
MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM,
AND RELATED PROBLEMS∗

ERIC ALLENDER† , JOSHUA A. GROCHOW‡ , DIETER VAN MELKEBEEK§ ,

CRISTOPHER MOORE¶, AND ANDREW MORGAN§

Abstract. We study the computational power of deciding whether a given truth-table can be
described by a circuit of a given size (the Minimum Circuit Size Problem, or MCSP for short), and
of the variant denoted MKTP where circuit size is replaced by a polynomially-related Kolmogorov
measure. Prior to our work, all reductions from supposedly-intractable problems to MCSP / MKTP
hinged on the power of MCSP / MKTP to distinguish random distributions from distributions
produced by hardness-based pseudorandom generator constructions. We develop a fundamentally
different approach inspired by the well-known interactive proof system for the complement of Graph
Isomorphism (GI). It yields a randomized reduction with zero-sided error from GI to MKTP. We
generalize the result and show that GI can be replaced by any isomorphism problem for which the
underlying group satisfies some elementary properties. Instantiations include Linear Code Equiva-
lence, Permutation Group Conjugacy, and Matrix Subspace Conjugacy. Along the way we develop
encodings of isomorphism classes that are efficiently decodable and achieve compression that is at or
near the information-theoretic optimum; those encodings may be of independent interest.

Key words. Reductions between NP-intermediate problems, Graph Isomorphism, Minimum
Circuit Size Problem, time-bounded Kolmogorov complexity

AMS subject classifications. 68Q15, 68Q17, 68Q30

1. Introduction. Finding a circuit of minimum size that computes a given
Boolean function constitutes the overarching goal in nonuniform complexity theory. It
defines an interesting computational problem in its own right, the complexity of which
depends on the way the Boolean function is specified. A generic and natural, albeit
verbose, way to specify a Boolean function is via its truth-table. The corresponding
decision problem is known as the Minimum Circuit Size Problem (MCSP): Given a
truth-table and a threshold θ, does there exist a Boolean circuit of size at most θ that
computes the Boolean function specified by the truth-table? The interest in MCSP
dates back to the dawn of theoretical computer science [42]. It continues today partly
due to the fundamental nature of the problem, and partly because of the work on
natural proofs and the connections between pseudorandomness and computational
hardness.

A closely related problem from Kolmogorov complexity theory is the Minimum
KT Problem (MKTP), which deals with compression in the form of efficient programs
instead of circuits. Rather than asking if the input has a small circuit when interpreted
as the truth-table of a Boolean function, MKTP asks if the input has a small program
that produces each individual bit of the input quickly. To be more specific, let us fix
a universal Turing machine U . We consider descriptions of the input string x in the
form of a program d such that, for every bit position i, U on input d and i outputs

∗Submitted to the editors 21 November 2017. An extended abstract of this paper appeared in
the Proceedings of the 9th Innovations in Theoretical Computer Science Conference (ITCS’18) [3].
†Rutgers University, Piscataway, NJ, USA (allender@cs.rutgers.edu). The research of this author

was supported by NSF grants CCF-1555409 and CCF-1514164.
‡University of Colorado at Boulder, Boulder, CO, USA (jgrochow@colorado.edu). The research

of this author was supported by an Omidyar Fellowship from the Santa Fe Institute and NSF grants
DMS-1750319 and DMS-1622390.
§University of Wisconsin–Madison, Madison, WI, USA (dieter@cs.wisc.edu,

amorgan@cs.wisc.edu). The research of these authors was supported by NSF grant CCF-1319822.
¶Santa Fe Institute, Santa Fe, NM, USA (moore@santafe.edu).

1

mailto:allender@cs.rutgers.edu
mailto:jgrochow@colorado.edu
mailto:dieter@cs.wisc.edu
mailto:amorgan@cs.wisc.edu
mailto:moore@santafe.edu


2 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

the i-th bit of x in T steps. The KT cost of such a description is defined as |d| + T ,
i.e., the bit-length of the program plus the running time. The KT complexity of x,
denoted KT(x), is the minimum KT cost of a description of x. KT(x) is polynomially
related to the circuit complexity of x when viewed as a truth-table (see Section 2.1 for
a more formal treatment). On input a string x and an integer θ, MKTP asks whether
KT(x) ≤ θ.

Both MCSP and MKTP are in NP but are not known to be in P or NP-complete.
As such, they are two prominent candidates for NP-intermediate status. Others in-
clude factoring integers, discrete log over prime fields, graph isomorphism (GI), and
a number of similar isomorphism problems.

Whereas NP-complete problems all reduce one to another, even under fairly simple
reductions, less is known about the relative difficulty of presumed NP-intermediate
problems. Regarding MCSP and MKTP, despite their apparent similarity, it is not
known whether one reduces to the other. Factoring integers and discrete log over prime
fields are known to reduce to both MCSP and MKTP under randomized reductions
with zero-sided error [1, 39]. Recently, Allender and Das [2] showed that GI and all of
SZK (Statistical Zero Knowledge) reduce to both under randomized reductions with
bounded error.

Those reductions and, in fact, all reductions of supposedly-intractable problems
to MCSP / MKTP prior to our work proceed along the same well-trodden path.
Namely, MCSP / MKTP is used as an efficient statistical test to distinguish random
distributions from pseudorandom distributions, where the pseudorandom distribution
arises from a hardness-based pseudorandom generator construction. In particular, [28]
employs the construction based on the hardness of factoring Blum integers, [1, 2, 5, 39]
use the construction from [24] based on the existence of one-way functions, and [1, 13]
make use of the Nisan-Wigderson construction [35]. The property that MCSP /
MKTP breaks the construction implies that the underlying hardness assumption fails
relative to MCSP / MKTP, and thus that the supposedly hard problem reduces to
MCSP / MKTP.

Contributions. The main conceptual contribution of our paper is a fundamentally
different way of constructing reductions to MKTP based on a novel use of known in-
teractive proof systems. Our approach applies to GI and a broad class of isomorphism
problems. A common framework for those isomorphism problems is another concep-
tual contribution. In terms of results, our new approach allows us to eliminate the
errors in the recent reductions from GI to MKTP, and more generally to establish
zero-sided error randomized reductions to MKTP from many isomorphism problems
within our framework. These include Linear Code Equivalence, Matrix Subspace
Conjugacy, and Permutation Group Conjugacy (see Section 6 for the definitions).
The technical contributions mainly consist of encodings of isomorphism classes that
are efficiently decodable and achieve compression that is at or near the information-
theoretic optimum.

Before describing the underlying ideas, we note that our techniques remain of
interest even in light of the recent quasi-polynomial-time algorithm for GI [8]. For
one, GI is still not known to be in P, and Group Isomorphism stands as a significant
obstacle to this (as stated at the end of [8]). More importantly, our techniques also
apply to the other isomorphism problems mentioned above, for which the current best
algorithms are still exponential.

Let us also provide some evidence that our approach for constructing reductions
to MKTP differs in an important way from the existing ones. We claim that the
existing approach can only yield zero-sided error reductions to MKTP from problems



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 3

that are in NP ∩ coNP, a class that neither GI nor any of the other isomorphism
problems mentioned above are known to reside in. The reason for the claim is that
the underlying hardness assumptions are fundamentally average-case,1 which implies
that the reduction can have both false positives and false negatives. For example, in
the papers employing the construction from [24], MKTP is used in a subroutine to
invert a polynomial-time-computable function (see Lemma 2.2 in Section 2.1), and the
subroutine may fail to find an inverse. Given a reliable but imperfect subroutine, the
traditional way to eliminate false positives is to use the subroutine for constructing an
efficiently verifiable membership witness, and only accept after verifying its validity.
As such, the existence of a traditional reduction without false positives from a language
L to MKTP implies that L ∈ NP. Similarly, a traditional reduction from L to MKTP
without false negatives is only possible if L ∈ coNP, and zero-sided error is only
possible if L ∈ NP ∩ coNP.

Main Idea. Instead of using the oracle for MKTP in the construction of a candi-
date witness and then verifying the validity of the candidate without the oracle, we
use the power of the oracle in the verification process. This obviates the need for the
language L to be in NP ∩ coNP in the case of reductions with zero-sided error.

Let us explain how to implement this idea for L = GI. Recall that an instance
of GI consists of a pair (G0, G1) of graphs on the vertex set [n], and the question is
whether G0 ≡ G1, i.e., whether there exists a permutation π ∈ Sn such that G1 =
π(G0), where π(G0) denotes the result of applying the permutation π to the vertices
of G0. In order to develop a zero-sided error algorithm for GI, it suffices to develop
one without false negatives. This is because the false positives can subsequently be
eliminated using the known search-to-decision reduction for GI [32].

The crux for obtaining a reduction without false negatives from GI to MKTP
is a witness system for the complement GI inspired by the well-known two-round
interactive proof system for GI [19]. Consider the distribution RG(π)

.
= π(G) where

π ∈ Sn is chosen uniformly at random. By the Orbit–Stabilizer Theorem, for any fixed
G, RG is uniform over a set of size N

.
= n!/|Aut(G)| and thus has entropy s = log(N),

where Aut(G)
.
= {π ∈ Sn : π(G) = G} denotes the set of automorphisms of G. For

ease of exposition, let us assume that |Aut(G0)| = |Aut(G1)| (which is actually
the hardest case for GI), so both RG0

and RG1
have the same entropy s. Consider

picking r ∈ {0, 1} uniformly at random, and setting G = Gr. If (G0, G1) ∈ GI, the
distributions RG0 , RG1 , and RG are all identical, and therefore RG also has entropy
s. On the other hand, if (G0, G1) 6∈ GI, the entropy of RG equals s+ 1. The extra bit
of information corresponds to the fact that in the nonisomorphic case each sample of
RG reveals the value of r that was used, whereas that bit gets lost in the reduction
in the isomorphic case.

The difference in entropy suggests that a typical sample of RG can be compressed
more in the isomorphic case than in the nonisomorphic case. If we can compute some
threshold such that KT(RG) never exceeds the threshold in the isomorphic case,
and exceeds it with nonnegligible probability in the nonisomorphic case, we have
the witness system for GI that we aimed for: Take a sample from RG, and use the
oracle for MKTP to check that it cannot be compressed at or below the threshold.
The entropy difference of 1 may be too small to discern, but we can amplify the
difference by taking multiple samples and concatenating them. Thus, we end up with
a randomized mapping reduction of the following form, where t denotes the number

1In some settings worst-case to average-case reductions are known, but these reductions are
themselves randomized with two-sided error.



4 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

of samples and θ the threshold:

(1.1)
Pick r

.
= r1 . . . rt ∈ {0, 1}t and πi ∈ Sn for i ∈ [t], uniformly at random.

Output (y, θ) where y
.
= y1 . . . yt and yi

.
= πi(Gri).

We need to analyze how to set the threshold θ and argue correctness for a value
of t that is polynomially bounded. In order to do so, let us first consider the case
where the graphs G0 and G1 are rigid, i.e., they have no nontrivial automorphisms,
or equivalently, s = log(n!).

◦ If G0 6≡ G1, the string y contains all of the information about the random
string r and the t random permutations π1, . . . , πt, which amounts to ts+ t =
t(s+ 1) bits of information. This implies that y has KT-complexity close to
t(s+ 1) with high probability.

◦ If G0 ≡ G1, then we can efficiently produce each bit of y from the adjacency
matrix representation of G0 (n2 bits) and the function table of permutations
τi ∈ Sn (for i ∈ [t]) such that yi

.
= πi(Gri) = τi(G0). Moreover, the set of all

permutations Sn allows an efficiently decodable indexing, i.e., there exists an
efficient algorithm that takes an index k ∈ [n!] and outputs the function table
of the k-th permutation in Sn according to some ordering. An example of
such an indexing is the Lehmer code (see, e.g., [31, pp. 12-13] for specifics).
This shows that

(1.2) KT(y) ≤ tdse+ (n+ log(t))c

for some constant c, where the first term represents the cost of the t indices
of dse bits each, and the second term represents the cost of the n2 bits for
the adjacency matrix of G0 and the polynomial running time of the decoding
process.

If we ignore the difference between s and dse, the right-hand side of (1.2) becomes
ts+ nc, which is closer to ts than to t(s+ 1) for t any sufficiently large polynomial in
n, say t = nc+1. Thus, setting θ halfway between ts and t(s + 1), i.e., θ

.
= t(s + 1

2 ),
ensures that KT(y) > θ holds with high probability if G0 6≡ G1, and never holds
if G0 ≡ G1. This yields the desired randomized mapping reduction without false
negatives, modulo the rounding issue of s to dse. The latter can be handled by
aggregating the permutations τi into blocks so as to make the amortized cost of
rounding negligible. The details are captured in the Blocking Lemma of Section 3.1.

What changes in the case of non-rigid graphs? For ease of exposition, let us again
assume that |Aut(G0)| = |Aut(G1)|. There are two complications:

(i) We no longer know how to efficiently compute the threshold θ
.
= t(s + 1

2 )
because s

.
= log(N) where N

.
= n!/|Aut(G0)| = n!/|Aut(G1)| involves the

size of the automorphism group.
(ii) The Lehmer code no longer provides sufficient compression in the isomorphic

case as it requires log(n!) bits per permutation whereas we only have s to
spend, which could be considerably less than log(n!).

In order to resolve (ii) we develop an efficiently decodable indexing of cosets for any
subgroup of Sn given by a list of generators (see Lemma 3.4 in Section 3.2). In
fact, our scheme even works for cosets of a subgroup within another subgroup of Sn, a
generalization that may be of independent interest (see Lemma A.1 in the Appendix).
Applying our scheme to Aut(G) and including a minimal list of generators for Aut(G)
in the description of the program p allows us to maintain (1.2).

Regarding (i), we can deduce a good approximation to the threshold with high
probability by taking, for both choices of r ∈ {0, 1}, a polynomial number of samples



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 5

of RGr
and using the oracle for MKTP to compute the exact KT-complexity of their

concatenation. This leads to a randomized reduction from GI to MKTP with bounded
error (from which one without false positives follows as mentioned before), reproving
the earlier result of [2] using our new approach (see Remark 3.5 in Section 3.2 for
more details).

In order to avoid false negatives, we need to improve the above approximation
algorithm such that it never produces a value that is too small, while maintaining
efficiency and the property that it outputs a good approximation with high probability.
In order to do so, it suffices to develop a probably-correct overestimator for the quantity
n!/|Aut(G)|, i.e., a randomized algorithm that takes as input an n-vertex graph G,
produces the correct quantity with high probability, and never produces a value that
is too small; the algorithm should run in polynomial time with access to an oracle
for MKTP. Equivalently, it suffices to develop a probably-correct underestimator of
similar complexity for |Aut(G)|.

The latter can be obtained from the known search-to-decision procedures for GI,
and answering the oracle calls to GI using the above two-sided error reduction from
GI to MKTP. There are a number of ways to implement this strategy; here is one
that generalizes to a number of other isomorphism problems including Linear Code
Equivalence.

1. Find a list of permutations that generates a subgroup of Aut(G) such that
the subgroup equals Aut(G) with high probability.
Finding a list of generators for Aut(G) deterministically reduces to GI (see,
e. g., [32, implicit in sections 1.2–1.3]).2 Substituting the oracle for GI by a
two-sided error algorithm yields a list of permutations that generates Aut(G)
with high probability, and always produces a subgroup of Aut(G). The latter
property follows from the inner workings of the reduction, or can be imposed
explicitly by checking every permutation produced and dropping it if it does
not map G to itself. We use the above randomized reduction from GI to
MKTP as the two-sided error algorithm for GI.

2. Compute the order of the subgroup generated by those permutations.
There is a known deterministic polynomial-time algorithm to do this (see,
e. g., [41]).

The resulting probably-correct underestimator for |Aut(G)| runs in polynomial time
with access to an oracle for MKTP. Plugging it into our approach, we obtain a
randomized reduction from GI to MKTP without false negatives. A reduction with
zero-sided error follows as discussed earlier.

Before applying our approach to other isomorphism problems, let us point out
the important role that the Orbit–Stabilizer Theorem plays. A randomized algorithm
for finding generators for a graph’s automorphism group yields a probably-correct
underestimator for the size of the automorphism group, as well as a randomized algo-
rithm for GI without false positives. The Orbit–Stabilizer Theorem allows us to turn
a probably-correct underestimator for |Aut(G)| into a probably-correct overestimator
for the size of the support of RG, thereby switching the error from one side to the
other, and allowing us to avoid false negatives instead of false positives.

2Briefly, suppose the vertices of G are 1, 2, . . . , n. By appropriately coloring vertices of two
separate copies of G, one may query, for each u = 1, 2, . . . , n and each v = u + 1, u + 2, . . . , n,
whether there is an automorphism of G that fixes 1, 2, . . . , u − 1 and sends u to v. Moreover,
whenever such an automorphism exists, it may be constructed efficiently through further refinement
of the colors and use of oracle queries to GI, as in the standard search-to-decision reduction for GI.
Such a collection of automorphisms generates Aut(G).



6 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

General Framework. Our approach extends to several other isomorphism prob-
lems. They can be cast in the following common framework, parameterized by an
underlying family of group actions (Ω, H) where H is a group that acts on the uni-
verse Ω. We typically think of the elements of Ω as abstract objects, which need to
be described in string format in order to be input to a computer; we let ω(z) denote
the abstract object represented by the string z.

Definition 1.1 (Isomorphism Problem). An instance of an Isomorphism Prob-
lem consists of a pair x = (x0, x1) that determines a universe Ωx and a group Hx that
acts on Ωx such that ω0(x)

.
= ω(x0) and ω1(x)

.
= ω(x1) belong to Ωx. Each h ∈ Hx

is identified with the permutation h : Ωx → Ωx induced by the action. The goal is to
determine whether there exists h ∈ Hx such that h(ω0(x)) = ω1(x).

When it causes no confusion, we drop the argument x and simply write H, Ω, ω0,
and ω1. We often blur the—sometimes pedantic—distinction between z and ω(z).
For example, in GI, each z is an n × n binary matrix (a string of length n2), and
represents the abstract object ω(z) of a graph with n labeled vertices; thus, in this
case the correspondence between z and ω(z) is a bijection. The group H is the
symmetric group Sn, and the action is by permuting the labels.

Table 1 summarizes how the problems we mentioned earlier can be cast in the
framework (see Section 6 for details about the last three).

Problem H Ω
Graph Isomorphism Sn graphs with n labeled vertices

Linear Code Equivalence Sn subspaces of dimension d in Fnq
Permutation Group Conjugacy Sn subgroups of Sn

Matrix Subspace Conjugacy GLn(Fq) subspaces of dimension d in Fn×nq
Table 1

Instantiations of the Isomorphism Problem

We generalize our construction for GI to any Isomorphism Problem by replacing
RG(π)

.
= π(G) where π ∈ Sn is chosen uniformly at random, by Rω(h)

.
= h(ω) where

h ∈ H is chosen uniformly at random. The analysis that the construction yields
a randomized reduction without false negatives from the Isomorphism Problem to
MKTP carries over, provided that the Isomorphism Problem satisfies the following
properties.

1. The underlying group H is efficiently samplable, and the action (ω, h) 7→ h(ω)
is efficiently computable. We need this property in order to make sure the
reduction is efficient.

2. There is an efficiently computable normal form for representing elements of
Ω as strings. This property trivially holds in the setting of GI as there is a
unique adjacency matrix that represents any given graph on the vertex set [n].
However, uniqueness of representation need not hold in general. Consider,
for example, Permutation Group Conjugacy. An instance of this problem
abstractly consists of two permutation groups (Γ0,Γ1), represented (as usual)
by a sequence of elements of Sn generating each group. In that case there
are many strings representing the same abstract object, i.e., a subgroup has
many different sets of generators.
For the correctness analysis in the isomorphic case it is important that H acts
on the abstract objects, and not on the binary strings that represent them.
In particular, the output of the reduction should only depend on the abstract



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 7

object h(ω), and not on the way ω was provided as input. This is because the
latter may leak information about the value of the bit r that was picked. The
desired independence can be guaranteed by applying a normal form to the
representation before outputting the result. In the case of Permutation Group
Conjugacy, this means transforming a set of permutations that generate a
subgroup Γ into a canonical set of generators for Γ.
In fact, it suffices to have an efficiently computable complete invariant for Ω,
i.e., a mapping from representations of objects from Ω to strings such that
the image only depends on the abstract object, and is different for different
abstract objects.

3. There exists a probably-correct overestimator for N
.
= |H|/|Aut(ω)| that

is computable efficiently with access to an oracle for MKTP. We need this
property to set the threshold θ

.
= t(s+ 1

2 ) with s
.
= log(N) correctly.

4. There exists an encoding for cosets of Aut(ω) in H that achieves KT-com-
plexity close to the information-theoretic optimum (see Section 2.2 for the
definition of an encoding). This property ensures that in the isomorphic case
the KT-complexity is never much larger than the entropy.

Properties 1 and 2 are fairly basic. Property 4 may seem to require an instantiation-
dependent approach. However, in Section 4 we develop a generic hashing-based en-
coding scheme that meets the requirements. In fact, we give a nearly-optimal encod-
ing scheme for any samplable distribution that is almost flat, without reference to
isomorphism. Unlike the indexings from Lemma 3.4, the generic construction does
not achieve the information-theoretic optimum, but it comes sufficiently close for our
purposes.

The notion of a probably-correct overestimator in Property 3 can be further re-
laxed to that of a probably-approximately-correct overestimator, or pac overestimator
for short. This is a randomized algorithm that with high probability outputs a value
within an absolute deviation bound of ∆ from the correct value, and never produces
a value that is more than ∆ below the correct value. More precisely, it suffices
to efficiently compute with access to an oracle for MKTP a pac overestimator for
s
.
= log(|H|/|Aut(ω)|) with deviation ∆ = 1/4. The relaxation suffices because of the

difference of about 1/2 between the threshold θ and the actual KT-values in both the
isomorphic and the non-isomorphic case. As s = log |H| − log |Aut(ω)|, it suffices to
have a pac overestimator for log |H| and a pac underestimator for log |Aut(ω)|, both
to within deviation ∆/2 = 1/8 and of the required efficiency.

Generalizing our approach for GI, one way to obtain the desired underestimator
for log |Aut(ω)| is by showing how to efficiently compute with access to an oracle for
MKTP:

(a) a list L of elements of H that generates a subgroup 〈L〉 of Aut(ω) such that
〈L〉 = Aut(ω) with high probability, and

(b) a pac underestimator for log |〈L〉|, the logarithm of the order of the subgroup
generated by a given list L of elements of H.

Further mimicking our approach for GI, we know how to achieve (a) when the Iso-
morphism Problem allows a search-to-decision reduction. Such a reduction is known
for Linear Code Equivalence, but remains open for problems like Matrix Subspace
Conjugacy and Permutation Group Conjugacy. However, we show that (a) holds for
a generic isomorphism problem provided that products and inverses in H can be
computed efficiently (see Lemma 5.4 in Section 5.2). The proof hinges on the abil-
ity of MKTP to break the pseudo-random generator construction of [24] based on a
purported one-way function (Lemma 2.2 in Section 2.1).



8 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

As for (b), we know how to efficiently compute the order of the subgroup exactly
in the case of permutation groups (H = Sn), even without an oracle for MKTP,
and in the case of many matrix groups over finite fields (H = GLn(Fq)) with oracle
access to MKTP, but some cases remain open (see footnote 6 in Section 5.2 for more
details). Instead, we show how to generically construct a pac underestimator with
small deviation given access to MKTP as long as products and inverses in H can be
computed efficiently, and H allows an efficient complete invariant (see Lemma 5.5 in
Section 5.2). The first two conditions are sufficient to efficiently generate a distribution
p̃ on 〈L〉 that is uniform to within a small relative deviation [7]. The entropy s̃ of
that distribution equals log |〈L〉| to within a small additive deviation. As p̃ is almost
flat, our encoding scheme from Section 4 shows that p̃ has an encoding whose length
does not exceed s̃ by much, and that can be decoded by small circuits. Given an
efficient complete invariant for H, we can use an approach similar to the one we used
to approximate the threshold θ to construct a pac underestimator for s̃ with small
additive deviation, namely the amortized KT-complexity of the concatenation of a
polynomial number of samples from p̃. With access to an oracle for MKTP we can
efficiently evaluate KT. As a result, we obtain a pac underestimator for log |〈L〉| with
a small additive deviation that is efficiently computable with oracle access to MKTP.

The above ingredients allow us to conclude that all of the isomorphism problems
in Table 1 reduce to MKTP under randomized reductions without false negatives.
Moreover, we argue that Properties 1 and 2 are sufficient to generalize the construc-
tion of Allender and Das [2], which yields randomized reductions of the isomorphism
problem to MKTP without false positives (irrespective of whether a search-to-decision
reduction is known). By combining both reductions, we conclude that all of the iso-
morphism problems in Table 1 reduce to MKTP under randomized reductions with
zero-sided error. See Sections 5 and 6 for more details.

Open Problems. The difference in compressibility between the isomorphic and
non-isomorphic case is relatively small. As such, our approach is fairly delicate.
Although we believe it yields zero-sided error reductions to MCSP as well, we currently
do not know whether that is the case. An open problem in the other direction is to
develop zero-error reductions from all of SZK to MKTP. We refer to Section 7 for
further discussion and other future research directions.

2. Preliminaries. We assume familiarity with standard complexity theory, in-
cluding the bounded-error randomized polynomial-time complexity classes BPP (two-
sided error), RP (one-sided error, i.e., no false positives), and ZPP (zero-sided error,
i.e., no false positives, no false negatives, and bounded probability of no output). In
the remainder of this section we provide more details about KT-complexity, formally
define the related notions of indexing and encoding, and review some background on
graph isomorphism.

2.1. KT Complexity. The measure KT that we informally described in Sec-
tion 1, was introduced and formally defined as follows in [1]. We refer to that paper
for more background and motivation for the particular definition.

Definition 2.1 (KT). Let U be a universal Turing machine. For each string x,
define KTU (x) to be

min{ |d|+ T : (∀σ ∈ {0, 1, ∗}) (∀i ≤ |x|+ 1) Ud(i, σ) accepts in T steps iff xi = σ }.

We define xi = ∗ if i > |x|; thus, for i = |x| + 1 the machine accepts iff σ = ∗. The
notation Ud indicates that the machine U has random access to the description d.



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 9

KT(x) is defined to be equal to KTU (x) for a fixed choice of universal machine U
with logarithmic simulation time overhead [1, Proposition 5]. In particular, if d
consists of the description of a Turing machine M that runs in time TM (n) and
some auxiliary information a such that Ma(i) = xi for i ∈ [n], then KT(x) ≤
|a| + cMTM (log n) log(TM (log n)), where n

.
= |x| and cM is a constant depending

on M . It follows that (µ/ log n)Ω(1) ≤ KT(x) ≤ (µ · log n)O(1) where µ represents the
circuit complexity of the mapping i 7→ xi [1, Theorem 11].

The Minimum KT Problem is defined as MKTP
.
= {(x, θ) | KT(x) ≤ θ}. [1]

showed that an oracle for MKTP is sufficient to invert on average any function that
can be computed efficiently. We use the following formulation:

Lemma 2.2 (follows from Theorem 45 in [1]). There exists a polynomial-time
probabilistic Turing machine M using oracle access to MKTP so that the following
holds. For any circuit C on n input bits,

Pr [C(τ) = C(σ)] ≥ 1/ poly(n) where τ
.
= M(C,C(σ)),

and the probability is over the uniform distribution of σ ∈ {0, 1}n and the internal
coin flips of M .

2.2. Random Variables, Samplers, Indexings and Encodings. A finite
probability space consists of a finite sample space S, and a probability distribution
p on S. Typical sample spaces include finite groups and finite sets of strings. The
probability distributions underlying our probability spaces are always uniform.

A random variable R is a mapping from the sample space S to a set T , which
typically is the universe Ω of a group action or a set of strings. The random variable
R with the uniform distribution on S induces a distribution p on T . We sometimes
use R to denote the induced distribution p as well.

The support of a distribution p on a set T is the set of elements τ ∈ T with
positive probability p(τ). A distribution is flat if it is uniform on its support. The
entropy of a distribution p is the expected value of log(1/p(τ)). The min-entropy of
p is the largest real s such that p(τ) ≤ 2−s for every τ in the support of p. The
max-entropy of p is the least real s such that p(τ) ≥ 2−s for every τ in the support of
p. For a flat distribution, the min-, max-, and ordinary entropy coincide and equal the
logarithm of the size of the support. For two distributions p and q on the same set T ,
we say that q approximates p within a factor 1+δ if q(τ)/(1+δ) ≤ p(τ) ≤ (1+δ) ·q(τ)
for all τ ∈ T . In that case, p and q have the same support, and if p has min-entropy
s, then q has min-entropy at least s− log(1 + δ), and if p has max-entropy s, then q
has max-entropy at most s+ log(1 + δ).

A sampler within a factor 1+δ for a distribution p on a set T is a random variable
R : {0, 1}` → T that induces a distribution that approximates p within a factor 1 + δ.
We say that R samples T within a factor 1 + δ from length `. If δ = 0 we call the
sampler exact. The choice of {0, 1}` reflects the fact that distributions need to be
generated from a source of random bits. Factors 1 + δ with δ > 0 are necessary in
order to sample uniform distributions whose support is not a power of 2.

We consider ensembles of distributions {px} where x ranges over {0, 1}∗. We
call the ensemble samplable by polynomial-size circuits if there exists an ensemble of
random variables {Rx,δ} where δ ranges over the positive rationals such that Rx,δ
samples px within a factor 1 + δ from length `x,δ and Rx,δ can be computed by a
circuit of size poly(|x|/δ). We stress that the circuits can depend on the string x, not
just on |x|. If in addition the mappings (x, δ) 7→ `x,δ and (x, δ, σ) 7→ Rx,δ(σ) can be



10 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

computed in time poly(|x|/δ), we call the ensemble uniformly samplable in polynomial
time.

One way to obtain strings with high KT-complexity is as samples from distribu-
tions with high min-entropy.

Proposition 2.3. Let y be sampled from a distribution with min-entropy s. For
all k, we have KT(y) ≥ bs− kc except with probability at most 2−k.

Proof. There are only
∑bs−kc−1
i=0 2i < 2s−k descriptions of strings with complexity

less than bs− kc. In a distribution with min-entropy s, every sample occurs with
probability at most 2−s. Thus the total probability mass on samples with complexity
less than bs− kc is at most 2s−k · 2−s = 2−k.

One way to establish upper bounds on KT-complexity is via efficiently decodable
encodings into integers from a small range. Encodings with the minimum possible
range are referred to as indexings. We use these notions in various settings. The
following formal definition is for use with random variables and is general enough to
capture all the settings we need. It defines an encoding via its decoder D; the range
of the encoding corresponds to the domain of D.

Definition 2.4 (encoding and indexing). Let R : S → T be a random variable.
An encoding of R is a mapping D : [N ]→ S such that for every τ ∈ R(S) there exists
i ∈ [N ] such that R(D(i)) = τ . We refer to dlog(N)e as the length of the encoding.
An indexing is an encoding with N = |R(S)|.

Definition 2.4 applies to a set S by identifying S with the random variable that
is the identity mapping on S. It applies to the cosets of a subgroup Γ of a group H
by considering the random variable that maps h ∈ H to the coset hΓ. It applies to
a distribution induced by a random variable R by considering the random variable R
itself.

We say that an ensemble of encodings {Dx} is decodable by polynomial-size circuits
if for each x there is a circuit of size poly(|x|) that computes Dx(i) for every i ∈ [Nx].
If in addition the mapping (x, i) 7→ Dx(i) is computable in time poly(|x|), we call the
ensemble uniformly decodable in polynomial time.

2.3. Graph Isomorphism and the Orbit-Stabilizer Theorem. Graph Iso-
morphism (GI) is the computational problem of deciding whether two graphs, given as
input, are isomorphic. A graph for us is a simple, undirected graph, that is, a vertex
set V (G), and a set E(G) of unordered pairs of vertices. An isomorphism between
two graphs G0, G1 is a bijection π : V (G0) → V (G1) that preserves both edges and
non-edges: (v, w) ∈ E(G0) if and only if (π(v), π(w)) ∈ E(G1). An isomorphism from
a graph to itself is an automorphism; the automorphisms of a given graph G form
a group under composition, denoted Aut(G). The Orbit–Stabilizer Theorem implies
that the number of distinct graphs isomorphic to G equals n!/|Aut(G)|. A graph G
is rigid if |Aut(G)| = 1, i.e., the only automorphism is the identity, or equivalently,
all n! permutations of G yield distinct graphs.

More generally, let H be a group acting on a universe Ω. For ω ∈ Ω, each h ∈ H
is an isomorphism from ω to h(ω). Aut(ω) is the set of isomorphisms from ω to itself.
By the Orbit–Stabilizer Theorem the number of distinct isomorphic copies of ω equals
|H|/|Aut(ω)|.

3. Graph Isomorphism. In this section we show:

Theorem 3.1. GI ∈ ZPPMKTP.



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 11

The crux is the randomized mapping reduction from deciding whether a given pair of
n-vertex graphs (G0, G1) is in GI to deciding whether (y, θ) ∈ MKTP, as prescribed
by (1.1). Recall that (1.1) involves picking a string r

.
= r1 . . . rt ∈ {0, 1}t and permu-

tations πi at random, and constructing the string y = y1 . . . yt, where yi = πi(Gri).
We show how to determine θ such that a sufficiently large polynomial t guarantees
that the reduction has no false negatives. We follow the outline of Section 1, take the
same four steps, and fill in the missing details.

3.1. Rigid Graphs. We first consider the simplest setting, in which both G0

and G1 are rigid. We argue that θ
.
= t(s+ 1

2 ) works, where s = log(n!).

Nonisomorphic Case. If G0 6≡ G1, then (by rigidity), each choice of r and each dis-
tinct sequence of t permutations results in a different string y, and thus the distribu-
tion on the strings y has entropy t(s+1) where s

.
= log(n!). Thus, by Proposition 2.3,

KT(y) > θ = t(s+ 1)− t
2 with all but exponentially small probability in t. Thus with

high probability the algorithm declares G0 and G1 nonisomorphic.

Isomorphic Case. If G0 ≡ G1, we need to show that KT(y) ≤ θ always holds. The
key insight is that the information in y is precisely captured by the t permutations
τ1, τ2, . . . , τt such that τi(G0) = yi. These permutations exist because G0 ≡ G1; they
are unique by the rigidity assumption. Thus, y contains at most ts bits of information.
We show that its KT-complexity is not much larger than this. We rely on the following
encoding, due to Lehmer (see, e.g., [31, pp. 12–33]):

Proposition 3.2 (Lehmer code). The symmetric groups Sn have indexings that
are uniformly decodable in time poly(n).

To bound KT(y), we consider a program d that has the following information
hard-wired into it: n, the adjacency matrix of G0, and the t integers k1, . . . , kt ∈ [n!]
encoding τ1, . . . , τt. We use the decoder from Proposition 3.2 to compute the i-th
bit of y on input i. This can be done in time poly(n, log(t)) given the hard-wired
information.

As mentioned in Section 1, a näıve method for encoding the indices k1, . . . , kt only
gives the bound tdse + poly(n, log(t)) on KT(y), which may exceed t(s + 1) and—a
fortiori—the threshold θ, no matter how large a polynomial t is. We remedy this
by aggregating multiple indices into blocks, and amortizing the encoding overhead
across multiple samples. The following technical lemma captures the technique. For
a set T of strings and b ∈ N, the statement uses the notation T b to denote the set of
concatenations of b strings from T ; we refer to Section 2.2 for the other terminology.

Lemma 3.3 (Blocking Lemma). Let {Tx} be an ensemble of sets of strings such
that all strings in Tx have the same length poly(|x|). Suppose that for each x ∈ {0, 1}∗
and b ∈ N, there is a random variable Rx,b whose image contains (Tx)b, and such that
Rx,b is computable by a circuit of size poly(|x|, b) and has an encoding of length s′(x, b)
decodable by a circuit of size poly(|x|, b). Then there are constants c1 and c2 so that,
for every constant α > 0, every t ∈ N, every sufficiently large x, and every y ∈ (Tx)t

KT(y) ≤ t1−α · s′(x, dtαe) + tα·c1 · |x|c2 .

We first show how to apply the Blocking Lemma and then prove it. For a given
rigid graph G, we let TG be the image of the random variable RG that maps π ∈ Sn
to π(G) (an adjacency matrix viewed as a string of n2 bits). We let RG,b be the
b-fold Cartesian product of RG, i.e., RG,b takes in b permutations τ1, . . . , τb ∈ Sn, and
maps them to τ1(G)τ2(G) · · · τb(G). RG,b is computable by (uniform) circuits of size



12 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

poly(n, b). To encode an outcome τ1(G)τ2(G) · · · τb(G), we use as index the number
whose base-(n!) representation is written k1k2· · ·kb, where ki is the index of τi from
the Lehmer code. This indexing has length s′(G, b)

.
=
⌈
log(n!b)

⌉
≤ bs + 1. Given an

index, the list of permutations τ1, . . . , τb can be decoded by (uniform) circuits of size
poly(n, b). By the Blocking Lemma, we have that

(3.1) KT(y) ≤ t1−α(dtαes+ 1) + tαc1 · nc2 ≤ ts+ t1−α · nc0 + tαc1 · nc2

for some constants c0, c1, c2, every constant α > 0, and all sufficiently large n, where
we use the fact that s = log n! ≤ nc0 . Setting α = α0

.
= 1/(c1 + 1), this becomes

KT(y) ≤ ts+ t1−α0n(c0+c2). Taking t = n1+(c0+c2)/α0 , we see that for all sufficiently
large n, KT(y) ≤ t(s+ 1

2 )
.
= θ.

Proof of Lemma 3.3. Let Rx,b be the hypothesized random variables and Dx,b

their corresponding decoders. Fix x and t, let m = poly(|x|) denote the length of the
strings in Tx, and let b ∈ N be a parameter to be set later.

To bound KT(y), we first break y into dt/be blocks ỹ1, ỹ2, . . . , ỹdt/be where each

ỹi ∈ (Tx)b (after padding ỹdt/be with arbitrary strings from Tx if needed). As the

image of Rx,b contains (Tx)b, each ỹj is encoded by some index kj of length s′(x, b).
Consider a program d that has x, t, m, b, the circuit for computing Rx,b, the circuit

for computing Dx,b, and the indices k1, k2, . . . , kdt/be hardwired, takes an input i ∈ N,
and determines the i-th bit of y as follows. If i > tm, then the output is ∗. Otherwise,
d first computes j0, j1 ∈ N so that i points to the j1-th bit position in ỹj0 . Then,
using Dx,b, kj0 , and j1, it finds σ such that Rx,b(σ) equals ỹj0 . Finally, it computes
Rx,b(σ) and outputs the j1-th bit, which is the i-th bit of y.

The bit-length of d is at most dt/be · s′(x, b) for the indices, plus poly(|x|, b, log t)
for the rest. The time needed by d is bounded by poly(|x|, b, log t). Thus

KT(y) ≤ dt/be · s′(x, b) + poly(|x|, b, log t)

≤ t/b · s′(x, b) + poly(|x|, b, log t)

where we used the fact that s′(x, b) ≤ poly(|x|, b). The lemma follows by choosing
b = dtαe.

3.2. Known Number of Automorphisms. We generalize the case of rigid
graphs to graphs for which we know the size of their automorphism groups. Specif-
ically, in addition to the two input graphs G0 and G1, we are also given numbers
N0, N1 where Ni

.
= n!/|Aut(Gi)|. Note that if N0 6= N1, we can right away conclude

that G0 6≡ G1. Nevertheless, we do not assume that N0 = N1 as the analysis of the
case N0 6= N1 will be useful in Section 3.3.

The reduction is the same as in Section 3.1 with the correct interpretation of s.
The main difference lies in the analysis, where we need to accommodate for the loss
in entropy that comes from having multiple automorphisms.

Let si
.
= log(Ni) be the entropy in a random permutation of Gi. Set s

.
=

min(s0, s1), and θ
.
= t(s + 1

2 ). In the nonisomorphic case the min-entropy of y is
at least t(s+1), so KT(y) > θ with high probability. In the isomorphic case we upper
bound KT(y) by about ts. Unlike the rigid case, we can no longer afford to encode
an entire permutation for each permuted copy of G0; we need a replacement for the
Lehmer code. The following encoding, applied to Γ = Aut(G), suffices to complete
the argument from Section 3.1.



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 13

Lemma 3.4. For every subgroup Γ of Sn there exists an indexing of the cosets3 of
Γ that is uniformly decodable in polynomial time when Γ is given by a list of generators.

We prove Lemma 3.4 in the Appendix as a corollary to a more general lemma that
gives, for each Γ ≤ H ≤ Sn, an efficiently computable indexing for the cosets of Γ in
H.

Remark 3.5. Before we continue towards Theorem 3.1, we point out that the
above ideas yield an alternate proof that GI ∈ BPPMKTP (and hence that GI ∈
RPMKTP). This weaker result was already obtained in [2] along the well-trodden path
discussed in Section 1; this remark shows how to obtain it using our new approach.

The key observation is that in both the isomorphic and the nonisomorphic case,
with high probability KT(y) stays away from the threshold θ by a growing margin.
Moreover, the above analysis allows us to efficiently obtain high-confidence approxi-
mations of θ to within any constant using sampling and queries to the MKTP oracle.

More specifically, for i ∈ {0, 1}, let ỹi denote the concatenation of t̃ independent
samples from RGi

. Our analysis shows that KT(ỹi) ≤ t̃si+ t̃1−α0nc always holds, and
that KT(ỹi) ≥ t̃si− t̃1−α0nc holds with high probability. Thus, s̃i

.
= KT(ỹi)/t̃ approx-

imates si with high confidence to within an additive deviation of nc/t̃α0 . Similarly,

s̃
.
= min(s̃0, s̃1) approximates s to within the same deviation margin, and θ̃

.
= t(s̃+ 1

2 )

approximates θ to within an additive deviation of tnc/t̃α0 . The latter bound can be
made less than 1 by setting t̃ to a sufficiently large polynomial in n and t. Moreover,
all these estimates can be computed in time poly(t̃, n) with access to MKTP as MKTP
enables us to evaluate KT efficiently.

3.3. Probably-Correct Underestimators for the Number of Automor-
phisms. The reason the BPPMKTP-algorithm in Remark 3.5 can have false nega-
tives is that the approximation θ̃ to θ may be too small. Knowing the quantities
Ni

.
= n!/|Aut(Gi)| exactly allows us to compute θ exactly and thereby obviates the

possibility of false negatives. In fact, it suffices to compute overestimates for the quan-
tities Ni which are correct with non-negligible probability. We capture this notion
formally as follows:

Definition 3.6 (probably-correct overestimator). Let g : Ω→ R be a function,
and M a randomized algorithm that, on input ω ∈ Ω, outputs a value M(ω) ∈ R. We
say that M is a probably-correct overestimator for g if, for every ω ∈ Ω, M(ω) = g(ω)
holds with probability at least 1/ poly(|ω|), and M(ω) > g(ω) otherwise. A probably-
correct underestimator for g is defined similarly by reversing the inequality.

We point out that, for any probably-correct overestimator (underestimator), taking
the minimum (maximum) among poly(|ω|) independent runs yields the correct value
with probability 1− 2− poly(|ω|).

We are interested in the case where g(G) = n!/|Aut(G)|. Assuming this g on
a given class of graphs Ω has a probably-correct overestimator M computable in
randomized polynomial time with an MKTP oracle, we argue that GI on Ω reduces
to MKTP in randomized polynomial time without false negatives.

To see this, consider the algorithm that, on input a pair (G0, G1) of n-vertex

graphs, computes Ñi = M(Gi) as estimates of the true values Ni = n!/|Aut(Gi)|,

3The choice of left (πΓ) vs right (Γπ) cosets is irrelevant for us; all our results hold for both, and
one can usually switch from one statement to the other by taking inverses. Related to this, there
is an ambiguity regarding the order of application in the composition gh of two permutations: first
apply g and then h, or vice versa. Both interpretations are fine. For concreteness, we assume the
former.



14 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

and then runs the algorithm from Section 3.2 using the estimates Ñi.
◦ In the case where G0 and G1 are not isomorphic, if both estimates Ñi are

correct, then the algorithm detects G0 6≡ G1 with high probability.
◦ In the case where G0 ≡ G1, if Ñi = Ni we showed in Section 3.2 that the

algorithm always declares G0 and G1 to be isomorphic. Moreover, increasing
θ can only decrease the probability of a false negative. As the computed
threshold θ increases as a function of Ñi, and the estimate Ñi is always at
least as large as Ni, it follows that G0 and G1 are always declared isomorphic.

3.4. Arbitrary Graphs. A probably-correct overestimator for the function
G 7→ n!/|Aut(G)| on any graph G can be computed in randomized polynomial time
with access to MKTP. The process is described in full detail in Section 1, based on
a BPPMKTP algorithm for GI (taken from Remark 3.5 or from [2]). This means that
the setting of Section 3.3 is actually the general one. The only difference is that we
no longer obtain a mapping reduction from GI to MKTP, but an oracle reduction:
We still make use of (1.1), but we need more queries to MKTP in order to set the
threshold θ.

This shows that GI ∈ coRPMKTP. As GI ∈ RPMKTP follows from the known
search-to-decision reduction for GI, this concludes the proof of Theorem 3.1 that
GI ∈ ZPPMKTP.

4. Estimating the Entropy of Flat Samplable Distributions. In this sec-
tion we develop a key ingredient in extending Theorem 3.1 from GI to other iso-
morphism problems that fall within the framework presented in Section 1, namely
efficient near-optimal encodings of cosets of automorphism groups. More generally,
our encoding scheme works well for any samplable distribution that is flat or almost
flat. It allows us to probably-approximately-correctly underestimate the entropy of
such distributions with the help of an oracle for MKTP.

We first develop our encoding, which only requires the existence of a sampler from
strings of polynomial length. The length of the encoding is roughly the max-entropy
of the distribution, which is the information-theoretic optimum for flat distributions.

The lemma is stated in terms of a random variable that samples the distribution.
Recall from Section 2 that a random variable R samples a distribution p from length
` when R has domain {0, 1}`, and p is identical to the distribution of R(σ) with σ
drawn uniformly at random from its domain.

Lemma 4.1 (Encoding Lemma). Consider an ensemble {Rx} of random vari-
ables that sample distributions with max-entropy s(x) from length poly(|x|). Each Rx
has an encoding of length s(x) + log s(x) + O(1) that is decodable by polynomial-size
circuits.

To see how Lemma 4.1 performs, let us apply to the setting of GI. Consider
the random variable RG mapping a permutation π ∈ Sn to π(G). The induced
distribution is flat and has entropy s = log(n!/|Aut(G)|), and each π ∈ Sn can
be sampled from strings of length O(n log n). The Encoding Lemma thus yields an
encoding of length s + log s + O(1) that is efficiently decodable. The bound on the
length is worse than Lemma 3.4’s bound of dse, but will still be sufficient for the
generalization of Theorem 3.1 and yield the result for GI.

We prove the Encoding Lemma using hashing. Here is the idea. Consider a
random hash function h : {0, 1}` → {0, 1}m where ` denotes the length of the strings
in the domain of Rx for a given x, and m is set slightly below ` − s. For any fixed
outcome y of Rx, there is a positive constant probability that no more than about



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 15

2`/2m ≈ 2s of all samples σ ∈ {0, 1}` have h(σ) = 0m, and at least one of these
also satisfies Rx(σ) = y. Let us say that h works for y when both those conditions
hold. In that case—ignoring efficiency considerations—about s bits of information
are sufficient to recover a sample σy satisfying Rx(σy) = y from h.

Now a standard probabilistic argument shows that there is a sequence h1, h2, . . .
of O(s) hash functions such that for every possible outcome y, there is at least one
hi that works for y. Given such a sequence, we can encode each outcome y as the
index i of a hash function hi that works for y, and enough bits of information that
allow us to efficiently recover σy given hi. We show that s+O(1) bits suffice for the
standard linear-algebraic family of hash functions. The resulting encoding has length
s+ log(s) +O(1) and is decodable by circuits of polynomial size.

Proof of Lemma 4.1. Recall that a family H`,m of functions {0, 1}` → {0, 1}m is
universal if for any two distinct σ0, σ1 ∈ {0, 1}`, the distributions of h(σ0) and h(σ1)
for a uniform choice of h ∈ H`,m are independent and uniform over {0, 1}m. We

make use of the specific universal family H(lin)
`,m that consists of all functions of the

form σ 7→ Uσ + v, where U is a binary (m × `)-matrix, v is a binary column vector
of dimension `, and σ is also viewed as a binary column vector of dimension ` [14].

Uniformly sampling from H(lin)
`,m means picking U and v uniformly at random.

Claim 4.2. Let `,m ∈ N and s ∈ R.
1. For every universal family H`,m with m = `−dse−2, and for every S ⊆ {0, 1}`

with |S| ≥ 2`−s,

Pr[(∃σ ∈ S)h(σ) = 0m and |h−1(0m)| ≤ 2dse+3] ≥ 1

4
,

where the probability is over a uniformly random choice of h ∈ H`,m.
2. The sets h−1(0m) have indexings that are uniformly decodable in time poly-

nomial in ` and m, where h ranges over H(lin)
`,m .

Assume for now that the claim holds, and let us continue with the proof of the
lemma.

Fix an input x, and let ` = `(x) and s = s(x). Consider the family H(lin)
`,m with

m = `−dse−2. For each outcome y of Rx, let Sy consist of the strings σ ∈ {0, 1}` for
which Rx(σ) = y. Since the distribution induced by Rx has max-entropy s, a fraction
at least 1/2s of the strings in the domain of Rx map to y. It follows that |Sy| ≥ 2`−s.

A hash function h ∈ H(lin)
`,m works for y if there is some σ ∈ Sy with h(σ) = 0m

and |h−1(0m)| ≤ 2dse+3. By the first part of Claim 4.2, the probability that a random

h ∈ H(lin)
`,m works for a fixed y is at least 1/4. If we now pick 3dse hash functions

independently at random, the probability that none of them work for y is at most
(3/4)3dse < 1/2s. Since there are at most 2s distinct outcomes y, a union bound shows

that there exists a sequence of hash functions h1, h2, . . . , h3dse ∈ H
(lin)
`,m such that for

every outcome y of Rx there exists iy ∈ [3dse] such that hiy works for y.

The encoding works as follows. Let D(lin) denote the uniform decoding algorithm
from part 2 of Claim 4.2 such that D(lin)(h, ·) decodes the set h−1(0m). For each
outcome y of Rx, let jy ∈ [2dse+3] be such that D(lin)(hiy , jy) = σy ∈ Sy. Such a jy
exists since hiy works for y. Let ky = 2dse+3iy + jy. Given h1, h2, . . . , h3dse and `
and m as auxiliary information, we can decode σy from ky by parsing out iy and jy,
extracting hiy from the auxiliary information, and running D(lin)(hiy , jy). This gives
an encoding for Rx of length dse + 3 + dlog(3dse)e = s + log s + O(1) that can be



16 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

decoded in time poly(|x|) with the hash functions as auxiliary information. As each
hash function can be described using (`+1)m bits and there are 3dse ≤ poly(|x|) many
of them, the auxiliary information consists of no more than poly(|x|) bits. Hard-wiring
it yields a decoder circuit of size poly(|x|).

For completeness we argue Claim 4.2.

Proof of Claim 4.2. For part 1, let m = ` − dse − 2, and consider the random
variables X

.
= |h−1(0m) ∩ S| and Y

.
= |h−1(0m)|. Because of universality we have

that V(X) ≤ E(X) = |S|/2m, and by the choice of parameters |S|/2m ≥ 4. By
Chebyshev’s inequality

Pr(X = 0) ≤ Pr(|X − E(X)| ≥ E(X)) ≤ V(X)

(E(X))2
≤ 1

E(X)
≤ 1

4
.

We have that E(Y ) = 2`/2m = 2dse+2. By Markov’s inequality

Pr(Y ≥ 2dse+3) = Pr(Y ≥ 2E(Y )) ≤ 1

2
.

A union bound shows that

Pr(X = 0 or Y ≥ 2dse+3) ≤ 1

4
+

1

2
,

from which part 1 follows.
For part 2, note that if |h−1(0m)| > 0 then |h−1(0m)| = 2`−r where r denotes

the rank of U . In that case, given U and v, we can use Gaussian elimination to find
binary column vectors σ̂ and σ1, σ2, . . . , σ`−r such that Uσ̂+v = 0m and the σi’s form

a basis for the kernel of U . On input j ∈ [2`−r], the decoder outputs σ̂ +
∑`−r
i=1 jiσi,

where
∑`−r
i=1 ji2

i−1 is the binary expansion of j − 1. The image of the decoder is
exactly h−1(0m). As the decoding process runs in time poly(`,m) when given U and
u, this gives the desired indexing.

The first part of Claim 4.2 is commonly used, e.g., for randomness extraction in
cryptography. The combination of the two parts of Claim 4.2 seems to have found
fewer applications. [37] applies them in a similar way as we do (but with a single hash
function), namely to boost the success probability of randomized circuits that decide
CircuitSAT as a function of the number of input variables.4

Remark 4.3. The proof of the Encoding Lemma shows a somewhat more general
result: For any ensemble {Rx} of random variables whose domains consist of strings
of length poly(|x|), and for any bound s(x), the set of outcomes of Rx with probability
at least 1/2s(x) has an encoding of length s(x) + log s(x) +O(1) that is decodable by
a circuit of size poly(|x|). In the case of flat distributions of entropy s(x) that set
contains all possible outcomes.

4More precisely, suppose there exists a randomized circuit family A of size f(n,m) that decides
CircuitSAT without false positives on instances consisting of circuits C with n input variables and of
description length m such that the probability of success is at least 1/2αn. Applying our encoding
to the set of random bit sequences that make A accept on a positive instance C, and hard-wiring the
input C into the circuit A, yields an equivalent instance C′ on αn variables of size f(n,m) + µ(D),
where µ(D) denotes the circuit size of D. Applying A to the description of this new circuit C′ yields
a randomized circuit A′ to decide whether C is satisfiable without false positives. For the linear-
algebraic family of hash functions, A′ has size O(f(n,m) polylog(f(n,m))). Its success probability

is at least 1/2α
2n, which is larger than 1/2αn when α < 1.



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 17

In combination with the Blocking Lemma, the Encoding Lemma yields upper
bounds on KT-complexity in the case of distributions p that are samplable by poly-
nomial-size circuits. More precisely, if y is the concatenation of t samples from p,
we can essentially upper bound the amortized KT-complexity KT(y)/t by the max-
entropy of p. On the other hand, Proposition 2.3 shows that if the samples are picked
independently at random, with high probability KT(y)/t is not much less than the
min-entropy of p. Thus, in the case of flat distributions, KT(y)/t is a good probably-
approximately-correct underestimator for the entropy, a notion formally defined as
follows.

Definition 4.4 (probably-approximately-correct underestimator). Let g : Ω →
R be a function, and M a randomized algorithm that, on input ω ∈ Ω, outputs a value
M(ω) ∈ R. We say that M is a probably-approximately-correct underestimator (or
pac underestimator) for g with deviation ∆ if, for every ω ∈ Ω, |M(ω)− g(ω)| ≤ ∆
holds with probability at least 1/ poly(|ω|), and M(ω) < g(ω) otherwise. A probably-
approximately-correct overestimator (or pac overestimator) for g is defined similarly,
by reversing the last inequality.

Similar to the case of probably-correct under-/overestimators, we can boost the confi-
dence level of a pac under-/overestimator from 1/ poly(|ω|) to 1−2− poly(|ω|) by taking
the max/min of poly(|ω|) independent runs.

More generally, we argue that the amortized KT-complexity of samples yields a
good pac underestimator for the entropy when the distribution is almost flat, i.e.,
the difference between the max- and min-entropy is small. As KT can be evaluated
efficiently with oracle access to MKTP, pac underestimating the entropy of such
distributions reduces to MKTP.

Corollary 4.5 (Entropy Estimator Corollary). Let {px} be an ensemble of dis-
tributions such that px is supported on strings of the same length poly(|x|). Consider
a randomized process that on input x computes KT(y)/t, where y is the concatenation
of t independent samples from px. If px is samplable by circuits of polynomial size,
then for t a sufficiently large polynomial in |x|, KT(y)/t is a pac underestimator for
the entropy of px with deviation ∆(x) +o(1), where ∆(x) is the difference between the
min- and max-entropies of px.

Proof. Since the entropy lies between the min- and max-entropies, it suffices to
show that KT(y)/t is at least the min-entropy of px with high probability, and is always
at most the max-entropy of px (both up to o(1) terms) when t is a sufficiently large
polynomial. The lower bound follows from Proposition 2.3. It remains to establish
the upper bound.

Let {Rx,δ} be the ensemble of random variables witnessing the samplability of
{px} by circuits of polynomial size, and let s(x) denote the max-entropy of px. The
Blocking Lemma allows us to bound KT(y) by giving an encoding for random variables
whose support contains the b-tuples of samples from px. Let R′x,b denote the b-fold
Cartesian product of Rx,1/b. R

′
x,b induces a distribution that approximates to within

a factor of (1 + 1/b)b = O(1) the distribution of the b-fold Cartesian product of px,
which is a distribution of max-entropy bs(x). It follows that the distribution induced
by R′x,b has min-entropy at most bs(x) + O(1). Its support is exactly the b-tuples
of samples from px. Moreover, the ensemble {R′x,b} is computable by circuits of
size poly(n, b). By the Encoding Lemma there exists an encoding of R′x,b of length
bs(x) + log b + log s(x) + O(1) that is decodable by circuits of polynomial-size. The
Blocking Lemma then says that there exist constants c1 and c2 so that for all α > 0



18 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

and all sufficiently large n

KT(y) ≤ t1−α · (dtαe · s(x) + log s(x) + α log t+O(1)) + tαc1 · nc2

≤ ts(x) + t1−α · (nc0 + c0 log n+ α log t+O(1)) + tαc1 · nc2 ,

where we use the fact that there exists a constant c0 such that s(x) ≤ nc0 . A similar
calculation as the one following Equation (3.1) shows that KT(y) ≤ ts(x)+t1−α0nc0+c2

for t ≥ nc and n sufficiently large, where α0 = 1/(1 + c1) and c = 1 + (1 + c1)(c0 + c2).
Dividing both sides by t yields the claimed upper bound.

5. Generic Isomorphism Problem. In Section 1 we presented a common
framework for isomorphism problems and listed some instantiations in Table 1. In
this section we state and prove a generalization of Theorem 3.1 that applies to many
problems in this framework, including the ones from Table 1.

5.1. Generalization. The generalized reduction makes use of a complete in-
variant for the abstract universe Ω. For future reference, we define the notion with
respect to a representation for an arbitrary ensemble of sets.

Definition 5.1 (representation and complete invariant). Let {Ωx} denote an en-
semble of sets. A representation of the ensemble is a surjective mapping ω : {0, 1}∗ →
∪xΩx. A complete invariant for ω is a mapping ν : {0, 1}∗ → {0, 1}∗ such that for all
strings x, z0, z1 with ω(z0), ω(z1) ∈ Ωx

ω(z0) = ω(z1)⇔ ν(z0) = ν(z1).

ω(z) denotes the set element represented by the string z. The surjective property of a
representation guarantees that every set element has at least one string representing
it.

Note that for the function ν to represent a normal form (rather than just a
complete invariant), it would need to be the case that ω(ν(z)) = ω(z). Although this
additional property holds for all the instantiations we consider, it is not a requirement.
In our setting, all that matters is that ν(z) only depends on the element ω(z) that z
represents, and is different for different elements.5

We are now ready to state the generalization of Theorem 3.1.

Theorem 5.2. Let Iso denote an Isomorphism Problem as in Definition 1.1.
Consider the following conditions:

1. [action sampler] The uniform distribution on Hx is uniformly samplable in
polynomial time, and the mapping (ω, h) 7→ h(ω) underlying the action of Hx

on Ωx is computable in ZPP.
2. [complete universe invariant] There exists a complete invariant ν for the rep-

resentation ω that is computable in ZPP.
3. [entropy estimator] There exists a probably-approximately-correct overestima-

tor for (x, ω) 7→ log (|Hx|/|Aut(ω)|) with deviation 1/4 that is computable in
randomized time poly(|x|) with access to an oracle for MKTP.

With these definitions:
(a) If conditions 1 and 2 hold, then Iso ∈ RPMKTP.
(b) If conditions 1, 2, and 3 hold, then Iso ∈ coRPMKTP.

5For complexity-theoretic investigations into the difference between complete invariants and nor-
mal forms, see, e.g., [11, 12, 17, 16].



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 19

In the case of GI, Ω denotes the universe of graphs on n vertices (represented as
adjacency matrices viewed as strings of length n2), and H the group of permutations
on [n] (represented as function tables). All conditions in the statement of Theo-
rem 5.2 are met. The identity mapping can be used as the complete invariant ν in
condition 2, and the probably-correct overestimator for n!/|Aut(G)| that we argued
in Sections 1 and 3 immediately yields the pac overestimator for log(n!/|Aut(G)|)
required in condition 3.

Note that log(n!/|Aut(G)|) equals the entropy of the distribution induced by
the random variable RG. In general, the quantity log(|Hx|/|Aut(ω)|) in condition 3
represents the entropy of ν(h(ω)) when h ∈ Hx is picked uniformly at random.

Proof of Theorem 5.2. Let x denote an instance of length n
.
= |x|, defining a

universe Ω, a group H that acts on Ω, and two elements ωi = ωi(x) for i ∈ {0, 1}.
Both parts (a) and (b) make use of the random variables Ri for i ∈ {0, 1} where
Ri : H → {0, 1}∗ maps h ∈ H to ν(h(ωi)).

Part (a). We follow the approach from [2]. Their argument uses Lemma 2.2,
which states the existence of a randomized polynomial-time machine M with access
to an MKTP oracle that, given a random sample y from the distribution induced
by a circuit C, recovers with non-negligible probability of success an input σ so that
C(σ) = y. If we can model the Ri as circuits of size poly(n) that take in an element
h from H and output Ri(h), this means that, with non-negligible probability over
a random h0 ∈ H, M(R0, R0(h0)) outputs some h1 so that h1(ω0) = h0(ω0). The
key observation is that when ω0 ≡ ω1, R0 and R1 induce the same distribution,
and therefore, for a random element h0, M(R1, R0(h0)) outputs some h1 so that
h1(ω0) = h0(ω0) with non-negligible probability probability of success. Thus Iso can
be decided by trying the above a polynomial number of times, declaring ω0 ≡ ω1 if a
trial succeeds, and declaring ω0 6≡ ω1 otherwise.

We do not know how to model the Ri exactly as circuits of size poly(n), but we
can do so approximately. Condition 1 implies that we can construct circuits Ci,δ in
time poly(n/δ) that sample h(ωi) within a factor 1 + δ. Combined with the ZPP-
computability of ν in condition 2 this means that we can construct a circuit Cν in
time poly(n) such that the composed circuit Cν ◦Ci,δ samples Ri within a factor 1+δ
from strings σ of length poly(n/δ). We use the composed circuits in lieu of Ri in the
arguments for M above. More precisely, we pick an input σ0 for C0,δ uniformly at
random, and compute σ1 = M(C1,δ, C0,δ(σ0)). Success means that h1(ω0) = h0(ω0),
where hi = Ci,δ(σi). The probability of success for an approximation factor of 1 + δ
is at least 1/(1 + δ)2 times the probability of success in the exact setting, which
is 1/poly(n/δ) in the isomorphic case. Fixing δ to any positive constant, a single
trial runs in time poly(n), success can be determined in ZPP (by the second part of
condition 1), and the probability of success is at least 1/poly(n) in the isomorphic
case. Completing the argument as in the exact setting above, we conclude that
Iso ∈ RPMKTP.

Part (b). We extend the argument from Section 3. Let si
.
= log (|H|/|Aut(ωi)|)

for i ∈ {0, 1}, and let M be the pac overestimator from condition 3. We assume
that M has been amplified such that it outputs a good estimate with probability
exponentially close to 1. Condition 1 and the ZPP-computability of ν imply that the
distribution induced by Ri is uniformly samplable in polynomial time, i.e., for each
i ∈ {0, 1} and δ > 0, there is a random variable Ri,δ that samples Ri within a factor
1 + δ from length poly(|x|/δ), and that is computable in time poly(|x|/δ).

Let t ∈ N and δ be parameters to be determined. On input x, the algorithm be-



20 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

gins by computing the estimates s̃i = M(x, ωi) for i ∈ {0, 1}, and sets s̃
.
= min(s̃0, s̃1)

and θ̃
.
= t(s̃ + 1

2 ). The algorithm then samples r ∈ {0, 1}t uniformly, and con-
structs y = (Rri,δ(σi))

t
i=1, where each σi is drawn independently and uniformly from

{0, 1}poly(n,1/δ). If KT(y) > θ̃, the algorithm declares ω0 6≡ ω1; otherwise, the algo-
rithm declares ω0 ≡ ω1.

Nonisomorphic Case. If ω0 6≡ ω1, we need to show KT(y) > θ̃ with high proba-
bility. Since Ri,δ samples Ri within a factor of 1 + δ, and Ri is flat with entropy si, it
follows that Ri,δ has min-entropy at least si − log(1 + δ), and that y is sampled from
a distribution with min-entropy at least

t(1 + min(s0, s1)− log(1 + δ)).

Since M is a pac overestimator with deviation 1/4, |s̃0−s0| ≤ 1/4 and |s̃1−s1| ≤ 1/4
with high probability. When this happens, s̃ ≤ min(s0, s1) + 1/4,

θ̃ ≤ t(min(s0, s1) + 3/4),

and Proposition 2.3 guarantees that KT(y) > θ̃ except with probability exponentially
small in t as long as δ is a constant such that 1 − log(1 + δ) > 3/4. Such a positive
constant δ exists.

Isomorphic Case. If ω0 ≡ ω1, we need to show that KT(y) ≤ θ̃ always holds for t a
sufficiently large polynomial in n, and n sufficiently large. Recall that, since ω0 ≡ ω1,
R0 and R1 induce the same distribution, so we can view y as the concatenation of t
samples from R0. Each R0 is flat, hence has min-entropy equal to its max-entropy,
and the ensemble of all R0 (across all inputs x) is samplable by (uniform) polynomial-
size circuits. The Entropy Estimator Corollary with ∆(x) ≡ 0 then implies that
KT(y) ≤ t(s0 + o(1)) holds whenever t is a sufficiently large polynomial in n, and n is

sufficiently large. In that case, KT(y) ≤ t(s̃+ 1
4 +o(1)) < θ̃ holds because s0 ≤ s̃+1/4

follows from M being a pac overestimator for s0 with deviation 1/4.

Remark 5.3. The notion of efficiency in conditions 1, and 2 can be relaxed to mean
the underlying algorithm is implementable by a family of polynomial-size circuits
that is constructible in ZPPMKTP. It is important for our argument that the circuits
themselves do not have oracle access to MKTP, but it is all right for them to be
constructible in ZPPMKTP rather than P or ZPP. For example, a sampling procedure
that requires knowing the factorization of some number (dependent on the input x)
is fine because the factorization can be computed in ZPPMKTP [1] and then can be
hard-wired into the circuit.

In particular, this observation yields an alternate way to show that integer fac-
torization being in ZPPMKTP implies that the discrete log over prime fields is in
ZPPMKTP [39]. Recall that an instance of the discrete log problem consists of a triple
x = (g, z, p), where g and z are integers, and p is a prime, and the goal is to find an
integer y such that gy ≡ z mod p, or report that no such integer exists. The search
version is known to reduce to the decision version in randomized polynomial time,
and the above observation shows that the decision version is in ZPPMKTP. This is
because computing the size of the subgroup of F×p generated by g or z reduces to

integer factorization, and can thus be computed in ZPPMKTP.

5.2. Construction of Probably-Correct Overestimators. We now discuss
some generic methods to satisfy condition 3 in Theorem 5.2, i.e., how to construct
a probably-approximately-correct overestimator for the quantity log(|H|/|Aut(ω)|)
that is computable in ZPPMKTP.



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 21

Here is the generalization of the approach we used in Section 3.4 in the context
of GI:

1. Find a list L of elements of H that generates a subgroup 〈L〉 of Aut(ω) such
that 〈L〉 = Aut(ω) with high probability.

2. Pac underestimate log |〈L〉| with deviation 1/8. This yields a pac underesti-
mator for log |Aut(ω)|.

3. Pac overestimate log |H| with deviation 1/8.
4. Return the result of step 3 minus the result of step 2. This gives a pac

overestimator for log(|H|/|Aut(ω)|) with deviation 1/4.
Although in the setting of GI we used the oracle for MKTP only in step 1, we could
use it to facilitate steps 2 and 3 as well.

The first step for GI follows from the known search-to-decision reduction. It relies
on the fact that Colored Graph Isomorphism reduces to GI, where Colored Graph
Isomorphism allows one to assign colors to vertices with the understanding that the
isomorphism needs to preserve the colors. For all of the isomorphism problems in
Table 1, finding a set of generators for the automorphism group reduces to a natural
colored version of the Isomorphism Problem, but it is not clear whether the colored
version always reduces to the regular version. The latter reduction is known for Linear
Code Equivalence, but remains open for problems like Permutation Group Conjugacy
and Matrix Subspace Conjugacy.

However, there is a different, generic way to achieve step 1 above, namely based
on Lemma 2.2, i.e., the power of MKTP to efficiently invert on average any efficiently
computable function.

Lemma 5.4. Let Iso denote an Isomorphism Problem as in Definition 1.1 that
satisfies conditions 1 and 2 of Theorem 5.2, and such that products and inverses in Hx

are computable in BPPMKTP. There exists a randomized polynomial-time algorithm
using oracle access to MKTP with the following behavior: On input any instance x,
and any ω ∈ Ωx, the algorithm outputs a list of generators for a subgroup Γ of Aut(ω)
such that Γ = Aut(ω) with probability 1− 2−|x|.

Proof. Consider an instance x of length n
.
= |x|, and ω ∈ Ωx. We first argue that

the uniform distribution on Aut(ω) is uniformly samplable in polynomial time with
oracle access to MKTP.

Let Rω denote the random variable that maps h ∈ H to ν(h(ω)), and let M be the
machine from Lemma 2.2. As in the proof of Part 1 of Theorem 5.2, we can sample
h from H uniformly (to within a small constant factor) and run M(Rω, ν(h(ω))) to
obtain, with nonnegligible probability, some h′ ∈ H such that h′(ω) = h(ω). In
that case, h−1h′ is an automorphism of ω, and we say the process succeeds. The
key observation is the following: Since h′ = M(Rω, ν(h(ω))), the distribution of h′

conditioned on h only depends on the coset of Aut(G) that h belongs to. It follows that
if h were sampled perfectly uniformly then, conditioned on success, the distribution
of h−1h′ is uniform over Aut(ω). In truth, h is sampled uniformly to within a factor
1 + δ; in that case h−1h′ is (conditioned on success) likewise uniform on Aut(ω) to
within a factor 1 + δ and, as argued in the proof of Theorem 5.2, the probability of
success is 1/poly(n/δ).

We run the process many times and retain the automorphism h−1h′ from the first
successful run (if any); poly(n/δ) runs suffice to obtain, with probability 1 − 2−2n,
an automorphism that is within a factor 1 + δ from uniform over Aut(ω). By the
computability parts of conditions 1 and 2, and by the condition that products and
inverses inH can be computed in BPPMKTP, each trial runs in time poly(n/δ). Success



22 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

can be determined in ZPP as the group action is computable in ZPP. It follows that
the uniform distribution on Aut(ω) is uniformly samplable in polynomial time with
oracle access to MKTP.

Finally, we argue that a small number of independent samples h1, h2, . . . , hk for
some constant δ > 0 suffice to ensure that they generate all of Aut(ω) with very
high probability. Denote by Γi the subgroup of Hx generated by h1, . . . , hi. Note
that Γi always is a subgroup of Aut(ω). For i < k, if Γi is not all of Aut(ω), then
|Γi| ≤ |Aut(ω)|/2. Thus, with probability at least 1

2 ·
1

1+δ , hi+1 6∈ Γi, in which case
|Γi+1| ≥ 2|Γi|. For any constant δ > 0, it follows that k ≥ Θ(n + log |Aut(ω)|) =
O(poly(n)) suffices to guarantee that Γk = Aut(ω) with probability at least 1− 2−2n.
The lemma follows.

The second step for GI followed from the ability to efficiently compute the order
of permutation groups exactly. Efficient exact algorithms (possibly with access to an
oracle for MKTP) are known for larger classes of groups, including most matrix groups
over finite fields, but not for all.6 We show how to generically pac underestimate
log |〈L〉| with small deviation (step 2), namely under the prior conditions that only
involve H, and the additional condition of a ZPP-computable complete invariant ζ
for H.

The construction hinges on the Entropy Estimator Corollary and viewing log |〈L〉|
as the entropy of the uniform distribution pL on 〈L〉.

(α) Provided that pL is samplable by circuits of polynomial size, the corollary
allows us to pac underestimate log |〈L〉| as KT(y)/t, where y is the concate-
nation of t independent samples from pL.

(β) If we are able to uniformly sample {pL} exactly in polynomial time (possibly
with access to an oracle for MKTP), then we can evaluate the estimator
KT(y)/t in polynomial time with access to MKTP. This is because the oracle
for MKTP lets us evaluate KT in polynomial time.

Thus, if we were able to uniformly sample {pL} exactly in polynomial time, we’d be
done. We do not know how to do that, but we can do it approximately, which we
argue is sufficient.

The need for a ZPP-computable complete invariant comes in when representing
the abstract group elements as strings. In order to formally state the requirement,
we make the underlying representation of group elements explicit; we denote it by η.

Lemma 5.5. Let {Hx} be an ensemble of groups. Suppose that the ensemble has
a representation η such that the uniform distribution on Hx is uniformly samplable
in polynomial-time, products and inverses in Hx are computable in ZPP, and there
exists a ZPP-computable complete invariant for η. Then for any list L of elements of
Hx, the logarithm of the order of the group generated by L, i.e., log |〈L〉|, can be pac
underestimated with any constant deviation ∆ > 0 in randomized time poly(|x|, |L|)
with oracle access to MKTP.

Proof. Let ζ be the ZPP-computable complete invariant for η. For each list L of
elements of Hx, let pL denote the distribution of ζ(h) when h is picked uniformly at
random from 〈L〉. Note that pL is flat with entropy s = log |〈L〉|.

6 For many cases where L ⊆ GLn(Fq), [9] shows how to compute the exact order of 〈L〉 in
ZPP with oracles for integer factorization and the discrete log. Combined with follow-up results of
[29, 33, 30], the only cases that remain open are those over a field of characteristic 2 where 〈L〉
contains at least one of the Ree groups 2F4(22n+1) as a composition factor, and those over a field
of characteristic 3 where 〈L〉 contains at least one of the Ree groups 2G2(32n+1) as a composition
factor. The claim follows as integer factorization and discrete log can be computed in ZPPMKTP.



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 23

Claim 5.6. The ensemble of distributions {pL} is uniformly samplable in polyno-
mial time.

For every constant δ > 0, the claim yields a family of random variables {RL,δ} com-
putable uniformly in polynomial time such that RL,δ induces a distribution pL,δ that
approximates pL to within a factor 1+δ. Note that the min-entropy of pL,δ is at least
s− log(1+δ), and the max-entropy of pL,δ at most s+log(1+δ), thus their difference
is no more than 2 log(1 + δ).

Let Mδ(L) denote KT(y)/t, where y is the concatenation of t independent samples
from pL,δ.

(α) The Entropy Estimator Corollary guarantees that for any sufficiently large
polynomial t, Mδ is a pac underestimator for the entropy of pL,δ with devia-
tion 2 log(1 + δ) + o(1), and thus a pac underestimator for s = log |〈L〉| with
deviation 3 log(1 + δ) + o(1).

(β) For any polynomial t, we can compute Mδ in polynomial time with access to
an oracle for MKTP. This is because RL,δ enables us to generate y in poly-
nomial time. We then use the oracle for MKTP to compute KT(y) exactly,
and divide by t.

Thus, Mδ meets all the requirements for our estimator as long as 3 log(1 + δ) < ∆,
which holds for some positive constant δ.

This completes the proof of Lemma 5.5 modulo the proof of the claim.

The proof of Claim 5.6 relies on the notion of Erdős–Rényi generators. A list of
generators L = (h1, . . . , hk) is said to be Erdős–Rényi with factor 1 + δ if a random
subproduct of L approximates the uniform distribution on 〈L〉 within a factor 1 +
δ, where a random subproduct is obtained by picking ri ∈ {0, 1} for each i ∈ [k]
uniformly at random, and outputting hr11 h

r2
2 · · ·h

rk
k .

Proof of Claim 5.6. By definition, if L happens to be Erdős–Rényi with factor
1 + δ, then pL can be sampled to within a factor 1 + δ with fewer than |L| products
in Hx.

Erdős and Rényi [15] showed that, for any finite group Γ, with high probability,
a list of poly(log |Γ|, log(1/δ)) random elements of Γ form an Erdős–Rényi list of
generators with factor 1 + δ. For Γ = 〈L〉, this gives a list L′ for which we can sample
pL′ = pL. By hard-wiring the list L′ into the sampler for pL′ , it follows that pL is
samplable by circuits of size poly(log |〈L〉|, log(1/δ)) ≤ poly(|L|/δ).

As for uniformly sampling {pL} in polynomial time, [7, Theorem 1.1] gives a
randomized algorithm that generates out of L a list L′ of elements from 〈L〉 that,
with probability 1 − ε, are Erdős–Rényi with factor 1 + δ. The algorithm runs
in time poly(|x|, |L|, log(1/δ), log(1/ε)) assuming products and inverses in Hx can
be computed in ZPP. For ε = δ/|〈L〉|, the overall distribution of a random sub-
product of L′ is within a factor 1 + 2δ from pL, and can be generated in time
poly(|x|, |L|, log(1/δ)) ≤ poly(|x|, |L|, 1/δ). As δ can be an arbitrary positive con-
stant, it follows that pL is uniformly samplable in polynomial time.

Following the four steps listed at the beginning of this section, we can replace
condition 3 in Theorem 5.2 by the conditions of Lemma 5.4 (for step 1), those of
Lemma 5.5 (for step 2), and the existence of an estimator for the size |H| of the
sample space as stated in step 3. This gives the following result:

Theorem 5.7. Let Iso denote an Isomorphism Problem as in Definition 1.1. Sup-
pose that the ensemble {Hx} has a representation η such that conditions 1 and 2 of
Theorem 5.2 hold as well as the following additional conditions:



24 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

4. [group operations] Products and inverses in Hx are computable in ZPP.
5. [sample space estimator] The map x 7→ |Hx| has a pac overestimator with

deviation 1/8 computable in ZPPMKTP.
6. [complete group invariant] There exists a complete invariant ζ for the repre-

sentation η that is computable in ZPP.
Then Iso ∈ ZPPMKTP.

As was the case for Theorem 5.2, the conditions of Theorem 5.7 can be satisfied in a
straightforward way for GI. The representation η of the symmetric groups Sn meets
all the requirements that only involve the underlying group: uniform samplability as
in the first part of condition 1, efficient group operations as in condition 4, the sample
space size |H| = |Sn| = n! can be computed efficiently (condition 5), and the identity
mapping can be used as the complete group invariant ζ (condition 6). The efficiency of
the action (the second part of condition 1) and condition 2 about a complete universe
invariant are also met in the same way as before.

We point out that Claim 5.6 can be used to show that the uniform distribution on
Hx is uniformly samplable in polynomial time (the first part of condition 1), provided
a set of generators for Hx can be computed in ZPP. This constitutes another use of
[7, Theorem 1.1].

On the other hand, the use of [7, Theorem 1.1] in the proof of Theorem 5.7 can be
eliminated. Referring to parts (α) and (β) in the intuition and proof of Lemma 5.5,
we note the following:

(α) The first part of the proof of Claim 5.6 relies on [15] but not on [7, Theorem
1.1]. It shows that pL is samplable by polynomial-size circuits, which is suffi-
cient for the Entropy Estimator Corollary to apply and show that Mδ(L) =
KT(y)/t is a pac underestimator for log |〈L〉| with deviation 3 log(1+δ)+o(1),
where y is the concatenation of t independent samples from pL,δ for a suffi-
ciently large polynomial t.

(β) Specialized to the case where 〈L〉 = Aut(ω), the first part of the proof of
Lemma 5.4 shows that, for any constant δ > 0, pL,δ is uniformly samplable in
polynomial time with access to an oracle for MKTP. Once we have generated
y with the help of MKTP, we use MKTP once more to evaluate KT(y) and
output Mδ(L) = KT(y)/t.

This way, for any constant δ > 0 we obtain a pac underestimator Mδ for log |Aut(ω)|
with deviation 3 log(1 + δ) + o(1) that is computable in polynomial time with access
to MKTP.

This alternate construction replaces steps 1 and 2 in the outline from the begin-
ning of this section. The resulting alternate proof of Theorem 5.7 is more elementary
(as it does not rely on [7, Theorem 1.1]) but does not entirely follow the approach
we used for GI of first finding a list L of elements that likely generates Aut(ω) (and
never generates more) and then determining the size of the subgroup generated by L.

Remark 5.8. Remark 5.3 on relaxing the efficiency requirement in conditions 1
and 2 of Theorem 5.2 extends similarly to Theorem 5.7. For Theorem 5.7, it suf-
fices that all the computations mentioned in conditions 1, 2, 4, and 6 be do-able by
ZPPMKTP-constructible ordinary circuits.

6. Instantiations of the Isomorphism Problem. In this section we argue
that Theorem 5.7 applies to the instantiations of the Isomorphism Problem listed in
Table 1 (other than GI, which we covered in Section 3). We describe each problem,
provide some background, and show that the conditions of Theorem 5.7 hold, thus



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 25

proving that the problem is in ZPPMKTP.
Linear code equivalence. A linear code over the finite field Fq is a d-dimensional

linear subspace of Fnq for some n. Two such codes are (permutationally) equivalent if
there is a permutation of the n coordinates that makes them equal as subspaces.

Linear Code Equivalence is the problem of deciding whether two linear codes are
equivalent, where the codes are specified as the row-span of a d × n matrix (of rank
d), called a generator matrix. Note that two different inputs may represent the same
code. There exists a mapping reduction from GI to Linear Code Equivalence over any
field [38, 23]; Linear Code Equivalence is generally thought to be harder than GI.

In order to cast Code Equivalence in our framework, we consider the family of
actions (Sn,Ωn,d,q) where Ωn,d,q denotes the linear codes of length n and dimension
d over Fq, and Sn acts by permuting the coordinates. To apply Theorem 5.7, as the
underlying group is Sn, we only need to check the efficiency of the action (second
part of condition 1) and the complete universe invariant (condition 2). The former
holds because the action only involves swapping columns in the generator matrix. For
condition 2 we can define ν(z) to be the reduced row echelon form of z. This choice
works because two generator matrices define the same code iff they have the same
reduced row echelon form, and it can be computed in polynomial time.

Corollary 6.1. Linear Code Equivalence is in ZPPMKTP.

Permutation Group Conjugacy. Two permutation groups Γ0,Γ1 ≤ Sn are conju-
gate (or permutationally isomorphic) if there exists a permutation π ∈ Sn such that
Γ1 = πΓ0π

−1; such a π is called a conjugacy.
The Permutation Group Conjugacy problem is to decide whether two subgroups

of Sn are conjugate, where the subgroups are specified by a list of generators. The
problem is known to be in NP∩ coAM, and is at least as hard as Linear Code Equiv-
alence. Currently the best known algorithm runs in time 2O(n) poly(|Γ1|) [10]—that
is, the runtime depends not only on the input size (which is polynomially related to
n), but also on the size of the groups generated by the input permutations, which can
be exponentially larger.

Casting Permutation Group Conjugacy in the framework is similar to before:
Sn acts on the subgroup by conjugacy. The action is computable in polynomial time
(second part of condition 1) as it only involves inverting and composing permutations.
It remains to check condition 2. Note that there are many different lists that generate
the same subgroup. We make use of the normal form provided by the following lemma.

Lemma 6.2. There is a poly(n)-time algorithm ν that takes as input a list L of
elements of Sn, and outputs a list of generators for the subgroup generated by the
elements in L such that for any two lists L0, L1 of elements of Sn that generate the
same subgroup, ν(L0) = ν(L1).

The normal form from Lemma 6.2 was known to some experts (Babai, personal com-
munication); for completeness we provide a proof in the Appendix. By Theorem 5.7
we conclude:

Corollary 6.3. Permutation Group Conjugacy is in ZPPMKTP.

Matrix Subspace Conjugacy. A linear matrix space over Fq is a d-dimensional
linear subspace of n× n matrices. Two such spaces V0 and V1 are conjugate if there
is an invertible n× n matrix X such that V1 = XV0X

−1 .
= {X ·M ·X−1 : M ∈ V0},

where “·” represents matrix multiplication.
Matrix Subspace Conjugacy is the problem of deciding whether two linear matrix

spaces are conjugate, where the spaces are specified as the linear span of d linearly



26 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

independent n × n matrices. There exist mapping reductions from GI and Linear
Code Equivalence to Matrix Subspace Conjugacy [23]; Matrix Subspace Conjugacy is
generally thought to be harder than Linear Code Equivalence.

In order to cast Matrix Subspace Conjugacy in our framework, we consider the
family of actions (GLn(Fq),Ωn,d,q) where GLn(Fq) denotes the n-by-n general linear
group over Fq (consisting of all invertible n-by-n matrices over Fq with multiplication
as the group operation), Ωn,d,q represents the set of d-dimensional subspaces of Fn×nq ,
and the action is by conjugation. As was the case with Linear Code Equivalence, two
inputs may represent the same linear matrix space, and we use the reduced row echelon
form of ω when viewed as a matrix in Fd×n2

q as the complete universe invariant. This
satisfies condition 2 of Theorem 5.7. The action is computable in polynomial time
(second part of condition 1) as it only involves inverting and multiplying matrices in
GLn(Fq).

The remaining conditions only depend on the underlying group, which is different
from before, namely GLn(Fq) instead of Sn. Products and inverses in GLn(Fq) can be
computed in polynomial time (condition 4), and the identity mapping serves as the
complete group invariant (condition 6). Thus, only the uniform sampler for GLn(Fq)
(first part of condition 1) and the pac overestimator for |GLn(Fq)| (condition 5)
remain to be argued.

The standard way of constructing the elements of GLn(Fq) consists of n steps,
where the i-th step picks the i-th row as any row vector that is linearly independent
of the (i − 1) prior ones. The number of choices in the i-th step is qn − qi−1. Thus,
|GLn(Fq)| =

∏n
i=1(qn−qi−1), which can be computed in time poly(|x|) (condition 5).

It also follows that the probability that a random (n×n)-matrix over Fq is in GLn(Fq)
is at least some positive constant (independent of n and q), which implies that {Hx}
can be uniformly sampled in time poly(|x|), satisfying the first part of condition 1.

Corollary 6.4. Matrix Subspace Conjugacy is in ZPPMKTP.

Before closing, we note that there is an equivalent of the Lehmer code for GLn(Fq).
We do not need it for our results, but it may be of interest in other contexts. In general,
Lehmer’s approach works for indexing objects that consist of multiple components
where the set of possible values for the i-th component may depend on the values of
the prior components, but the number of possible values for the i-th component is
independent of the values of the prior components. An efficiently decodable indexing
follows provided one can efficiently index the possible values for the i-th component
given the values of the prior components. The latter is possible for GLn(Fq). We
include a proof for completeness.

Proposition 6.5. For each n and prime power q, GLn(Fq) has an indexing that
is uniformly decodable in time poly(n, log(q)).

Proof. Consider the above process. In the i-th step, we need to index the com-
plement of the subspace spanned by the i− 1 row vectors picked thus far, which are
linearly independent. This can be done by extending those i−1 row vectors by n−i+1
new row vectors to a full basis, and considering all qi−1 linear combinations of the
i − 1 row vectors already picked, and all (qn−i+1 − 1) non-zero linear combinations
of the other basis vectors, and outputting the sum of the two components. More
precisely, on input k ∈ [qn − qi−1], write k − 1 as k0 + k1q

i−1 where k0 and k1 are
nonnegative integers with k0 < qi−1, and output v0 + v1 where v0 is the combination
of the i−1 row vectors already picked with coefficients given by the binary expansion
of k0, and v1 is linear combination of the other basis vectors with coefficients given



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 27

by the binary expansion of k1 + 1. Using Gaussian elimination to construct the other
basis vectors, the process runs in time poly(n, log(q)).

7. Future Directions. We end with a few directions for further research.

7.1. What about Minimum Circuit Size?. We suspect that our techniques
also apply to MCSP in place of MKTP, but we have been unsuccessful in extending
them to MCSP so far. To show our result for the complexity measure µ = KT,
we showed the following property for polynomial-time samplable flat distributions R:
There exists an efficiently computable bound θ(s, t) and a polynomial t such that if y
is the concatenation of t independent samples from R, then

µ(y) > θ(s, t) holds with high probability if R has entropy s+ 1, and(7.1)

µ(y) ≤ θ(s, t) always holds if R has entropy s.(7.2)

We set θ(s, t) slightly below κ(s + 1, t) where κ(s, t)
.
= st. (7.1) followed from a

counting argument, and (7.2) by showing that

(7.3) µ(y) ≤ κ(s, t) ·
(

1 +
nc

tα

)
always holds for some positive constants c and α. We concluded by observing that
for a sufficiently large polynomial t the right-hand side of (7.3) is significantly below
κ(s+ 1, t).

Mimicking the approach with µ denoting circuit complexity, we set

κ(s, t) =
st

log(st)
·
(

1 + (2− o(1)) · log log(st)

log(st)

)
.

Then (7.1) follows from [43]. As for (7.2), the best counterpart to (7.3) we know of
(see, e.g., [18]) is

µ(y) ≤ st

log(st)
·
(

1 + (3 + o(1)) · log log(st)

log(st)

)
.

However, in order to make the right-hand side of (7.3) smaller than κ(s+1, t), t needs
to be exponential in s.

One possible way around the issue is to boost the entropy gap between the two
cases. This would not only show that all our results for MKTP apply to MCSP as
well, but could also form the basis for reductions between different versions of MCSP
(defined in terms of different circuit models, or in terms of different size parameters),
and to clarify the relationship between MKTP and MCSP. Until now, all of these
problems have been viewed as morally equivalent to each other, although no efficient
reduction is known between any two of these, in either direction. Given the central
role that MCSP occupies, it would be desirable to have a theorem that indicates that
MCSP is fairly robust to minor changes to its definition. Currently, this is lacking.

On a related point, it would be good to know how the complexity of MKTP
compares with the complexity of the KT-random strings: RKT = {x : KT(x) ≥
|x|}. Until our work, all prior reductions from natural problems to MCSP or MKTP
carried over to RKT—but this would seem to require even stronger gap amplification
theorems. The relationship between MKTP and RKT is analogous to the relationship
between MCSP and the special case of MCSP that is denoted MCSP′ in [34]: MCSP′

consists of truth tables f of m-ary Boolean functions that have circuits of size at most
2m/2.



28 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

7.2. Statistical Zero Knowledge. Allender and Das [2] generalized their result
that GI ∈ RPMKTP to SZK ⊆ BPPMKTP by applying their approach to a known
SZK-complete problem. Our proof that GI ∈ coRPMKTP similarly generalizes to
SZK ⊆ BPPMKTP. We use the problem Entropy Approximation, which is complete
for SZK under oracle reductions [20, Lemma 5.1]:7 Given a circuit C and a threshold
θ with the promise that the distribution induced by C has entropy either at most
θ − 1 or else at least θ + 1, decide whether the former is the case. By combining
the Flattening Lemma [21] with the Entropy Estimator Corollary, one can show that
for any distribution of entropy s sampled by a circuit C, the concatenation of t
random samples from C has, with high probability, KT complexity between ts −
t1−α0 · poly(|C|) and ts + t1−α0 · poly(|C|) for some positive constant α0. Along the
lines of Remark 3.5, this allows us to show that Entropy Approximation, and hence
all of SZK, is in BPPMKTP.

We do not know how to eliminate the errors from those reductions: Is SZK ⊆
ZPPMKTP, or equivalently, is Entropy Approximation in ZPPMKTP? Our approach
yields that Entropy Approximation is in coRPMKTP (no false negatives) when the
input distributions are almost flat, i.e., when the difference between the max- and
min-entropy is small. However, it is not known whether that restriction of Entropy
Approximation is complete for SZK8 (Goldreich and Vadhan, personal communica-
tion). Moreover, we do not see how to eliminate the false positives.

Trying to go beyond SZK, recall that except for the possible use of the MKTP
oracle in the construction of the probably-correct overestimator from condition 3 in
Theorem 5.2 (or as discussed in Remark 5.3), the reduction in Theorem 5.2 makes only
one query to the oracle. It was observed in [26] that the reduction also works for any
relativized KT problem MKTPA (where the universal machine for KT complexity
has access to oracle A). More significantly, [26] shows that any problem that is
accepted with negligible error probability by a probabilistic reduction that makes
only one query, relative to every set MKTPA, must lie in AM∩ coAM. Thus, without
significant modification, our techniques cannot be used in order to reduce any class
larger than AM ∩ coAM to MKTP.

The property that only one query is made to the oracle was subsequently used
in order to show that MKTP is hard for the complexity class DET under mapping
reductions computable in nonuniform NC0 [4]. Similar hardness results (but for a more
powerful class of reducibilities) hold also for MCSP [36]. This has led to unconditional
lower bounds on the circuit complexity of MKTP [4, 25], showing that MKTP does
not lie in the complexity class AC0[p] for any prime p; it is still open whether similar
circuit lower bounds hold for MCSP.

Appendix A. Coset Indexings and Normal Forms for Permutation
Groups.

In this appendix we develop the efficiently decodable indexings for cosets of per-

7Entropy Approximation is complete for NISZK (Non-Interactive SZK) under mapping reductions
[20]. Problems that are complete for SZK under mapping reductions include Statistical Difference [40]
and Entropy Difference [21]. The mapping reduction from Statistical Difference to Entropy Difference
in [22, Theorem 3] is similar to our reduction from Isomorphism Problems to MKTP.

8 The Flattening Lemma [21] allows us to restrict to distributions that are almost flat in an
average-case sense, but we need almost flatness in the above worst-case sense. For example, consider
a circuit C that induces a distribution of entropy less than θ − 1 whose support contains all strings
of length n where n� θ. In that case, there is no nontrivial worst-case bound on the KT complexity
of samples from C; with positive probability, t samples from C may have KT-complexity close to
t · n� t · (θ + 1).



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 29

mutation subgroups claimed in Lemma 3.4, and also use some of the underlying ideas
to establish the normal form for permutation groups stated in Lemma 6.2.

Indexing Cosets. The indexings are not strictly needed for our main results as the
generic encoding from the Encoding Lemma can be used as a substitute. However, the
information-theoretic optimality of the indexings may be useful in other contexts. In
fact, we present a further generalization that may be of independent interest, namely
an efficiently decodable indexing for cosets of permutation subgroups within another
permutation subgroup.

Lemma A.1. For all Γ ≤ H ≤ Sn, there exists an indexing of the cosets9 of Γ
within H that is uniformly decodable in polynomial time when Γ and H are given by
a list of generators.

Lemma 3.4 is just the instantiation of Lemma A.1 with H = Sn. The proof of
Lemma A.1 requires some elements of the theory of permutation groups. Given a list
of permutations π1, . . . , πk ∈ Sn, we write Γ = 〈π1, . . . , πk〉 ≤ Sn for the subgroup they
generate. Given a permutation group Γ ≤ Sn and a point i ∈ [n], the Γ-orbit of i is
the set {g(i) : g ∈ Γ}, and the Γ-stabilizer of i is the subgroup {g ∈ Γ : g(i) = i} ≤ Γ.

We make use of the fact that (a) the number of cosets of a subgroup Γ of a group
H equals |H|/|Γ|, and (b) the orbits of a subgroup Γ of H form a refinement of the
orbits of H. We also need the following basic routines from computational group
theory (see, for example, [27, 41]).

Proposition A.2. Given a set of permutations that generate a subgroup Γ ≤ Sn,
the following can be computed in time polynomial in n:

(1) the cardinality |Γ|,
(2) a permutation in Γ that maps u to v for given u, v ∈ [n], or report that no

such permutation exists in Γ, and
(3) a list of generators for the subgroup Γv of Γ that stabilizes a given element

v ∈ [n].

The proof of Lemma A.1 makes implicit use of an efficient process for finding
a canonical representative of πΓ for a given permutation π ∈ H, where “canonical”
means that the representative depends on the coset πΓ only. The particular canonical
representative the process produces can be specified as follows.

Definition A.3. For a permutation π ∈ Sn and a subgroup Γ ≤ Sn, the canon-
ical representative of π modulo Γ, denoted π mod Γ, is the lexicographically least
π′ ∈ πΓ, where the lexicographic ordering is taken by viewing a permutation π′ as
the sequence (π′(1), π′(2), . . . , π′(n)).

The process is well-known. We spell it out in the proof of the following lemma as
it provides intuition for the proof of Lemma A.1.

Lemma A.4 (Theorem 10 in [6]). There exists a polynomial-time algorithm that
takes as input a generating set for a subgroup Γ ≤ Sn and a permutation π ∈ Sn, and
outputs the canonical representative π mod Γ.

Proof of Lemma A.4. Consider the element 1 of [n]. Permutations in πΓ map 1
to an element v in the same Γ-orbit as π(1), and for every element v in the Γ-orbit of
π(1) there exists a permutation in πΓ that maps 1 to v. We can canonize the behavior
of π on the element 1 by replacing π with a permutation π1 ∈ πΓ that maps 1 to the
minimum element m in the Γ-orbit of π(1). This can be achieved by multiplying π to

9Recall footnote 3 on page 13.



30 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

the right with a permutation in Γ that maps π(1) to m.
Next we apply the same process to π1 but consider the behavior on the element

2 of [n]. Since we are no longer allowed to change the value of π1(1), which equals m,
the canonization of the behavior on 2 can only use multiplication on the right with
permutations in Γm, i.e., permutations in Γ that stabilize the element m. Doing so
results in a permutation π2 ∈ π1Γ.

We repeat this process for all elements k ∈ [n] in order. In the k-th step, we
canonize the behavior on the element k by multiplying on the right with permutations
in Γπk−1([k−1]), i.e., permutations in Γ that pointwise stabilize all of the elements
πk−1(`) for ` ∈ [k − 1].

Proof of Lemma A.1. The number of canonical representatives modulo Γ in H
equals the number of distinct (left) cosets of Γ in H, which is |H|/|Γ|. We construct
an algorithm that takes as input a list of generators for Γ and H, and an index i ∈
[|H|/|Γ|], and outputs the permutation σ that is the lexicographically i-th canonical
representative modulo Γ in H.

The algorithm uses a prefix search to construct σ. In the k-th step, it knows the
prefix (σ(1), σ(2), . . . , σ(k − 1)) of length k − 1, and needs to figure out the correct
value v ∈ [n] to extend the prefix with. In order to do so, the algorithm needs to
compute for each v ∈ [n] the count cv of canonical representatives modulo Γ in H that
agree with σ on [k − 1] and take the value v at k. The following claims allow us to
do that efficiently when given a permutation σk−1 ∈ H that agrees with σ on [k− 1].
The claims use the notation Tk−1

.
= σk−1([k − 1]), which also equals σ([k − 1]).

Claim A.5. The canonical representatives modulo Γ in H that agree with σ ∈ H
on [k − 1] are exactly the canonical representatives modulo ΓTk−1

in σk−1HTk−1
.

Proof. The following two observations imply Claim A.5.
(i) A permutation π ∈ H agrees with σ ∈ H on [k − 1]
⇔ π agrees with σk−1 on [k − 1]
⇔ σ−1

k−1π ∈ HTk−1

⇔ π ∈ σk−1HTk−1
.

(ii) Two permutations in σk−1HTk−1
, say π

.
= σk−1g and π′

.
= σk−1g

′ for g, g′ ∈
HTk−1

, belong to the same left coset of Γ iff they belong to the same left coset
of ΓTk−1

. This follows because if σk−1g
′ = σk−1gh for some h ∈ Γ, then h

equals g−1g′ ∈ HTk−1
, so h ∈ Γ ∩HTk−1

= ΓTk−1
.

Claim A.6. The count cv for v ∈ [n] is nonzero iff v is the minimum of some
ΓTk−1

-orbit contained in the HTk−1
-orbit of σk−1(k).

Proof. The set of values of π(k) when π ranges over σk−1HTk−1
is the HTk−1

-
orbit of σk−1(k). Since ΓTk−1

is a subgroup of HTk−1
, this orbit is the union of

some ΓTk−1
-orbits. Combined with Claim A.5 and the construction of the canonical

representatives modulo ΓTk−1
, this implies Claim A.6.

Claim A.7. If a count cv is nonzero then it equals |HTk−1∪{v}|/|ΓTk−1∪{v}|.
Proof. Since the count is nonzero, there exists a permutation σ′ ∈ H that is

a canonical representative modulo Γ that agrees with σk−1 on [k − 1] and satisfies
σ′(k) = v. Applying Claim A.5 with σ replaced by σ′, k by k′

.
= k + 1, Tk−1 by

T ′k
.
= Tk−1 ∪ {v}, and σk−1 by any permutation σ′k ∈ H that agrees with σ′ on [k],

yields Claim A.7. This is because the number of canonical representatives modulo
ΓT ′k in σ′kHT ′k

equals the number of (left) cosets of ΓT ′k in HT ′k
, which is the quantity

stated in Claim A.7.



MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 31

Algorithm A.1

Input: positive integer n, Γ ≤ H ≤ Sn, i ∈ [|H|/|Γ|]
Output: lexicographically i-th canonical representative modulo Γ in H

1: σ0 ← id
2: for k = 1 to n do
3: O1, O2, . . . ← Γ-orbits contained in the H-orbit of σk−1(k), in increasing

order of min(Oi)

4: find integer ` such that
∑`−1
j=1 cmin(Oj) < i ≤

∑`
j=1 cmin(Oj),

where cv
.
= |Hv|/|Γv|

5: i← i−
∑`−1
i=1 cmin(Oj)

6: m← min(O`)
7: find τ ∈ H such that τ(σk−1(k)) = m
8: σk ← σk−1τ
9: H ← Hm; Γ← Γm

10: return σn

The algorithm builds a sequence of permutations σ0, σ1, . . . , σn ∈ H such that σk
agrees with σ on [k]. It starts with the identity permutation σ0 = id, builds σk out
of σk−1 for increasing values of k ∈ [n], and outputs the permutation σn = σ.

Pseudocode for the algorithm is presented in Algorithm A.1. Note that the pseu-
docode modifies the arguments Γ, H, and i along the way. Whenever a group is
referenced in the pseudocode, the actual reference is to a list of generators for that
group.

The correctness of the algorithm follows from Claims A.6 and A.7. The fact that
the algorithm runs in polynomial time follows from Proposition A.2.

Normal Form. Finally, we use the canonization captured in Definition A.3 and
Lemma A.4 to establish the normal form for permutation groups given by Lemma 6.2
(restated below):

Lemma 6.2. There is a polynomial-time algorithm ν that takes as input a list L
of elements of Sn, and outputs a list of generators for the subgroup generated by the
elements in L such that for any two lists L0, L1 of elements of Sn that generate the
same subgroup, ν(L0) = ν(L1).

Proof. Let Γ denote the subgroup generated by L, and recall that Γ[i] denotes the
subgroup of Γ that stabilizes each element in [i], for i ∈ {0, 1, . . . , n}. We have that
Γ[0] = Γ, and Γ[n−1] consists of the identity only.

We define ν(L) as follows. Start with ν being the empty list. For i ∈ [n−1], in the
i-th step we consider each j ∈ [n] that is in the Γ[i−1]-orbit of i in order. Note that for
each such j, the permutations in Γ[i−1] that map i to j form a coset of Γ[i−1] mod Γ[i].
We append the canonical representative of this coset to ν. ν(L) is the value of ν after
step n− 1.

As we only include permutations from Γ, ν(L) generates a subgroup of Γ. By
construction, for each i ∈ [n− 1], the permutations we add in the i-th step represent
all cosets of Γ[i−1] mod Γ[i]. It follows by induction on n − i that the permutations
added to ν during and after the i-th step generate Γ[i−1] for i ∈ [n]. Thus, ν(L)
generates Γ[0] = Γ.

That ν(L) only depends on the subgroup Γ generated by L follows from its defi-
nition, which only refers to the abstract groups Γ[i], their cosets, and their canonical



32 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

representatives. That ν(L) can be computed in polynomial time follows by tracking
a set of generators for the subgroups Γ[i] based on Proposition A.2. More specifically,
we use item 2 to check whether a given j is in the Γ[i−1]-orbit of i, and item 3 to
obtain Γ[i] out of Γ[i−1] as Γ[i] = (Γ[i−1])i.

Acknowledgments. We thank V. Arvind for helpful comments about the graph
automorphism problem and rigid graphs, Alex Russell and Yoav Kallus for helpful
ideas on encoding and decoding graphs, Laci Babai and Peter Brooksbank for an-
swering questions about computational group theory, and Oded Goldreich and Salil
Vadhan for answering questions about SZK. We also thank the reviewers of the confer-
ence version [3] and the anonymous referees of SICOMP for their helpful suggestions.

REFERENCES

[1] E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, and D. Ronneburger, Power
from random strings, SIAM Journal on Computing, 35 (2006), pp. 1467–1493, https://doi.
org/10.1137/050628994.

[2] E. Allender and B. Das, Zero knowledge and circuit minimization, Information and Com-
putation, 256 (2017), pp. 2–8, https://doi.org/10.1016/j.ic.2017.04.004.

[3] E. Allender, J. A. Grochow, D. van Melkebeek, C. Moore, and A. Morgan, Minimum
Circuit Size, Graph Isomorphism, and Related Problems, in 9th Innovations in Theoretical
Computer Science Conference (ITCS ’18), vol. 94 of LIPIcs, 2018, pp. 20:1–20:20, https:
//doi.org/10.4230/LIPIcs.ITCS.2018.20.

[4] E. Allender and S. Hirahara, New insights on the (non)-hardness of circuit minimization
and related problems, in Proceedings of the 42nd International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS ’17), 2017, https://doi.org/10.4230/LIPIcs.
MFCS.2017.54.

[5] E. Allender, M. Koucký, D. Ronneburger, and S. Roy, The pervasive reach of resource-
bounded Kolmogorov complexity in computational complexity theory, Journal of Computer
and System Sciences, 77 (2010), pp. 14–40, https://doi.org/10.1016/j.jcss.2010.06.004.

[6] V. Arvind and P. P. Kurur, Graph isomorphism is in SPP, Information and Computation,
204 (2006), pp. 835–852, https://doi.org/10.1016/j.ic.2006.02.002.

[7] L. Babai, Local expansion of vertex-transitive graphs and random generation in finite groups,
in Proceedings of the 23rd Annual ACM Symposium on Theory of Computing (STOC ’91),
1991, pp. 164–174, https://doi.org/10.1145/103418.103440.

[8] L. Babai, Graph isomorphism in quasipolynomial time, in Proceedings of the 48th annual ACM
Symposium on Theory of Computing (STOC ’16), 2016, pp. 684–697, https://doi.org/10.
1145/2897518.2897542. See also arXiv:1512.03547 [cs.DS] and http://people.cs.uchicago.
edu/∼laci/upcc-fix.pdf.

[9] L. Babai, R. Beals, and Á. Seress, Polynomial-time theory of matrix groups, in Proceedings
of the 41st Annual ACM Symposium on Theory of Computing (STOC ’09), 2009, pp. 55–
64, https://doi.org/10.1145/1536414.1536425.

[10] L. Babai, P. Codenotti, and Y. Qiao, Polynomial-time isomorphism test for groups with no
abelian normal subgroups, in Automata, Languages, and Programming (ICALP ’12), 2012,
pp. 51–62, https://doi.org/10.1007/978-3-642-31594-7 5.

[11] A. Blass and Y. Gurevich, Equivalence relations, invariants, and normal forms, SIAM Jour-
nal on Computing, 13 (1984), pp. 682–689, https://doi.org/10.1137/0213042.

[12] A. Blass and Y. Gurevich, Equivalence relations, invariants, and normal forms. II, in Logic
and machines: decision problems and complexity (Münster, 1983), vol. 171 of Lecture
Notes in Computer Science, Springer, Berlin, 1984, pp. 24–42, https://doi.org/10.1007/
3-540-13331-3 31.

[13] M. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova, Learning algorithms
from natural proofs, in Proceedings of the 31st Computational Complexity Conference
(CCC ’16), 2016, pp. 10:1–10:24, https://doi.org/10.4230/LIPIcs.CCC.2016.10.

[14] J. L. Carter and M. N. Wegman, Universal classes of hash functions, Journal of Com-
puter and System Sciences, 18 (1979), pp. 143–154, https://doi.org/10.1016/0022-0000(79)
90044-8.

[15] P. Erdős and A. Rényi, Probabilistic methods in group theory, Journal d’Analyse
Mathématique, 14 (1965), pp. 127–138, https://doi.org/10.1007/BF02806383.

https://doi.org/10.1137/050628994
https://doi.org/10.1137/050628994
https://doi.org/10.1016/j.ic.2017.04.004
https://doi.org/10.4230/LIPIcs.ITCS.2018.20
https://doi.org/10.4230/LIPIcs.ITCS.2018.20
https://doi.org/10.4230/LIPIcs.MFCS.2017.54
https://doi.org/10.4230/LIPIcs.MFCS.2017.54
https://doi.org/10.1016/j.jcss.2010.06.004
https://doi.org/10.1016/j.ic.2006.02.002
https://doi.org/10.1145/103418.103440
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
http://arxiv.org/abs/1512.03547
http://people.cs.uchicago.edu/~laci/upcc-fix.pdf
http://people.cs.uchicago.edu/~laci/upcc-fix.pdf
https://doi.org/10.1145/1536414.1536425
https://doi.org/10.1007/978-3-642-31594-7_5
https://doi.org/10.1137/0213042
https://doi.org/10.1007/3-540-13331-3_31
https://doi.org/10.1007/3-540-13331-3_31
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1007/BF02806383


MINIMUM CIRCUIT SIZE, GRAPH ISOMORPHISM, ETC. 33

[16] J. Finkelstein and B. Hescott, Polynomial-time kernel reductions. arXiv:1604.08558 [cs.CC],
2016.

[17] L. Fortnow and J. A. Grochow, Complexity classes of equivalence problems revisited, Infor-
mation and Computation, 209 (2011), pp. 748–763, https://doi.org/10.1016/j.ic.2011.01.
006.

[18] G. S. Frandsen and P. B. Miltersen, Reviewing bounds on the circuit size of the hard-
est functions, Information Processing Letters, 95 (2005), pp. 354–357, https://doi.org/10.
1016/j.ipl.2005.03.009.

[19] O. Goldreich, S. Micali, and A. Wigderson, Proofs that yield nothing but their validity for
all languages in NP have zero-knowledge proof systems, Journal of the ACM, 38 (1991),
pp. 691–729, https://doi.org/10.1145/116825.116852.

[20] O. Goldreich, A. Sahai, and S. Vadhan, Can statistical zero knowledge be made non-
interactive? or on the relationship of SZK and NISZK, in Advances in Cryptology —
CRYPTO ’99, 1999, pp. 467–484, https://doi.org/10.1007/3-540-48405-1 30.

[21] O. Goldreich and S. Vadhan, Comparing entropies in statistical zero knowledge with ap-
plications to the structure of SZK, in Proceedings of the 14th Annual IEEE Conference
on Computational Complexity (CCC ’99), 1999, pp. 54–73, https://doi.org/10.1109/CCC.
1999.766262.

[22] O. Goldreich and S. Vadhan, On the complexity of computational problems regarding distri-
butions, in Studies in Complexity and Cryptography – Miscellanea on the Interplay between
Randomness and Computation, O. Goldreich, ed., vol. 6650 of Lecture Notes in Computer
Science, Springer, 2011, pp. 13–29, https://doi.org/10.1007/978-3-642-22670-0 27.

[23] J. A. Grochow, Matrix Lie algebra isomorphism, in Proceedings of the 27th Annual IEEE
Conference on Computational Complexity (CCC ’12), 2012, pp. 203–213, https://doi.org/
10.1109/CCC.2012.34.

[24] J. Håstad, R. Impagliazzo, L. Levin, and M. Luby, A pseudorandom generator from any
one-way function, SIAM Journal on Computing, 28 (1999), pp. 1364–1396, https://doi.
org/10.1137/S0097539793244708.

[25] S. Hirahara and R. Santhanam, On the average-case complexity of MCSP and its variants, in
Proceedings of the 32nd Computational Complexity Conference (CCC ’17), 2017, pp. 7:1–
7:20, https://doi.org/10.4230/LIPIcs.CCC.2017.7.

[26] S. Hirahara and O. Watanabe, Limits of minimum circuit size problem as oracle, in 31st
Conference on Computational Complexity (CCC ’16), vol. 50 of LIPIcs, 2016, pp. 18:1–
18:20, https://doi.org/10.4230/LIPIcs.CCC.2016.18.

[27] D. F. Holt, B. Eick, and E. A. O’Brien, Handbook of Computational Group Theory, Discrete
Mathematics and its Applications, Chapman & Hall/CRC, 2005.

[28] V. Kabanets and J.-Y. Cai, Circuit minimization problem, in Proceedings of the 32nd ACM
Symposium on Theory of Computing (STOC ’00), 2000, pp. 73–79, https://doi.org/10.
1145/335305.335314.

[29] W. M. Kantor and K. Magaard, Black box exceptional groups of Lie type, Transactions of
the American Mathematical Society, 365 (2013), pp. 4895–4931, https://doi.org/10.1090/
S0002-9947-2013-05822-9.

[30] W. M. Kantor and K. Magaard, Black box exceptional groups of Lie type II, Journal of
Algebra, 421 (2015), pp. 524–540, https://doi.org/10.1016/j.jalgebra.2014.09.003.

[31] D. E. Knuth, The Art of Computer Programming, vol. 3: Sorting and Searching, Addison-
Wesley, 1973.

[32] J. Köbler, U. Schöning, and J. Torán, The Graph Isomorphism Problem: Its Structural
Complexity, Birkhauser Verlag, Basel, Switzerland, Switzerland, 1993, https://doi.org/10.
1007/978-1-4612-0333-9.

[33] M. W. Liebeck and E. A. O’Brien, Recognition of finite exceptional groups of Lie type,
Transactions of the American Mathematical Society, 368 (2016), pp. 6189–6226, https:
//doi.org/10.1090/tran/6534.

[34] C. D. Murray and R. R. Williams, On the (non) NP-hardness of computing circuit complex-
ity, Theory of Computing, 13 (2017), pp. 1–22, https://doi.org/10.4086/toc.2017.v013a004.

[35] N. Nisan and A. Wigderson, Hardness vs randomness, Journal of Computer and System
Sciences, 49 (1994), pp. 149–167, https://doi.org/10.1016/S0022-0000(05)80043-1.

[36] I. C. C. Oliveira and R. Santhanam, Conspiracies between learning algorithms, circuit lower
bounds, and pseudorandomness, in 32nd Computational Complexity Conference (CCC ’17),
vol. 79 of LIPIcs, 2017, pp. 18:1–18:49, https://doi.org/10.4230/LIPIcs.CCC.2017.18.

[37] R. Paturi and P. Pudlák, On the complexity of circuit satisfiability, in Proceedings of the
42nd ACM Symposium on Theory of Computing (STOC ’10), 2010, pp. 241–250, https:
//doi.org/10.1145/1806689.1806724.

http://arxiv.org/abs/1604.08558
https://doi.org/10.1016/j.ic.2011.01.006
https://doi.org/10.1016/j.ic.2011.01.006
https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.1145/116825.116852
https://doi.org/10.1007/3-540-48405-1_30
https://doi.org/10.1109/CCC.1999.766262
https://doi.org/10.1109/CCC.1999.766262
https://doi.org/10.1007/978-3-642-22670-0_27
https://doi.org/10.1109/CCC.2012.34
https://doi.org/10.1109/CCC.2012.34
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.4230/LIPIcs.CCC.2016.18
https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/335305.335314
https://doi.org/10.1090/S0002-9947-2013-05822-9
https://doi.org/10.1090/S0002-9947-2013-05822-9
https://doi.org/10.1016/j.jalgebra.2014.09.003
https://doi.org/10.1007/978-1-4612-0333-9
https://doi.org/10.1007/978-1-4612-0333-9
https://doi.org/10.1090/tran/6534
https://doi.org/10.1090/tran/6534
https://doi.org/10.4086/toc.2017.v013a004
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.1145/1806689.1806724
https://doi.org/10.1145/1806689.1806724


34 ALLENDER, GROCHOW, VAN MELKEBEEK, MOORE, MORGAN

[38] E. Petrank and R. M. Roth, Is code equivalence easy to decide?, IEEE Transactions on
Information Theory, 43 (1997), pp. 1602–1604, https://doi.org/10.1109/18.623157.

[39] M. Rudow, Discrete logarithm and minimum circuit size, Information Processing Letters, 128
(2017), pp. 1–4, https://doi.org/10.1016/j.ipl.2017.07.005.

[40] A. Sahai and S. Vadhan, A complete problem for statistical zero knowledge, Journal of the
ACM, 50 (2003), pp. 196–249, https://doi.org/10.1145/636865.636868.

[41] A. Seress, Permutation group algorithms, vol. 152 of Cambridge Tracts in Mathematics, Cam-
bridge University Press, Cambridge, 2003, https://doi.org/10.1017/CBO9780511546549.

[42] B. A. Trakhtenbrot, A survey of Russian approaches to perebor (brute-force searches)
algorithms, IEEE Annals of the History of Computing, 6 (1984), pp. 384–400, https:
//doi.org/10.1109/MAHC.1984.10036.

[43] M. Yamamoto, A tighter lower bound on the circuit size of the hardest Boolean functions,
Tech. Report TR11-086, Electronic Colloquium on Computational Complexity, 2011.

https://doi.org/10.1109/18.623157
https://doi.org/10.1016/j.ipl.2017.07.005
https://doi.org/10.1145/636865.636868
https://doi.org/10.1017/CBO9780511546549
https://doi.org/10.1109/MAHC.1984.10036
https://doi.org/10.1109/MAHC.1984.10036
https://eccc.weizmann.ac.il/report/2011/086/

	Introduction
	Preliminaries
	KT Complexity
	Random Variables, Samplers, Indexings and Encodings
	Graph Isomorphism and the Orbit-Stabilizer Theorem

	Graph Isomorphism
	Rigid Graphs
	Known Number of Automorphisms
	Probably-Correct Underestimators for the Number of Automorphisms
	Arbitrary Graphs

	Estimating the Entropy of Flat Samplable Distributions
	Generic Isomorphism Problem
	Generalization
	Construction of Probably-Correct Overestimators

	Instantiations of the Isomorphism Problem
	Future Directions
	What about Minimum Circuit Size?
	Statistical Zero Knowledge

	Appendix A. Coset Indexings and Normal Forms for Permutation Groups
	Acknowledgments
	References

