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Minimum Circuit Size

MCSP = {(x , θ) : x has circuit complexity at most θ}

How hard is MCSP?
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How hard is MCSP?

Some known reductions:

• Factoring ∈ ZPPMCSP

[Allender–Buhrman–Koucký–van Melkebeek–Ronneburger]

• DiscreteLog ∈ ZPPMCSP

[Allender–Buhrman–Koucký–van Melkebeek–Ronneburger, Rudow]

• GI ∈ RPMCSP [Allender–Das]

• SZK ⊆ BPPMCSP [Allender–Das]

where

GI = graph isomorphism

SZK = problems with statistical zero knowledge protocols

Can replace MCSP by MµP for any complexity measure µ

polynomially related to circuit size
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KT Complexity

Describe a string x by a program p so that p(i) = i-th bit of x

KT(x) = smallest |p|+ T , where

• p describes x

• p runs in at most T steps for all i

MKTP = {(x , θ) : KT(x) ≤ θ}

Time-bounded Turing machines with advice ∼= Circuits

=⇒ KT polynomially-related to circuit complexity
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How hard is MµP?

Some known reductions:

• Factoring ∈ ZPPMµP

• DiscreteLog ∈ ZPPMµP

• GI ∈ RPMµP

• SZK ⊆ BPPMµP

where

GI = graph isomorphism

SZK = problems with statistical zero knowledge protocols

MµP = MCSP,MKTP, . . .

Eliminate error in GI and SZK reductions?
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A zero-error reduction

Theorem. GI ∈ ZPPMKTP

Fundamentally different reduction from before

Extends to any ‘explicit’ isomorphism problem, including several

where the best known algorithms are still exponential

Doesn’t (yet) work for MCSP
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How do the old reductions work?

Hinge on MµP breaking PRGs

PRG from any one-way function [Håstad–Impagliazzo–Levin–Luby]

Inversion Lemma. There is a poly-time randomized Turing

machine M using oracle access to MµP so that the following

holds. For any circuit C , if σ ∼ {0, 1}n,

Pr[C (τ) = C (σ)] ≥ 1/poly(|C |) where τ = M(C ,C (σ))

[Allender–Buhrman–Koucký–van Melkebeek–Ronneburger]

Example: Fix a graph G . Let C map a permutation σ to σ(G ).

M inverts C : if σ(G ) is a random permutation of G , then

M(C , σ(G )) finds τ s.t. τ(G ) = σ(G ) with good probability
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Example: GI in RPˆMCSP [Allender–Das]

Theorem. GI ∈ RPMµP [Allender–Das]

Given G0
∼= G1, use M to find an isomorphism

Let C (σ) = σ(G0) where σ ∼ Sn

M inverts C : given random σ(G0), M finds τ with τ(G0) = σ(G0)

G0
∼= G1 implies that σ(G1) is distributed the same as σ(G0)

So M(C , σ(G1)) finds τ with τ(G0) = σ(G1)

=⇒ GI ∈ RPMµP
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Eliminating error?

Similar results:

• Factoring ∈ ZPPMµP

• DiscreteLog ∈ ZPPMµP

• GI ∈ RPMµP

• SZK ⊆ BPPMµP

How to eliminate error?

MµP is only used to generate witnesses, which are then checked in

deterministic polynomial time

Thus, showing GI ∈ coRPMµP using a similar approach implicitly

requires GI ∈ coNP, i.e., NP-witnesses for nonisomorphism

Approach uses MKTP to help with verification
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A zero-error reduction

Theorem. GI ∈ ZPPMKTP

Nonisomorphism has NPMKTP witnesses.

Key idea: KT complexity is a good estimator for the entropy of

samplable distributions
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Graph Isomorphism in ZPPˆMKTP



Graph Isomorphism

GI = decide whether two given graphs (G0, G1) are isomorphic

Aut(G ) = group of automorphisms of G

Number of distinct permutations of G = n!/|Aut(G )|

To show GI ∈ ZPPMKTP, suffices to show GI ∈ coRPMKTP, i.e.,

to witness nonisomorphism
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KT Complexity

Recall: KT(x) = smallest |p|+ T where p describes x in time T

Intuition for bounding KT(x): describe a string x by a program p

taking advice α so that pα(i) = i-th bit of x

KT(x) is smallest |p|+ |α|+ T where

• p with advice α describes x

• p runs in at most T steps for all i
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KT Complexity

Examples:

1. KT(0n) = polylog(n)

Store n in advice, define p(i) to output 0 if i ≤ n, and

end-of-string otherwise

2. G = adjacency matrix of a graph

KT(G ) ≤
(n
2

)
+ polylog(n)

3. Let y = t copies of G

KT(y) ≤ KT(G ) + polylog(nt)

4. Let y = sequence of t numbers from {5, 10, 10300,−46}
O(1) bits to describe the set, plus 2t bits to describe the

sequence given the set

KT(y) ≤ 2t + polylog(t)

13



Witnessing nonisomorphism: rigid graphs

Let G0,G1 be rigid graphs, i.e., no non-trivial automorphisms

Key fact: if G0
∼= G1, there are n! distinct graphs among

permutations of G0 and G1; if G0 6∼= G1, there are 2(n!).

Consider sampling r ∼ {0, 1} and π ∼ Sn uniformly, and

outputting the adjacency matrix of π(Gr ).

• If G0
∼= G1, this has entropy s

.
= log(n!)

• If G0 6∼= G1, this has entropy s + 1

Main idea: use KT-complexity of a random sample to estimate the

entropy
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Witnessing nonisomorphism: rigid graphs

Let y = π(Gr ), π ∼ Sn, r ∼ {0, 1}.

Hope: KT(y) is typically near the entropy, never much larger

G0
∼= G1

G0 6∼= G1

s s + 1θ

where s = log(n!)

Then KT(y) > θ is a witness of nonisomorphism.
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Witnessing nonisomorphism: rigid graphs

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt ), πi ∼ Sn, ri ∼ {0, 1}.

Truth: KT(y)/t is typically near the entropy, never much larger

G0
∼= G1

G0 6∼= G1

s s + 1θ

where s = log(n!)

Then KT(y)/t > θ is a witness of nonisomorphism.
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Bounding KT in isomorphic case

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt ). Goal: KT(y)� ts + t.

Since G0
∼= G1, rewrite y = τ1(G0)τ2(G0) · · · τt(G0).

Describe y as

• Fixed data: n, t, adjacency matrix of G0

• Per-sample data: τ1, . . . , τt

• Decoding algo: to output j-th bit of y , look up appropriate τi

and compute τi (G0)

Suppose each τi can be encoded into s bits:

KT(y) < O(1)︸ ︷︷ ︸
|p|

+ poly(n, log t) + ts︸ ︷︷ ︸
|α|

+ poly(n, log t)︸ ︷︷ ︸
T

= ts + poly(n, log t)� ts + t (t large)
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Rigid graphs: Isomorphic case

Lehmer Code. There is an indexing of Sn by the numbers

1, . . . , n! so that the i-th permutation can be decoded from the

binary representation of i in time poly(n).

Näıve conversion to binary: KT(y) < tdse+ poly(n, log t)

� ts + t ? 6� ts + t

Blocking trick: amortize encoding overhead across samples

Yields for some δ > 0, KT(y) ≤ ts + t1−δpoly(n),

i.e., KT(y)/t ≤ s + poly(n)/tδ
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Rigid graphs: Recap

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt ).

If G0
∼= G1, then KT(y)/t ≤ s + o(1) always holds

If G0 6∼= G1, then as y is t independent samples from a distribution

of entropy s + 1, KT(y)/t ≥ s + 1− o(1) holds w.h.p.

=⇒ coRPMKTP algorithm for GI on rigid graphs
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General graphs

Assume for simplicity that there are as many distinct permutations

of G0 as of G1.

Let s be entropy in random permutation of Gi : log(n!/|Aut(Gi )|)

Sample y = π1(Gr1) · · ·πt(Grt ), hope KT(y)/t looks the same:

G0
∼= G1

G0 6∼= G1

s s + 1θ

If G0 6∼= G1, KT(y)/t > s + 1− o(1) w.h.p.

If G0
∼= G1, y has entropy ts, hope a similar encoding shows

KT(y)/t ≤ s + o(1).

Two complications:

• Encoding distinct permutations of G0 as numbers 1, . . . , n! is

too expensive

• Knowing θ requires knowing |Aut(Gi )|
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General graphs: encoding permutations of graphs

Indexing the various permutations of a non-rigid graph G as

numbers 1, . . . , n! is too expensive

Need to use numbers 1, . . . ,N where N = n!/|Aut(G )|

Such a specific encoding exists, but will see a more

general-purpose substitute soon
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General graphs: computing θ

It suffices to give a probably-approximately-correct overestimator

(PAC overestimator) for θ:

θ̃

KT (y)/t,G0
∼= G1

KT (y)/t,G0 6∼= G1

s s + 1θ

Equivalently, it suffices to give a PAC underestimator for

log |Aut(Gi )|, since θ = (log n!− log |Aut(Gi )|) + 1/2
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General graphs: computing θ

Claim. There is an efficient randomized algorithm using MKTP to

PAC underestimate log |Aut(G )| when given G .

Proof. Recall that there is a deterministic algorithm using an

oracle for GI that computes generators for Aut(G ).

Plug in an existing RPMKTP algorithm for the oracle: this gives us

generators for a group A with A = Aut(G ) w.h.p.

Prune generators of A not in Aut(G ) =⇒ A ≤ Aut(G )

|A| can be computed efficiently from its generators. Output log |A|.
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General graphs: Recap

y = π1(Gr1)π2(Gr2) · · ·πt(Grt )

s = log n!/|Aut(Gi )|

θ̃

KT (y)/t,G0
∼= G1

KT (y)/t,G0 6∼= G1

s s + 1θ

Witness of nonisomorphism: KT(y)/t > θ̃

Theorem. GI ∈ ZPPMKTP
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Generic Encoding Lemma



Encoding outputs of samplable distributions

We saw that for any rigid graph G , the n! distinct permutations of

G can be encoded as integers 1, . . . , n!.

This can be extended to general graphs, but still involves heavy

use of the structure of the symmetric group.

What about other groups?

Is algebraic structure necessary?
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Encoding outputs of samplable distributions

Turns out: can encode the outcomes of any samplable distribution.

Flatter distributions =⇒ better encodings.

Rare events are hard to encode. So assume that all outcomes are

somewhat likely.

Define the max-entropy of a distribution to be the smallest s such

that all outcomes occur with probability at least 2−s (or zero).

Encoding Lemma. Let C be a circuit sampling a distribution

of max-entropy s. There is a circuit D of size poly(|C |) and,

for each outcome y , a string iy of length s + log s + O(1), s.t.

D(iy ) = y .

Proof based on hashing
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Encoding outputs of samplable distributions

Example: C samples a random permutation of a graph G . Then

each permutation of G can be decoded from a string of length

s + log s + O(1), where s = log(n!/|Aut(G )|)

Overhead of log s + O(1) is worse than dse − s, but can still be

amortized out.

End result: for any graph G , any t permutations of G has

KT-complexity at most ts + t1−δpoly(n).

In general, for any circuit C of max-entropy s, any t samples from

C has KT-complexity at most ts + t1−δpoly(|C |).
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Entropy estimation

Entropy Estimator Theorem.

Let C be any circuit sampling a distribution of max-entropy

smax and min-entropy smin. Let y be the concatenation of t in-

dependent samples from C . Then KT(y)/t is typically between

smin − o(1) and smax + o(1), and never much larger.

KT (y)/t

smin smax

Nice case: smax − smin = o(1). C is “almost flat”.
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Extensions for General Isomorphism

Problems



General isomorphism problem

Group H acts on a universe Ω. Given ω0, ω1 ∈ Ω, decide whether

some h ∈ H sends ω0 to ω1. Assume products, inverses, etc. are

efficiently computable.

Example 1: With GI, H = Sn, Ω = labeled n-vertex graphs, where

H acts by permuting labels. ω0 = G0 and ω1 = G1. Find a

permutation sending G0 to G1.

Example 2: “Matrix Subspace Conjugacy”. Ω = subspaces of

Fn×n, given by a basis (a set of matrices). H = GLn(F), acting by

conjugation. Given {M1,M2, . . . ,Mk} and {N1,N2, . . . ,Nk}, is

there T so that

span{T−1M1T ,T
−1M2T , . . . ,T

−1MkT} = span{N1,N2, . . . ,Nk}?
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Beyond GI

With the entropy estimator theorem in hand, the techniques for GI

mostly generalize

Only obstacle: PAC overestimating θ/underestimating log |Aut(G )|

Recall, we did this by

1. using a search-to-decision reduction to find generators for

Aut(G ), and

2. computing |Aut(G )| efficiently from its generators

What to do when a search-to-decision reduction isn’t known?

What if the ambient group isn’t Sn?
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PAC underestimating log |Aut(G)|

Idea: PAC underestimate log |Aut(G )| using the entropy estimator

theorem again

Aut(G ) efficiently samplable implies amortized KT-complexity

PAC underestimates log |Aut(G )|

Let y ′ = π1π2 · · ·πt be t random elements of Aut(G )

Need Aut(G ) efficiently samplable twice:

- Construction of y ′ in the algorithm

- Analysis of KT(y ′)

Note: these sampling procedures need not be the same.

Show

- how to use MKTP to sample Aut(G ) with only G on hand

- for every G , there is a circuit CG which samples Aut(G ) uniformly

31



How to sample Aut(G) with MKTP

Recall that MKTP can be used to invert circuits.

Inversion Lemma. There is a poly-time randomized Turing

machine M using oracle access to MµP so that the following

holds. For any circuit C , if σ ∼ {0, 1}n,

Pr[C (τ) = C (σ)] ≥ 1/poly(|C |) where τ = M(C ,C (σ))

[Allender–Buhrman–Koucký–van Melkebeek–Ronneburger]

Let C sample a random permutation π and output π(G )

Pick π ∼ Sn at random, let τ = M(C , π(G )). With probability

1/poly(n), τ(G ) = π(G ), so τ−1 ◦ π ∈ Aut(G ).

Conditioned on π(G ), τ and π are independent, so τ−1 ◦ π is

uniform on Aut(G ).
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How to sample Aut(G) with a small circuit

A sequence π1, π2, . . . , πk of elements of a finite group Γ is said to

be Erdős–Rényi if the ‘random subproduct’

πr11 π
r2
2 · · ·π

rk
k , ri ∼ {0, 1}

is distributed approximately uniformly on Γ. (smax − smin = o(1))

Erdős and Rényi showed that every finite group has such a

generating set of size poly(log |Γ|).

With Γ = Aut(G ), obtain an ER generating set of size poly(n).

Hardwire the ER set into a circuit sampling the random

subproduct.
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Other Applications of KT v. Entropy



KT versus entropy: other applications

More theorems and consequences:

• Any ‘explicit’ iso. problem is in ZPPMKTP

• New proof of SZK ⊆ BPPMKTP

• DET ⊆ ACMKTP
0 . Consequently, MKTP 6∈ AC0[p]

[Allender–Hirahara]

• Random-3SAT, Planted Clique ≤ MKTP

[Hirahara–Santhanam]
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Open Problems



Open problem: SZK?

Techniques essentially boil down to estimating entropy by

KT-complexity

Complete problem for SZK: determine whether a given samplable

distribution has entropy at least a given threshold

Entropy estimator theorem can reproduce SZK ⊆ BPPMKTP

SZK ⊆ ZPPMKTP ?

Obstacle is devising witnesses for non-flat distributions

There are distributions with low entropy but supported on every

string—nontrivial worst-case bound on KT-complexity is

impossible.
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Open problem: What about MCSP?

The argument should work for MCSP, but fails for annoying

technical reasons. This is true even for rigid-GI.

Use KT complexity in two ways:

• Counting argument: KT(y) & ts + t whp

• Encoding: any string of length ts has KT . ts

For circuits, we get:

• Counting argument: CSIZE(y) & (ts + t)/ log(ts + t) whp

• Encoding: any string of length ts has CSIZE . ts/ log(ts)

Low-order terms matter: best known bounds require

exponentially-large t to force gap between the isomorphic and

nonisomorphic cases
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Open problem: What about MCSP?

Resolving these bounds is only so satisfactory: the answer probably

depends on the precise measure of circuit complexity.

Better: boost the gap in entropy between the isomorphic and

nonisomorphic cases, then use polynomial relationship between KT

and circuit size
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Summary

• Reviewed old reductions to MCSP/MKTP based on Inversion

Lemma

• Showed a different kind of reduction from GI to MKTP

based on estimating entropy by KT complexity

• Stated Encoding Lemma and Entropy Estimator Theorem

• Sketched extension to general isomorphism problems

• Listed other uses of estimating entropy by KT complexity

• Open problems: SZK? MCSP?

Questions?
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Thank you!



Random-3SAT reduces to MKTP [Hirahara–Santhanam]

Random-3SAT (baby version): Given either

• Satisfiable 3-CNF

• Random 3-CNF with many clauses (likely unsatisfiable)

distinguish between the two cases.

Idea: Existence of a satisfying assignment gives information about

the 3-CNF, so it should be easier to describe.

For a satisfying assignment x , sample a random clause that x

satisfies. Entropy: log
(n
3

)
+ log(7).

=⇒ amortized KT-complexity always bounded

For random 3-CNF: random clause has entropy log
(n
3

)
+ log(8)

=⇒ amortized KT-complexity typically high

39



Planted Clique reduces to MKTP [Hirahara–Santhanam]

Planted clique: Given either

• Uniformly random graph

• Uniformly random graph union with a random k-clique

distinguish between the two cases.

Uniformly random graph has entropy
(n
2

)
Random graph with clique has entropy at most

(n
2

)
+ log

(n
k

)
−
(k
2

)
[Hirahara–Santhanam] show KT-complexity closely matches entropy
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