refinement to the sensitivity analysis in Section 4.6. The result

is an improvement from the multiplicative loss of 1/3 in Theorem 4.33 to an additive loss of

only O(1) under the hypothesis of a combinatorial conjecture, Conjecture 4.58.

Theorem 4.47. Let T be a rooted tree with n leaves such that the root of every subtree that

is not freely arrangeable has at most two children. Assuming Conjecture 4.58, the following

relationship holds:

ν(M) ≥ s(ΠM) ≥ ν(M) −O (1) (4.48)

where ν(M) = (1 − I(2)(T )) ⋅ (n − 1).

Conjecture 4.58 arises in the following way. In the proof of Theorem 4.47, we are led to

consider the distribution of δρ (A ∶ B) where A and B are fixed sets of leaves, and ρ is drawn

uniformly at random from rankings of A ⊔B. For Theorem 4.47, we need an upper bound

on the probability that δρ (A ∶ B) = k that is independent of k and that decreases as A or B

grows. The distribution is closely related to the Gaussian binomial coefficients, which are

important—but notoriously difficult—quantities in combinatorics. A general bound suitable

for our purposes does not seem to be known. Heuristic arguments as well as rigorous results

in special cases consistently suggest a particular bound ought to hold, and Conjecture 4.58

asserts that this bound holds in general. We discuss Conjecture 4.58 in more detail in

Subsection 4.7.3.

Because Conjecture 4.58 is known in some special cases, we can show unconditional

sensitivity lower bounds for rooted trees that satisfy additional hypotheses.

Theorem 4.48. For any constants α > 0, L ≥ 1, there is a constant c so that the following

holds. Let T be a rooted tree with n leaves such that, for every node v in T , either the subtree

rooted at v is freely arrangeable, or else v has at most two children and either

1. each child of v is an ancestor of at least an α fraction of the leaves below v, or
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2. at least one child of v has at most L leaves below it.

Then the following relationships hold:

ν(T ) ≥ s(ΠT ) ≥ ν(T ) − c, (4.49)

where ν(M) = (1 − I(2)(T )) ⋅ (n − 1).

Under the hypotheses of either theorem, lower bounds on the complexity of decision

trees that compute the minimum inversions in a rooted tree follow by composing with the

Sensitivity Lemma.

The following corollary demonstrates the strength of the bounds obtained.

Corollary 4.49. Let T be a perfect binary tree. Then any decision tree Tdec that computes

the minimum number of inversions among arrangements of T satisfies

L(Tdec) ≥ 1
n ⋅ ⌊n −O(1)⌋!

= n! ⋅ 1
nO(1)

ht(Tdec) ≥ log2 n! −O(logn).

(4.50)

Proof. The hypotheses of Theorem 4.48 apply with α = 1/2, and, as we computed in the

proof of Corollary 4.35, the coisolation probability is 1/(n − 1). Corollary 4.49 now follows

by composing Theorem 4.48 with the Sensitivity Lemma. ∎

The lower bound on the decision tree height is only a small additive amount away from

the lower bound for sorting, a significant improvement over the constant multiplicative loss

of Corollary 4.35. The argument is also extends (assuming Conjecture 4.58 if necessary) to

more general tree shapes than Corollary 4.46.

4.7.1 Proofs of Theorems 4.47 and 4.48

We now turn to proving Theorems 4.47 and 4.48. As in the proof of Theorem 4.33, we use

Lemma 4.40 to decompose the sensitivity into the simpler quantities pT,v, I(2)T,v , and ŝT,v, and
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then use the characterization in Lemma 4.44 to derive a lower bound for the quantities ŝT,v.

The proofs diverge from Theorem 4.33 in the precise lower bound on ŝT,v. The following

lemma gives the bound used for Theorems 4.47 and 4.48.

Lemma 4.50. Let T be a rooted tree, and let v be a node in T such that v has exactly two

children and such that the subtree rooted at v is not freely arrangeable. Let nv,1 and nv,2 be

the number of leaves below each child of v. Assuming that either Conjecture 4.58 holds, or

else Conditions 1 and 2 from Theorem 4.48 hold for v, there is a constant c such that

ŝT,v ≥ 1 − c√
nv,1nv2(nv,1 + nv,2)

. (4.51)

We will prove Lemma 4.50 in Subsection 4.7.2. For now, we show how to complete the

proofs of Theorems 4.47 and 4.48. At a high level, we proceed similarly to Theorem 4.33,

but some more sophistication is necessary. Whereas in Theorem 4.33 we bounded each ŝT,v

by the worst-case over all v, doing so here would miss out on the fact that the lower bound

from Lemma 4.50 is close to 1 when v has many leaves. Since the quantities pT,v weight the

v with more leaves higher than those with fewer leaves, we can expect to capitalize on this

asymptotic behavior.

Proof of Theorem 4.47. From Lemma 4.40 we have

s(ΠT ) = (n − 1)∑
v

pT,v(1 − I(2)T,v)ŝT,v (4.52)

= (n − 1)(1 − I(2)(T )) − (n − 1)∑
v

pT,v(1 − I(2)T,v)(1 − ŝT,v) (4.53)

where the sums range over all the nodes v in T such that v has exactly two children and

such that the subtree rooted at v is not freely arrangeable.

For each such v, let nv,1 and nv,2 be the number of leaves below each child of v. We
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bound the second term in (4.53) according to the following relationships.

pT,v =
nv,1nv,2

(n2)
(4.54)

I
(2)
T,v ≥ 0 (4.55)

ŝT,v ≥ 1 − c√
nv,1nv,2(nv,1 + nv,2)

(4.56)

(4.54) counts how many pairs of leaves have v as their LCA over the total number of pairs

of leaves. (4.55) is trivial. (4.56) is Lemma 4.50.

Plugging these into (4.53), we have

s(ΠT ) ≥ (n − 1)(1 − I(2)(T )) − 2c
n
∑
v

√
nv,1nv,2

nv,1 + nv,2
. (4.57)

The following bound then completes the theorem.

Claim 4.51. There is a constant c′, independent of T , such that

∑
v

√
nv,1nv,2

nv,1 + nv,2
≤ c′n. (4.58)

Plugged into (4.57), we have

s(ΠT ) ≥ (n − 1)(1 − I(2)(T )) − 2cc′ (4.59)

as desired. ∎

It remains to prove Claim 4.51.

Proof of Claim 4.51. For each node w of T , let Tw be the subtree rooted at w, and let nw

be the number of leaves below w. We show that the following holds for all w in T

∑
v∈Tw

√
nv,1nv,2

nv,1 + nv,2
≤ (1 +

√
2

2 )nw − (
1 +
√

2
2 )√nw (4.60)

where the sum ranges over v ∈ Tw that have exactly two children and such that the subtree

rooted at v is not freely arrangeable. Claim 4.51 follows from the case where w is the root

of T .
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We show (4.60) by structural induction on Tw. The base case is when Tw is freely

arrangeable, such as when w is a leaf. In this case, the left-hand side of (4.60) is zero and

the right-hand side is non-negative, so (4.60) holds. For the inductive step, Tw is not freely

arrangeable. We branch into two cases. In the first case, w has only one child, w′. In this

case, the left- and right-hand sides of (4.60) are the same for w as w′. (4.60) for w therefore

follows from the inductive hypothesis on w′. In the second case, w has exactly two children.

There is thus a term where v = w on the left-hand side of (4.60). The remaining terms

in that sum can be grouped according to which child of w is an ancestor of v. These two

groups have the form (4.60) where the root is the relevant child of w. Applying the inductive

hypotheses to those groups, we have the following.

∑
v∈Tw

√
nv,1nv,2

nv,1 + nv,2
≤
√

nw,1nw,2

nw,1 + nw,2
(4.61)

+ (1 +
√

2
2 )nw,1 − (

1 +
√

2
2 )√nw,1

+ (1 +
√

2
2 )nw,2 − (

1 +
√

2
2 )√nw,2

= (1 +
√

2
2 )nw − (

1 +
√

2
2 )√nw ⋅ F (

nw,1

nw

) (4.62)

where

F (x) ≐
√
x +
√

1 − x − (2
√

2 − 2)
√
x(1 − x). (4.63)

From here, it suffices for F (x) to be at least 1 for all x with 0 ≤ x ≤ 1. Because F is

continuous, it attains a minimum on [0,1]. On (0,1), F is differentiable, and its derivative

vanishes only at

x ∈ {1
8 (4 −

√
7 + 4
√

2) , 1
2 ,

1
8 (4 +

√
7 + 4
√

2)} . (4.64)

Thus its minimum is at one of those points or at x = 0 or x = 1. For x ∈ {0,1/2,1}, F (x) = 1,

while for the other two x, F (x) ≈ 1.0177 > 1. ∎
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4.7.2 Proof of Lemma 4.50

In this subsection we prove Lemma 4.50. Actually, we prove a variant, Lemma 4.54, that

does not assume Conjecture 4.58 nor Conditions 1 and 2 from Theorem 4.48, and instead

concludes with a more technical bound on ŝT,v. Conjecture 4.58 translates the latter into the

form asserted by Lemma 4.50. Conditions 1 and 2 from Theorem 4.48 capture conditions

under which Conjecture 4.58 is known to hold, and hence the same translation goes through.

In order to state Lemma 4.54, we need the following definitions.

Definition 4.52. For any two positive integers a, b ≥ 0 and any integer k, define

g(a, b, k) ≐ Pr [δρ (A ∶ B) = k] (4.65)

where A and B are an arbitrary pair of disjoint sets of items with ∣A∣ = a and ∣B∣ = b, and ρ

is a uniformly random ranking A ⊔B → [a + b]. ◂

Definition 4.53. For any real number η ∈ (0,1) and positive integers â, b̂ ≥ 0, define

γη (â, b̂) ≐ max
a,b

max
k

g(a, b, k) (4.66)

where a and b range over integers satisfying ηâ ≤ a ≤ â and ηb̂ ≤ b ≤ b̂, and k ranges over the

integers. ◂

Lemma 4.54. Let T be a rooted tree, and let v be a node in T such that v has exactly two

children and such that the subtree rooted at v is not freely arrangeable. Let nv,1 and nv,2 be

the number of leaves below each child of v.

○ If min(nv,1, nv,2) = 1, then ŝT,v ≥ 1 − 1
m where m =max(nv,1, nv,2).

○ If min(nv,1, nv,2) ≥ 2, then ŝT,v ≥ 1 − γ1/4 (nv,1 − 1, nv,2 − 1).

We treat the min(nv,1, nv,2) = 1 case separately from the rest because the bound in the

min(nv,1, nv,2) ≥ 2 case degenerates if either of nv,1−1 or nv,2−1 becomes zero. In particular,
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if min(â, b̂) is zero, then 1− γ1/4 (â, b̂) is 0, independent of max(â, b̂). We would rather have

a lower bound on ŝT,v that goes to 1 as max(nv,1, nv,2) grows.

When min(nv,1, nv,2) = 1, Lemma 4.50 follows directly from Lemma 4.54. Otherwise, as

explained above, we bound γ1/4 (nv,1 − 1, nv,2 − 1) using either Conjecture 4.58 or its proven

special cases. The bounds are formalized in Fact 4.59 and Theorem 4.60 in Subsection 4.7.3.

The remainder of this subsection is dedicated to proving Lemma 4.54. As in the proof of

Lemma 4.41, we base our analysis on the characterization in Lemma 4.44. In the case where

min(nv,1, nv,2) = 1, we proceed along similar lines as the proof of Lemma 4.41. Here is the

proof when nv,1 = 1; the case where nv,2 = 1 is symmetric.

Proof of Lemma 4.54, when nv,1 = 1. Consider sampling a ranking ρ and an adjacent-rank

transposition σ from DT , in particular via Sample−DT . For any fixed execution up through

Line 4, we study the effect of the randomness in Line 5 in regards to the condition (4.39)

from Lemma 4.44. After Line 5, it is determined whether (4.39) holds.

Since we have nv,1 = 1, either A or B is empty, and the other has size nv,2 − 1. Thus

δ(A,B) is zero, and

−∣A<∣ + ∣A>∣ + ∣B<∣ − ∣B>∣ = (nv,2 − 1) − 2k (4.67)

for some integer k with 0 ≤ k ≤ nv,2 − 1 that is determined by Line 5. In particular, k is

uniformly random on all the integers in that range. Since there is at most one value of k

such that (nv,2 − 1) − 2k = 0, we conclude via Lemma 4.44 that ŝT,v ≥ 1 − 1/nv,2. ∎

In the case min(nv,1, nv,2) ≥ 2, we approach (4.39) from a different direction. Whereas

previously we made use of the randomness in the right-hand side when the left-hand side is

fixed, we instead make use of the randomness in the left-hand side while the right-hand side

is fixed. In order to do this effectively, it is useful to expand on (4.39). The following lemma

formulates this.

Lemma 4.55. Let T be a rooted tree, and let v be a node in T such that v has exactly two

children and such that the subtree rooted at v is not freely arrangeable. For any ranking ρ
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of the leaves of T and any adjacent-rank transposition σ, we have XT,v(ρ) ≠XT,v(σρ) if and

only if

δρ (A< ∶ B<) + δρ (A> ∶ B>) ≠ −∣A<∣∣B>∣ + ∣A>∣∣B<∣ − ∣A<∣ + ∣A>∣ + ∣B<∣ − ∣B>∣, (4.68)

where the quantities in (4.68) are those defined in Definition 4.43.

Proof. This follows from Lemma 4.44 and the identity

δρ (A ∶ B) = δρ (A< ∶ B<) + ∣A<∣∣B>∣ − ∣A>∣∣B<∣ + δρ (A> ∶ B>) . (4.69)

∎

Now, recall Sample−DT (Algorithm 3) from Subsection 4.6.2. The condition (4.68) is

determined upon completion of Line 5. The elements of A and B that precede the ∗ in R

respectively constitute A< and B<, and δρ (A< ∶ B<) is determined by how those elements are

interleaved; similarly, A>, B>, and δρ (A> ∶ B>) are determined by the contents of R following

the ∗. In particular, conditioned on A< and B<, δρ (A< ∶ B<) is distributed identically to

δρ′ (A< ∶ B<) when ρ′ is a uniformly random ranking of A< ⊔ B<, and, similarly, we know

the distribution of δρ (A> ∶ B>) conditioned on A> and B>. Moreover, they are independent.

Thus, conditioned on A<, A>, B<, and B>, δρ (A< ∶ B<)+δρ (A> ∶ B>) is distributed identically

to δρ′ (A< ∶ B<) + δρ′′ (A> ∶ B>) where ρ′ and ρ′′ are independent uniformly random rankings

of A< ⊔B< and A> ⊔B>, respectively. In this way, we can fix the right-hand side of (4.68)

and leave the left-hand side comprehensibly random.

This leads to the following analysis for ŝT,v. As above, we condition on A<, A>, B<,

and B>, and consider the left-hand side of (4.68). If we are in a case where both A< and

B< both make up at least an η-fraction of A and B, respectively, then the probability that

δρ (A< ∶ B<) takes on any particular value is bounded by γη (∣A∣, ∣B∣) = γη (nv,1 − 1, nv,2 − 1).

Since δρ (A< ∶ B<) and δρ (A> ∶ B>) are independent, the same bound carries over to their

sum, and Lemma 4.54 follows in this case. Similarly, Lemma 4.54 follows if both A> and B>

make up at least an η-fraction of A and B.
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Since A< and A> partition A, one or the other contains an η-fraction of A for any η ≤ 1/2.

The same holds with respect to B<, B>, and B. It follows that one of the preceding cases

applies, except for when either both A< and B> are too small, or else both A> and B< are

too small. In these cases, however, the complementary sets are large, and we take another

look at (4.68): on the right-hand side, we have a term, ∣A>∣∣B<∣ or ∣A>∣∣B<∣, respectively, that

is large in magnitude compared to all the others, even the terms on the left-hand side. In

particular, when η is a small enough constant, we can show that the right-hand side of (4.68)

always exceeds the left-hand side in absolute value. Thus in the exceptional cases, XT,v is

in fact sensitive with probability 1.

Here is the formal proof.

Proof of Lemma 4.54, when nv,1 ≥ 2 and nv,2 ≥ 2. Let v be as in the lemma statement, and

let η be a sufficiently small constant to be determined later. We consider sampling from

DT conditioned on LCA(ℓlo, ℓhi) = v and that ℓlo and ℓhi are not coisolated. Recalling the

random variables in Definition 4.43, we let E denote the collective outcome for ℓlo, ℓhi, A,

A<, A>, B, B<, and B>. Using Lemma 4.55, we write

ŝT,v = 1 −∑
E0

Pr[E = E0]Pr [δρ (A< ∶ B<) + δρ (A> ∶ B>) = k0 ∣ E = E0] (4.70)

≥ 1 −max
E0

Pr [δρ (A< ∶ B<) + δρ (A> ∶ B>) = k0 ∣ E = E0] (4.71)

where E0 ranges over the possible outcomes for E, and

k0 ≐ −∣A<∣∣B>∣ + ∣A>∣∣B<∣ − ∣A<∣ + ∣A>∣ + ∣B<∣ − ∣B>∣ (4.72)

is the right-hand side of (4.68). Let q(E0) be the probability in the max in (4.71). We bound

(4.71) below by separately bounding each q(E0) above.

We begin by considering the case where ∣A<∣ ≥ η∣A∣ and ∣B<∣ ≥ η∣B∣. As mentioned in the

discussion preceding this proof, when we condition on E = E0, δρ (A< ∶ B<) is independent

of δρ (A> ∶ B>), and the probability that δρ (A< ∶ B<) takes on the value k is g(∣A<∣, ∣B<∣, k).
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Thus we have

q(E0) = ∑
k

Pr[δρ (A< ∶ B<) = k and δρ (A> ∶ B>) = k0 − k ∣ E = E0] (4.73)

= ∑
k

g(∣A<∣, ∣B<∣, k) ⋅Pr[δρ (A> ∶ B>) = k0 − k ∣ E = E0] (4.74)

≤max
k
g(∣A<∣, ∣B<∣, k) (4.75)

≤ γη (∣A∣, ∣B∣) . (4.76)

The case where ∣A>∣ ≥ η∣A∣ and ∣B>∣ ≥ η∣B∣ is symmetric, and concludes with the same bound.

Next, we consider the case where ∣A<∣ ≤ η∣A∣ and ∣B>∣ ≤ η∣B∣. Writing ∣A<∣ = ηA∣A∣ and

∣B>∣ = ηB ∣B∣, we have ηA ≤ η and ηB ≤ η. Under the hypothesis that η ≤ 1/2, we have

∣δρ (A< ∶ B<) + δρ (A> ∶ B>) ∣ ≤ ∣A<∣∣B<∣ + ∣A>∣∣B>∣ (4.77)

= (ηA(1 − ηB) + (1 − ηA)ηB) ∣A∣∣B∣ (4.78)

≤ 2η(1 − η)∣A∣∣B∣. (4.79)

There is also the bound

k0 ≥ −η2∣A∣∣B∣ + (1 − η)2∣A∣∣B∣ − η∣A∣ + (1 − η)∣A∣ + (1 − η)∣B∣ − η∣B∣ (4.80)

= (1 − 2η) ⋅ (∣A∣∣B∣ + ∣A∣ + ∣B∣). (4.81)

Since {∣A∣, ∣B∣} = {nv,1 − 1, nv,2 − 1} and min(nv,1, nv,2) ≥ 2, both ∣A∣ and ∣B∣ are strictly

positive. It follows that, for any η such that 2η(1−η) ≤ (1−2η), i.e., for any η ∈ (0,1− 1
2
√

2],

we have the strict inequality δρ (A< ∶ B<) + δρ (A> ∶ B>) < k0. Consequently, in this case,

q(E0) = 0. Similarly, in the case where ∣A>∣ ≤ η∣A∣ and ∣B<∣ ≤ η∣B∣, k0 is bounded above by

−(1 − 2η)(∣A∣∣B∣ + ∣A∣ + ∣B∣), so δρ (A< ∶ B<) + δρ (A> ∶ B>) > k0, and again we have q(E0) = 0.

Finally, as long as η ≤ 1/2, it holds that either ∣A<∣ ≥ η∣A∣ or ∣A>∣ ≥ η∣A∣, and either

∣B<∣ ≥ η∣B∣ or ∣B>∣ ≥ η∣B∣. Distributing the “and” over the “or”, we obtain the four cases

just discussed. In each case we have q(E0) ≤ γη (nv,1 − 1, nv,2 − 1), provided η satisfies all the

requisite bounds. The most stringent is η ≤ 1 − 1
2
√

2 ≈ 0.29289. Lemma 4.54 (which uses

η = 1/4 for simplicity) now follows from (4.71). ∎
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4.7.3 A Conjecture on the Gaussian Binomial Coefficients

Finally, we discuss the conjecture that underlies Theorems 4.47 and 4.48. It concerns the

so-called Gaussian binomial coefficients.

Definition 4.56. For natural numbers a, b, k, the (a, b, k)-th Gaussian binomial coefficient,

denoted by G(a, b, k), is the coefficient of qk in the polynomial

ψa,b(q) ≐
ϕa+b(q)

ϕa(q)ϕb(q)
(4.82)

where

ϕk(q) = (1)(1 + q1)(1 + q1 + q2)⋯(1 + q1 +⋯ + qk−1) (4.83)

with ϕ0(q) = ϕ1(q) = 1. ◂

Each ψa,b is indeed a polynomial as can be seen by observing that the family satisfies the

following recurrence:

ψa,b(q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if a = 0 or b = 0

ψa−1,b(q) + qa ⋅ ψa,b−1(q) if a > 0 and b > 0
(4.84)

The recurrence can also be used to show that G(a, b, k) is zero except for k = 0, . . . , ab, where

G(a, b, k) is a positive integer.

One interpretation of G(a, b, k) is that it counts the number of ways to walk from the

origin to (a, b) with steps (0,1) or (1,0), and with an area of k between the path taken

(treating each step as a line segment) and the horizontal axis. Another understanding—more

relevant to this chapter—is that they count the number of rankings with a fixed number of

inversions.

Fact 4.57. Let a and b be non-negative integers, and let k be an integer with 0 ≤ k ≤ ab. Then

G(a, b, k) counts the number of rankings ρ ∶ [a + b] → [a + b] with the following properties:

○ ρ(1) < ρ(2) < ⋯ < ρ(a),



169

○ ρ(a + 1) < ρ(a + 2) < ⋯ < ρ(a + b), and

○ The number of pairs i, j ∈ [a + b] with i < j but ρ(i) > ρ(j) is exactly k.

For fixed a, b, the sum over k of G(a, b, k) is (a+b
a
). Thus the quantities G(a, b, k)/(a+b

a
)

determine a probability distribution over choices of k. Indeed, we have

G(a, b, k)
(a+b

a
)
= g(a, b, ab − 2k), (4.85)

where g(a, b, ab−2k) is the quantity in Definition 4.52. We are interested in an upper bound

on the probability of any single outcome, independent of k. If a = 0 or b = 0, then there are

no nontrivial bounds, but for our purposes it suffices to study the case where both a and b

are positive.

It can be verified from (4.84) that the distribution has mean ab/2 and variance 1
12ab(a +

b + 1). It is known that for any sequence of choices of (a, b) in which both a and b grow

unboundedly, the limiting distribution is a normal distribution [MW47; Tak86]. Thus “in

the limit” G(a, b, k) coincides with the probability that a normal distribution with the same

mean and variance takes a value near k. The maximum density of that distribution is
√

1
2π

√
12

ab(a + b + 1) , (4.86)

and we expect that to be approximately an upper bound when a and b are large. Meanwhile,

in the extremal case where a = 1, we have G(a, b, k) = 1 for all k = 0, . . . , b, in which case

the distribution is uniform with maximum probability 1/(b + 1). Again, (4.86) is an upper

bound, up to a constant factor. The following conjecture asserts that in fact (4.86) holds up

to a constant factor for all a, b ≥ 1.

Conjecture 4.58. There is a constant c so that, for all a, b ≥ 1, and all 0 ≤ k ≤ ab,

G(a, b, k) ≤ c√
ab(a + b + 1)

(a + b
a
). (4.87)

Existing results suffice to prove this conjecture under the additional hypothesis that

min(a, b) ≤ L (where c depends L) [SZ16], as well as separately under the hypothesis that
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min(a, b) ≥ α ⋅ (a + b) for some α > 0 (where c depends on α) [MPP20]. All together, the

evidence points toward a positive resolution of Conjecture 4.58.

We used Conjecture 4.58 and its proven special cases in Subsection 4.7.2 to bound the

quantities γ1/4 (nv,1 − 1, nv,2 − 1) in Lemma 4.54. We conclude with the proofs of the two

bounds.

Fact 4.59. Assuming Conjecture 4.58, for every η ∈ (0,1), there is a constant c > 0 such

that for every â, b̂ ≥ 1, we have

γη (â, b̂) ≤
c√

(1 + â)(1 + b̂)(2 + â + b̂)
. (4.88)

Proof of Fact 4.59. Fix integers a, b such that ηâ ≤ a ≤ â and ηb̂ ≤ b ≤ b̂. Since a and b are

integers and ηâ and ηb̂ are positive, we have a ≥ 1 and b ≥ 1. It follows that a + 1 ≤ 2a,

b + 1 ≤ 2b, and 2 + a + b ≤ 2(a + b + 1). We also have (1 + a)/η ≥ 1 + â, (1 + b)/η ≥ 1 + b̂, and

(2 + a + b)/η ≥ (2 + â + b̂). Let c0 be the constant guaranteed by Conjecture 4.58. Then we

have the following chain of inequalities.

G(a, b, r) ≤ c0√
ab(a + b + 1)

⋅ (a + b
a
) (4.89)

≤ 2
√

2c0√
(1 + a)(1 + b)(2 + a + b)

⋅ (a + b
a
) (4.90)

≤ 2
√

2c0/η3/2
√
(1 + â)(1 + b̂)(2 + â + b̂)

⋅ (a + b
a
) (4.91)

Taking c = 2
√

2c0/η3/2 completes the proof. ∎

Theorem 4.60. For any constants α > 0, L ≥ 1, and η > 0, there is a constant c such that

the following holds. For any â, b̂ ≥ 1 such that either

○ min(1 + â,1 + b̂) ≤ L, or

○ min(1 + â,1 + b̂) ≥ α ⋅ (2 + â + b̂),
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we have

γη (â, b̂) ≤
c√

(1 + â)(1 + b̂)(2 + â + b̂)
. (4.92)

Proof of Theorem 4.60. Fix α, L, η, â, and b̂ as in the theorem statement.

We first consider the case where min(1 + â,1 + b̂) ≤ L. For every a and b with ηâ ≤ a ≤ â

and ηb̂ ≤ b ≤ b̂, we have min(a, b) ≤ min(â, b̂) ≤ L − 1. Given that, Theorem 2.4 in [SZ16]

states that there is a constant c1, depending on L, so that the following holds.

G(a, b, r) ≤ c1

max(a, b) ⋅ (
a + b
a
) (4.93)

Since we have a ≥ ηâ, b ≥ ηb̂, â ≥ 1, and b̂ ≥ 1, we may write

max(a, b) ≥ ηmax(â, b̂) (4.94)

≥ η2 max(1 + â,1 + b̂) (4.95)

≥ η

2
√

2

√
max(1 + â,1 + b̂) ⋅

√
2 + â + b̂ (4.96)

where the last inequality uses that the maximum of two numbers is at least their average.

Plugging into (4.93) we obtain

G(a, b, r) ≤
2
√

2c1

√
min(1 + â,1 + b̂)/η

√
(1 + â)(1 + b̂)(2 + â + b̂)

⋅ (a + b
a
) (4.97)

≤ 2
√

2c1
√
L/η√

(1 + â)(1 + b̂)(2 + â + b̂)
⋅ (a + b

a
). (4.98)

Thus the theorem holds true in this case as long as c ≥ 2
√

2c1
√
L/η.

Next we consider the case where min(â, b̂) ≥ α ⋅(â+ b̂). First, since min(1+ â,1+ b̂) ≥ 2, we

assume without loss of generality that α ≥ 2/(â + b̂ + 2) ≥ 1/(â + b̂). We also assume without

loss of generality that α ≤ 1/2. With that in mind, we set α′ ≐ 2α2, and derive

min(â, b̂) ≥ α ⋅ (â + b̂ + 2) − 1 (4.99)

= α′ ⋅ (â + b̂) + (α(â + b̂) − 1) (1 − 2α) (4.100)

≥ α′(â + b̂). (4.101)
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Now, for every a and b with ηâ ≤ a ≤ â and ηb̂ ≤ b ≤ b̂, it holds that

min(a, b) ≥ ηmin(â, b̂) ≥ α′η(â + b̂) ≥ α′η(a + b). (4.102)

Given that, Theorem 1 from [MPP20] implies that there is a constant c2, depending on α′η

(hence only on α and η), so that

G(a, b, r) ≤ c2

ab
⋅ (a + b)

a+b

aabb
. (4.103)

From Stirling’s approximation, there is a constant c3 so that

(a + b)a+b

aabb
≤ c3

√
ab

a + b ⋅ (
a + b
a
). (4.104)

Together with (4.103), we have

G(a, b, r) ≤ c2c3√
ab(a + b)

⋅ (a + b
a
). (4.105)

Since a ≥ ηâ, b ≥ ηb̂, â ≥ 1, and b̂ ≥ 1, we obtain

G(a, b, r) ≤ c2c3/η3/2
√
âb̂(â + b̂)

⋅ (a + b
a
) (4.106)

≤ 2
√

2c2c3/η3/2
√
(1 + â)(1 + b̂)(2 + â + b̂)

⋅ (a + b
a
). (4.107)

The theorem thus holds in this case as long as c ≥ 2
√

2c2c3/η3/2.

Taking c =max(2
√

2c1
√
L/η,2

√
2c2c3/η3/2) satisfies both cases, proving the theorem. ∎
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