Minimum Circuit Size, Graph Isomorphism, and Related Problems

Andrew Morgan
University of Wisconsin-Madison
November 1st, 2018
Based on work with E. Allender, J. Grochow, D. van Melkebeek, and C. Moore

Minimum Circuit Size

$\operatorname{MCSP}=\{(x, \theta): x$ has circuit complexity at most $\theta\}$
How hard is MCSP?

How hard is MCSP?

Some known reductions:

- Factoring \in ZPP $^{\text {MCSP }}$
[Allender-Buhrman-Koucký-van Melkebeek-Ronneburger]
- DiscreteLog \in ZPP $^{\text {MCSP }}$
[Allender-Buhrman-Koucký-van Melkebeek-Ronneburger, Rudow]
- $\mathrm{GI} \in \mathrm{RP}^{\mathrm{MCSP}}$
- $\mathrm{SZK} \subseteq \mathrm{BPP}^{\text {MCSP }}$
where
GI = graph isomorphism
SZK $=$ problems with statistical zero knowledge protocols
Can replace MCSP by $\mathrm{M} \mu \mathrm{P}$ for any complexity measure μ polynomially related to circuit size

KT Complexity

Describe a string x by a program p so that $p(i)=i$-th bit of x $\mathrm{KT}(x)=$ smallest $|p|+T$, where

- p describes x
- p runs in at most T steps for all i

MKTP $=\{(x, \theta): \operatorname{KT}(x) \leq \theta\}$
Time-bounded Turing machines with advice \cong Circuits
\Longrightarrow KT polynomially-related to circuit complexity

How hard is $\mathbf{M} \mu \mathbf{P}$?

Some known reductions:

- Factoring $\in Z_{P P}{ }^{M} \mu \mathrm{P}$
- DiscreteLog \in ZPP $^{\text {M } \mu \mathrm{P}}$
- $\mathrm{GI} \in \mathrm{RP}^{\mathrm{M} \mu \mathrm{P}}$
- $\operatorname{SZK} \subseteq \operatorname{BPP}^{\mathrm{M} \mu \mathrm{P}}$
where
GI = graph isomorphism
SZK $=$ problems with statistical zero knowledge protocols $\mathrm{M} \mu \mathrm{P}=\mathrm{MCSP}, \mathrm{MKTP}, \ldots$

Eliminate error in GI and SZK reductions?

A zero-error reduction

Theorem. GI \in ZPP $^{\text {MKTP }}$

Fundamentally different reduction from before
Extends to any 'explicit' isomorphism problem, including several where the best known algorithms are still exponential

Doesn't (yet) work for MCSP

How do the old reductions work?

Hinge on $\mathrm{M} \mu \mathrm{P}$ breaking PRGs
PRG from any one-way function [Håstad-Impagliazzo-Levin-Luby]
Inversion Lemma. There is a poly-time randomized Turing machine M using oracle access to $\mathrm{M} \mu \mathrm{P}$ so that the following holds. For any circuit C, if $\sigma \sim\{0,1\}^{n}$,

$$
\operatorname{Pr}[C(\tau)=C(\sigma)] \geq 1 / \text { poly }(|C|) \text { where } \tau=M(C, C(\sigma))
$$

[Allender-Buhrman-Koucký-van Melkebeek-Ronneburger]
Example: Fix a graph G. Let C map a permutation σ to $\sigma(G)$.
M inverts C : if $\sigma(G)$ is a random permutation of G, then $M(C, \sigma(G))$ finds τ s.t. $\tau(G)=\sigma(G)$ with good probability

Given $G_{0} \cong G_{1}$, use M to find an isomorphism
Let $C(\sigma)=\sigma\left(G_{0}\right)$ where $\sigma \sim S_{n}$
M inverts C : given random $\sigma\left(G_{0}\right), M$ finds τ with $\tau\left(G_{0}\right)=\sigma\left(G_{0}\right)$
$G_{0} \cong G_{1}$ implies that $\sigma\left(G_{1}\right)$ is distributed the same as $\sigma\left(G_{0}\right)$
So $M\left(C, \sigma\left(G_{1}\right)\right)$ finds τ with $\tau\left(G_{0}\right)=\sigma\left(G_{1}\right)$
$\Longrightarrow \mathrm{GI} \in \mathrm{RP}^{\mathrm{M} \mu \mathrm{P}}$

Eliminating error?

Similar results:

- Factoring \in ZPP $^{\mathrm{M}} \mu \mathrm{P}$
- DiscreteLog \in ZPP $^{\text {M }} \mu \mathrm{P}$
- $\mathrm{GI} \in \mathrm{RP}^{\mathrm{M} \mu \mathrm{P}}$
- $\mathrm{SZK} \subseteq \mathrm{BPP}^{\mathrm{M} \mu \mathrm{P}}$

How to eliminate error?
$\mathrm{M} \mu \mathrm{P}$ is only used to generate witnesses, which are then checked in deterministic polynomial time

Thus, showing GI $\in \operatorname{coR} P^{\mathrm{M} \mu \mathrm{P}}$ using a similar approach implicitly requires GI \in coNP, i.e., NP-witnesses for nonisomorphism

Approach uses MKTP to help with verification

A zero-error reduction

Theorem. GI \in ZPP $^{\text {MKTP }}$

Nonisomorphism has NP ${ }^{\text {MKTP }}$ witnesses.

Key idea: KT complexity is a good estimator for the entropy of samplable distributions

Graph Isomorphism in ZPP^MKTP

Graph Isomorphism

$\mathrm{GI}=$ decide whether two given graphs $\left(G_{0}, G_{1}\right)$ are isomorphic $\operatorname{Aut}(G)=$ group of automorphisms of G

Number of distinct permutations of $G=n!/|\operatorname{Aut}(G)|$
To show $\mathrm{GI} \in \mathrm{ZPP}{ }^{\text {MKTP }}$, suffices to show $\mathrm{GI} \in \operatorname{coRP}^{\text {MKTP }}$, i.e., to witness nonisomorphism

KT Complexity

Recall: $\mathrm{KT}(x)=$ smallest $|p|+T$ where p describes x in time T Intuition for bounding $\mathrm{KT}(x)$: describe a string x by a program p taking advice α so that $p^{\alpha}(i)=i$-th bit of x
$\mathrm{KT}(x)$ is smallest $|p|+|\alpha|+T$ where

- p with advice α describes x
- p runs in at most T steps for all i

KT Complexity

Examples:

1. $\operatorname{KT}\left(0^{n}\right)=\operatorname{polylog}(n)$

Store n in advice, define $p(i)$ to output 0 if $i \leq n$, and end-of-string otherwise
2. $G=$ adjacency matrix of a graph $\mathrm{KT}(G) \leq\binom{ n}{2}+\operatorname{polylog}(n)$
3. Let $y=t$ copies of G $\mathrm{KT}(y) \leq \mathrm{KT}(G)+\operatorname{polylog}(n t)$
4. Let $y=$ sequence of t numbers from $\left\{5,10,10^{300},-46\right\}$ $O(1)$ bits to describe the set, plus $2 t$ bits to describe the sequence given the set
$\mathrm{KT}(y) \leq 2 t+\operatorname{polylog}(t)$

Witnessing nonisomorphism: rigid graphs

Let G_{0}, G_{1} be rigid graphs, i.e., no non-trivial automorphisms
Key fact: if $G_{0} \cong G_{1}$, there are n ! distinct graphs among permutations of G_{0} and G_{1}; if $G_{0} \not \approx G_{1}$, there are $2(n!)$.

Consider sampling $r \sim\{0,1\}$ and $\pi \sim S_{n}$ uniformly, and outputting the adjacency matrix of $\pi\left(G_{r}\right)$.

- If $G_{0} \cong G_{1}$, this has entropy $s \doteq \log (n!)$
- If $G_{0} \not \approx G_{1}$, this has entropy $s+1$

Main idea: use KT-complexity of a random sample to estimate the entropy

Witnessing nonisomorphism: rigid graphs

Let $y=\pi\left(G_{r}\right), \pi \sim S_{n}, r \sim\{0,1\}$.
Hope: $\mathrm{KT}(y)$ is typically near the entropy, never much larger

where $s=\log (n!)$
Then $\mathrm{KT}(y)>\theta$ is a witness of nonisomorphism.

Witnessing nonisomorphism: rigid graphs

Let $y=\pi_{1}\left(G_{r_{1}}\right) \pi_{2}\left(G_{r_{2}}\right) \cdots \pi_{t}\left(G_{r_{t}}\right), \pi_{i} \sim S_{n}, r_{i} \sim\{0,1\}$.
Truth: $\mathrm{KT}(y) / t$ is typically near the entropy, never much larger

$$
\begin{aligned}
& G_{0} \cong G_{1} \\
& G_{0} \not \approx G_{1}
\end{aligned}
$$

where $s=\log (n!)$
Then $\mathrm{KT}(y) / t>\theta$ is a witness of nonisomorphism.

Bounding KT in isomorphic case

Let $y=\pi_{1}\left(G_{r_{1}}\right) \pi_{2}\left(G_{r_{2}}\right) \cdots \pi_{t}\left(G_{r_{t}}\right)$. Goal: $K T(y) \ll t s+t$.
Since $G_{0} \cong G_{1}$, rewrite $y=\tau_{1}\left(G_{0}\right) \tau_{2}\left(G_{0}\right) \cdots \tau_{t}\left(G_{0}\right)$.
Describe y as

- Fixed data: n, t, adjacency matrix of G_{0}
- Per-sample data: $\tau_{1}, \ldots, \tau_{t}$
- Decoding algo: to output j-th bit of y, look up appropriate τ_{i} and compute $\tau_{i}\left(G_{0}\right)$

Suppose each τ_{i} can be encoded into s bits:

$$
\begin{aligned}
\mathrm{KT}(y) & <\underbrace{O(1)}_{|p|}+\underbrace{\operatorname{poly}(n, \log t)+t s}_{|\alpha|}+\underbrace{\operatorname{poly}(n, \log t)}_{T} \\
& =t s+\operatorname{poly}(n, \log t) \ll t s+t(t \operatorname{large})
\end{aligned}
$$

Rigid graphs: Isomorphic case

Lehmer Code. There is an indexing of S_{n} by the numbers $1, \ldots, n$! so that the i-th permutation can be decoded from the binary representation of i in time poly (n).

Naïve conversion to binary: $\mathrm{KT}(y)<t\lceil s\rceil+\operatorname{poly}(n, \log t)$
$\ll t s+t$?

$$
K t s+t
$$

Blocking trick: amortize encoding overhead across samples
Yields for some $\delta>0, \mathrm{KT}(y) \leq t s+t^{1-\delta}$ poly (n),
i.e., $\operatorname{KT}(y) / t \leq s+\operatorname{poly}(n) / t^{\delta}$

Rigid graphs: Recap

Let $y=\pi_{1}\left(G_{r_{1}}\right) \pi_{2}\left(G_{r_{2}}\right) \cdots \pi_{t}\left(G_{r_{t}}\right)$.
If $G_{0} \cong G_{1}$, then $\mathrm{KT}(y) / t \leq s+o(1)$ always holds
If $G_{0} \not \not ⿻ G_{1}$, then as y is t independent samples from a distribution of entropy $s+1, \mathrm{KT}(y) / t \geq s+1-o(1)$ holds w.h.p.
\Longrightarrow coRP $^{\text {MKTP }}$ algorithm for GI on rigid graphs

General graphs

Assume for simplicity that there are as many distinct permutations of G_{0} as of G_{1}.

Let s be entropy in random permutation of $G_{i}: \log \left(n!/\left|\operatorname{Aut}\left(G_{i}\right)\right|\right)$
Sample $y=\pi_{1}\left(G_{r_{1}}\right) \cdots \pi_{t}\left(G_{r_{t}}\right)$, hope $\operatorname{KT}(y) / t$ looks the same:

$$
\begin{aligned}
& G_{0} \cong G_{1} \\
& G_{0} \not \approx G_{1}
\end{aligned}
$$

If $G_{0} \not \approx G_{1}, \operatorname{KT}(y) / t>s+1-o(1)$ w.h.p.
If $G_{0} \cong G_{1}, y$ has entropy $t s$, hope a similar encoding shows $\mathrm{KT}(y) / t \leq s+o(1)$.

General graphs

Assume for simplicity that there are as many distinct permutations of G_{0} as of G_{1}.

Let s be entropy in random permutation of $G_{i}: \log \left(n!/\left|\operatorname{Aut}\left(G_{i}\right)\right|\right)$
Sample $y=\pi_{1}\left(G_{r_{1}}\right) \cdots \pi_{t}\left(G_{r_{t}}\right)$, hope $\operatorname{KT}(y) / t$ looks the same:

$$
\begin{aligned}
& G_{0} \cong G_{1} \\
& G_{0} \not \approx G_{1}
\end{aligned}
$$

Two complications:

- Encoding distinct permutations of G_{0} as numbers $1, \ldots, n$! is too expensive
- Knowing θ requires knowing $\left|\operatorname{Aut}\left(G_{i}\right)\right|$

General graphs: encoding permutations of graphs

Indexing the various permutations of a non-rigid graph G as numbers $1, \ldots, n$! is too expensive

Need to use numbers $1, \ldots, N$ where $N=n!/|\operatorname{Aut}(G)|$
Such a specific encoding exists, but will see a more general-purpose substitute soon

General graphs: computing θ

It suffices to give a probably-approximately-correct overestimator (PAC overestimator) for θ :

Equivalently, it suffices to give a PAC underestimator for $\log \left|\operatorname{Aut}\left(G_{i}\right)\right|$, since $\theta=\left(\log n!-\log \left|\operatorname{Aut}\left(G_{i}\right)\right|\right)+1 / 2$

General graphs: computing θ

Claim. There is an efficient randomized algorithm using MKTP to PAC underestimate $\log |\operatorname{Aut}(G)|$ when given G.

Proof. Recall that there is a deterministic algorithm using an oracle for GI that computes generators for $\operatorname{Aut}(G)$.

Plug in an existing RP ${ }^{\text {MKTP }}$ algorithm for the oracle: this gives us generators for a group A with $A=\operatorname{Aut}(G)$ w.h.p.

Prune generators of A not $\operatorname{in} \operatorname{Aut}(G) \Longrightarrow A \leq \operatorname{Aut}(G)$
$|A|$ can be computed efficiently from its generators. Output $\log |A|$.

General graphs: Recap

Witness of nonisomorphism: $\mathrm{KT}(y) / t>\tilde{\theta}$
Theorem. GI $\in \mathrm{ZPP}^{\text {MKTP }}$

Generic Encoding Lemma

Encoding outputs of samplable distributions

We saw that for any rigid graph G, the n ! distinct permutations of G can be encoded as integers $1, \ldots, n!$.

This can be extended to general graphs, but still involves heavy use of the structure of the symmetric group.

What about other groups?
Is algebraic structure necessary?

Encoding outputs of samplable distributions

Turns out: can encode the outcomes of any samplable distribution.
Flatter distributions \Longrightarrow better encodings.
Rare events are hard to encode. So assume that all outcomes are somewhat likely.

Define the max-entropy of a distribution to be the smallest s such that all outcomes occur with probability at least 2^{-s} (or zero).

Encoding Lemma. Let C be a circuit sampling a distribution of max-entropy s. There is a circuit D of size poly $(|C|)$ and, for each outcome y, a string i_{y} of length $s+\log s+O(1)$, s.t. $D\left(i_{y}\right)=y$.

Proof based on hashing

Encoding outputs of samplable distributions

Example: C samples a random permutation of a graph G. Then each permutation of G can be decoded from a string of length $s+\log s+O(1)$, where $s=\log (n!/|\operatorname{Aut}(G)|)$

Overhead of $\log s+O(1)$ is worse than $\lceil s\rceil-s$, but can still be amortized out.

End result: for any graph G, any t permutations of G has KT-complexity at most $t s+t^{1-\delta}$ poly (n).

In general, for any circuit C of max-entropy s, any t samples from
C has KT-complexity at most $t s+t^{1-\delta}$ poly $(|C|)$.

Entropy estimation

Entropy Estimator Theorem.

Let C be any circuit sampling a distribution of max-entropy $s_{\max }$ and min-entropy $s_{\text {min }}$. Let y be the concatenation of t independent samples from C. Then $\operatorname{KT}(y) / t$ is typically between $s_{\text {min }}-o(1)$ and $s_{\text {max }}+o(1)$, and never much larger.

$$
K T(y) / t
$$

Nice case: $s_{\max }-s_{\min }=o(1) . C$ is "almost flat".

Extensions for General Isomorphism Problems

General isomorphism problem

Group H acts on a universe Ω. Given $\omega_{0}, \omega_{1} \in \Omega$, decide whether some $h \in H$ sends ω_{0} to ω_{1}. Assume products, inverses, etc. are efficiently computable.

Example 1: With GI, $H=S_{n}, \Omega=$ labeled n-vertex graphs, where H acts by permuting labels. $\omega_{0}=G_{0}$ and $\omega_{1}=G_{1}$. Find a permutation sending G_{0} to G_{1}.

Example 2: "Matrix Subspace Conjugacy". $\Omega=$ subspaces of $\mathbb{F}^{n \times n}$, given by a basis (a set of matrices). $H=\mathrm{GL}_{n}(\mathbb{F})$, acting by conjugation. Given $\left\{M_{1}, M_{2}, \ldots, M_{k}\right\}$ and $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$, is there T so that
$\operatorname{span}\left\{T^{-1} M_{1} T, T^{-1} M_{2} T, \ldots, T^{-1} M_{k} T\right\}=\operatorname{span}\left\{N_{1}, N_{2}, \ldots, N_{k}\right\} ?$

Beyond GI

With the entropy estimator theorem in hand, the techniques for GI mostly generalize

Only obstacle: PAC overestimating $\theta /$ underestimating $\log |\operatorname{Aut}(G)|$
Recall, we did this by

1. using a search-to-decision reduction to find generators for Aut(G), and
2. computing $|\operatorname{Aut}(G)|$ efficiently from its generators

What to do when a search-to-decision reduction isn't known?
What if the ambient group isn't S_{n} ?

PAC underestimating $\log |\operatorname{Aut}(G)|$

Idea: PAC underestimate $\log |\operatorname{Aut}(G)|$ using the entropy estimator theorem again

Aut (G) efficiently samplable implies amortized KT-complexity PAC underestimates $\log |\operatorname{Aut}(G)|$

Let $y^{\prime}=\pi_{1} \pi_{2} \cdots \pi_{t}$ be t random elements of $\operatorname{Aut}(G)$
Need $\operatorname{Aut}(G)$ efficiently samplable twice:

- Construction of y^{\prime} in the algorithm
- Analysis of $\mathrm{KT}\left(y^{\prime}\right)$

Note: these sampling procedures need not be the same.
Show

- how to use MKTP to sample $\operatorname{Aut}(G)$ with only G on hand
- for every G, there is a circuit C_{G} which samples $\operatorname{Aut}(G)$ uniformly

How to sample Aut(G) with MKTP

Recall that MKTP can be used to invert circuits.
Inversion Lemma. There is a poly-time randomized Turing machine M using oracle access to $\mathrm{M} \mu \mathrm{P}$ so that the following holds. For any circuit C, if $\sigma \sim\{0,1\}^{n}$,

$$
\operatorname{Pr}[C(\tau)=C(\sigma)] \geq 1 / \operatorname{poly}(|C|) \text { where } \tau=M(C, C(\sigma))
$$

[Allender-Buhrman-Koucký-van Melkebeek-Ronneburger]
Let C sample a random permutation π and output $\pi(G)$
Pick $\pi \sim S_{n}$ at random, let $\tau=M(C, \pi(G))$. With probability $1 / \operatorname{poly}(n), \tau(G)=\pi(G)$, so $\tau^{-1} \circ \pi \in \operatorname{Aut}(G)$.

Conditioned on $\pi(G), \tau$ and π are independent, so $\tau^{-1} \circ \pi$ is uniform on $\operatorname{Aut}(G)$.

How to sample Aut(G) with a small circuit

A sequence $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ of elements of a finite group Γ is said to be Erdős-Rényi if the 'random subproduct'

$$
\pi_{1}^{r_{1}} \pi_{2}^{r_{2}} \cdots \pi_{k}^{r_{k}}, \quad r_{i} \sim\{0,1\}
$$

is distributed approximately uniformly on $\Gamma .\left(s_{\max }-s_{\text {min }}=o(1)\right)$
Erdős and Rényi showed that every finite group has such a generating set of size poly $(\log |\Gamma|)$.

With $\Gamma=\operatorname{Aut}(G)$, obtain an ER generating set of size poly (n).
Hardwire the ER set into a circuit sampling the random subproduct.

Other Applications of KT v. Entropy

KT versus entropy: other applications

More theorems and consequences:

- Any 'explicit' iso. problem is in ZPP ${ }^{\text {MKTP }}$
- New proof of SZK \subseteq BPPMKTP
- $\mathrm{DET} \subseteq \mathrm{AC}_{0}^{\text {MKTP }}$. Consequently, MKTP $\notin \mathrm{AC}^{0}[p]$
[Allender-Hirahara]
- Random-3SAT, Planted Clique \leq MKTP
[Hirahara-Santhanam]

Open Problems

Open problem: SZK?

Techniques essentially boil down to estimating entropy by KT-complexity

Complete problem for SZK: determine whether a given samplable distribution has entropy at least a given threshold
Entropy estimator theorem can reproduce $\mathrm{SZK} \subseteq$ BPP $^{\text {MKTP }}$ SZK \subseteq ZPP $^{\text {MKTP }}$?

Obstacle is devising witnesses for non-flat distributions
There are distributions with low entropy but supported on every string-nontrivial worst-case bound on KT-complexity is impossible.

Open problem: What about MCSP?

The argument should work for MCSP, but fails for annoying technical reasons. This is true even for rigid-GI.

Use KT complexity in two ways:

- Counting argument: $\mathrm{KT}(y) \gtrsim t s+t$ whp
- Encoding: any string of length $t s$ has KT $\lesssim t s$

For circuits, we get:

- Counting argument: $\operatorname{CSIZE}(y) \gtrsim(t s+t) / \log (t s+t)$ whp
- Encoding: any string of length $t s$ has CSIZE $\lesssim t s / \log (t s)$

Low-order terms matter: best known bounds require exponentially-large t to force gap between the isomorphic and nonisomorphic cases

Open problem: What about MCSP?

Resolving these bounds is only so satisfactory: the answer probably depends on the precise measure of circuit complexity.

Better: boost the gap in entropy between the isomorphic and nonisomorphic cases, then use polynomial relationship between KT and circuit size

Summary

- Reviewed old reductions to MCSP/MKTP based on Inversion Lemma
- Showed a different kind of reduction from GI to MKTP based on estimating entropy by KT complexity
- Stated Encoding Lemma and Entropy Estimator Theorem
- Sketched extension to general isomorphism problems
- Listed other uses of estimating entropy by KT complexity
- Open problems: SZK? MCSP?

Questions?

Thank you!

Random-3SAT reduces to MKTP

Random-3SAT (baby version): Given either

- Satisfiable 3-CNF
- Random 3-CNF with many clauses (likely unsatisfiable) distinguish between the two cases.

Idea: Existence of a satisfying assignment gives information about the 3-CNF, so it should be easier to describe.

For a satisfying assignment x, sample a random clause that x satisfies. Entropy: $\log \binom{n}{3}+\log (7)$.
\Longrightarrow amortized KT-complexity always bounded
For random 3-CNF: random clause has entropy $\log \binom{n}{3}+\log (8)$
\Longrightarrow amortized KT-complexity typically high

Planted Clique reduces to MKTP

Planted clique: Given either

- Uniformly random graph
- Uniformly random graph union with a random k-clique
distinguish between the two cases.
Uniformly random graph has entropy $\binom{n}{2}$
Random graph with clique has entropy at most $\binom{n}{2}+\log \binom{n}{k}-\binom{k}{2}$
[Hirahara-Santhanam] show KT-complexity closely matches entropy

