
Minimum Circuit Size, Graph Isomorphism,

and Related Problems

Andrew Morgan

University of Wisconsin–Madison

November 1st, 2018

Based on work with E. Allender, J. Grochow, D. van Melkebeek, and C. Moore

1

Minimum Circuit Size

MCSP = {(x , θ) : x has circuit complexity at most θ}

How hard is MCSP?

2

How hard is MCSP?

Some known reductions:

• Factoring ∈ ZPPMCSP

[Allender–Buhrman–Koucký–van Melkebeek–Ronneburger]

• DiscreteLog ∈ ZPPMCSP

[Allender–Buhrman–Koucký–van Melkebeek–Ronneburger, Rudow]

• GI ∈ RPMCSP [Allender–Das]

• SZK ⊆ BPPMCSP [Allender–Das]

where

GI = graph isomorphism

SZK = problems with statistical zero knowledge protocols

Can replace MCSP by MµP for any complexity measure µ

polynomially related to circuit size

3

KT Complexity

Describe a string x by a program p so that p(i) = i-th bit of x

KT(x) = smallest |p|+ T , where

• p describes x

• p runs in at most T steps for all i

MKTP = {(x , θ) : KT(x) ≤ θ}

Time-bounded Turing machines with advice ∼= Circuits

=⇒ KT polynomially-related to circuit complexity

4

How hard is MµP?

Some known reductions:

• Factoring ∈ ZPPMµP

• DiscreteLog ∈ ZPPMµP

• GI ∈ RPMµP

• SZK ⊆ BPPMµP

where

GI = graph isomorphism

SZK = problems with statistical zero knowledge protocols

MµP = MCSP,MKTP, . . .

Eliminate error in GI and SZK reductions?

5

A zero-error reduction

Theorem. GI ∈ ZPPMKTP

Fundamentally different reduction from before

Extends to any ‘explicit’ isomorphism problem, including several

where the best known algorithms are still exponential

Doesn’t (yet) work for MCSP

6

How do the old reductions work?

Hinge on MµP breaking PRGs

PRG from any one-way function [Håstad–Impagliazzo–Levin–Luby]

Inversion Lemma. There is a poly-time randomized Turing

machine M using oracle access to MµP so that the following

holds. For any circuit C , if σ ∼ {0, 1}n,

Pr[C (τ) = C (σ)] ≥ 1/poly(|C |) where τ = M(C ,C (σ))

[Allender–Buhrman–Koucký–van Melkebeek–Ronneburger]

Example: Fix a graph G . Let C map a permutation σ to σ(G).

M inverts C : if σ(G) is a random permutation of G , then

M(C , σ(G)) finds τ s.t. τ(G) = σ(G) with good probability

7

Example: GI in RPˆMCSP [Allender–Das]

Theorem. GI ∈ RPMµP [Allender–Das]

Given G0
∼= G1, use M to find an isomorphism

Let C (σ) = σ(G0) where σ ∼ Sn

M inverts C : given random σ(G0), M finds τ with τ(G0) = σ(G0)

G0
∼= G1 implies that σ(G1) is distributed the same as σ(G0)

So M(C , σ(G1)) finds τ with τ(G0) = σ(G1)

=⇒ GI ∈ RPMµP

8

Eliminating error?

Similar results:

• Factoring ∈ ZPPMµP

• DiscreteLog ∈ ZPPMµP

• GI ∈ RPMµP

• SZK ⊆ BPPMµP

How to eliminate error?

MµP is only used to generate witnesses, which are then checked in

deterministic polynomial time

Thus, showing GI ∈ coRPMµP using a similar approach implicitly

requires GI ∈ coNP, i.e., NP-witnesses for nonisomorphism

Approach uses MKTP to help with verification

9

A zero-error reduction

Theorem. GI ∈ ZPPMKTP

Nonisomorphism has NPMKTP witnesses.

Key idea: KT complexity is a good estimator for the entropy of

samplable distributions

10

Graph Isomorphism in ZPPˆMKTP

Graph Isomorphism

GI = decide whether two given graphs (G0, G1) are isomorphic

Aut(G) = group of automorphisms of G

Number of distinct permutations of G = n!/|Aut(G)|

To show GI ∈ ZPPMKTP, suffices to show GI ∈ coRPMKTP, i.e.,

to witness nonisomorphism

11

KT Complexity

Recall: KT(x) = smallest |p|+ T where p describes x in time T

Intuition for bounding KT(x): describe a string x by a program p

taking advice α so that pα(i) = i-th bit of x

KT(x) is smallest |p|+ |α|+ T where

• p with advice α describes x

• p runs in at most T steps for all i

12

KT Complexity

Examples:

1. KT(0n) = polylog(n)

Store n in advice, define p(i) to output 0 if i ≤ n, and

end-of-string otherwise

2. G = adjacency matrix of a graph

KT(G) ≤
(n
2

)
+ polylog(n)

3. Let y = t copies of G

KT(y) ≤ KT(G) + polylog(nt)

4. Let y = sequence of t numbers from {5, 10, 10300,−46}
O(1) bits to describe the set, plus 2t bits to describe the

sequence given the set

KT(y) ≤ 2t + polylog(t)

13

Witnessing nonisomorphism: rigid graphs

Let G0,G1 be rigid graphs, i.e., no non-trivial automorphisms

Key fact: if G0
∼= G1, there are n! distinct graphs among

permutations of G0 and G1; if G0 6∼= G1, there are 2(n!).

Consider sampling r ∼ {0, 1} and π ∼ Sn uniformly, and

outputting the adjacency matrix of π(Gr).

• If G0
∼= G1, this has entropy s

.
= log(n!)

• If G0 6∼= G1, this has entropy s + 1

Main idea: use KT-complexity of a random sample to estimate the

entropy

14

Witnessing nonisomorphism: rigid graphs

Let y = π(Gr), π ∼ Sn, r ∼ {0, 1}.

Hope: KT(y) is typically near the entropy, never much larger

G0
∼= G1

G0 6∼= G1

s s + 1θ

where s = log(n!)

Then KT(y) > θ is a witness of nonisomorphism.

15

Witnessing nonisomorphism: rigid graphs

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt), πi ∼ Sn, ri ∼ {0, 1}.

Truth: KT(y)/t is typically near the entropy, never much larger

G0
∼= G1

G0 6∼= G1

s s + 1θ

where s = log(n!)

Then KT(y)/t > θ is a witness of nonisomorphism.

16

Bounding KT in isomorphic case

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt). Goal: KT(y)� ts + t.

Since G0
∼= G1, rewrite y = τ1(G0)τ2(G0) · · · τt(G0).

Describe y as

• Fixed data: n, t, adjacency matrix of G0

• Per-sample data: τ1, . . . , τt

• Decoding algo: to output j-th bit of y , look up appropriate τi

and compute τi (G0)

Suppose each τi can be encoded into s bits:

KT(y) < O(1)︸ ︷︷ ︸
|p|

+ poly(n, log t) + ts︸ ︷︷ ︸
|α|

+ poly(n, log t)︸ ︷︷ ︸
T

= ts + poly(n, log t)� ts + t (t large)

17

Rigid graphs: Isomorphic case

Lehmer Code. There is an indexing of Sn by the numbers

1, . . . , n! so that the i-th permutation can be decoded from the

binary representation of i in time poly(n).

Näıve conversion to binary: KT(y) < tdse+ poly(n, log t)

� ts + t ? 6� ts + t

Blocking trick: amortize encoding overhead across samples

Yields for some δ > 0, KT(y) ≤ ts + t1−δpoly(n),

i.e., KT(y)/t ≤ s + poly(n)/tδ

18

Rigid graphs: Recap

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt).

If G0
∼= G1, then KT(y)/t ≤ s + o(1) always holds

If G0 6∼= G1, then as y is t independent samples from a distribution

of entropy s + 1, KT(y)/t ≥ s + 1− o(1) holds w.h.p.

=⇒ coRPMKTP algorithm for GI on rigid graphs

19

General graphs

Assume for simplicity that there are as many distinct permutations

of G0 as of G1.

Let s be entropy in random permutation of Gi : log(n!/|Aut(Gi)|)

Sample y = π1(Gr1) · · ·πt(Grt), hope KT(y)/t looks the same:

G0
∼= G1

G0 6∼= G1

s s + 1θ

If G0 6∼= G1, KT(y)/t > s + 1− o(1) w.h.p.

If G0
∼= G1, y has entropy ts, hope a similar encoding shows

KT(y)/t ≤ s + o(1).

Two complications:

• Encoding distinct permutations of G0 as numbers 1, . . . , n! is

too expensive

• Knowing θ requires knowing |Aut(Gi)|

20

General graphs

Assume for simplicity that there are as many distinct permutations

of G0 as of G1.

Let s be entropy in random permutation of Gi : log(n!/|Aut(Gi)|)

Sample y = π1(Gr1) · · ·πt(Grt), hope KT(y)/t looks the same:

G0
∼= G1

G0 6∼= G1

s s + 1θ

Two complications:

• Encoding distinct permutations of G0 as numbers 1, . . . , n! is

too expensive

• Knowing θ requires knowing |Aut(Gi)| 20

General graphs: encoding permutations of graphs

Indexing the various permutations of a non-rigid graph G as

numbers 1, . . . , n! is too expensive

Need to use numbers 1, . . . ,N where N = n!/|Aut(G)|

Such a specific encoding exists, but will see a more

general-purpose substitute soon

21

General graphs: computing θ

It suffices to give a probably-approximately-correct overestimator

(PAC overestimator) for θ:

θ̃

KT (y)/t,G0
∼= G1

KT (y)/t,G0 6∼= G1

s s + 1θ

Equivalently, it suffices to give a PAC underestimator for

log |Aut(Gi)|, since θ = (log n!− log |Aut(Gi)|) + 1/2

22

General graphs: computing θ

Claim. There is an efficient randomized algorithm using MKTP to

PAC underestimate log |Aut(G)| when given G .

Proof. Recall that there is a deterministic algorithm using an

oracle for GI that computes generators for Aut(G).

Plug in an existing RPMKTP algorithm for the oracle: this gives us

generators for a group A with A = Aut(G) w.h.p.

Prune generators of A not in Aut(G) =⇒ A ≤ Aut(G)

|A| can be computed efficiently from its generators. Output log |A|.

23

General graphs: Recap

y = π1(Gr1)π2(Gr2) · · ·πt(Grt)

s = log n!/|Aut(Gi)|

θ̃

KT (y)/t,G0
∼= G1

KT (y)/t,G0 6∼= G1

s s + 1θ

Witness of nonisomorphism: KT(y)/t > θ̃

Theorem. GI ∈ ZPPMKTP

24

Generic Encoding Lemma

Encoding outputs of samplable distributions

We saw that for any rigid graph G , the n! distinct permutations of

G can be encoded as integers 1, . . . , n!.

This can be extended to general graphs, but still involves heavy

use of the structure of the symmetric group.

What about other groups?

Is algebraic structure necessary?

25

Encoding outputs of samplable distributions

Turns out: can encode the outcomes of any samplable distribution.

Flatter distributions =⇒ better encodings.

Rare events are hard to encode. So assume that all outcomes are

somewhat likely.

Define the max-entropy of a distribution to be the smallest s such

that all outcomes occur with probability at least 2−s (or zero).

Encoding Lemma. Let C be a circuit sampling a distribution

of max-entropy s. There is a circuit D of size poly(|C |) and,

for each outcome y , a string iy of length s + log s + O(1), s.t.

D(iy) = y .

Proof based on hashing

26

Encoding outputs of samplable distributions

Example: C samples a random permutation of a graph G . Then

each permutation of G can be decoded from a string of length

s + log s + O(1), where s = log(n!/|Aut(G)|)

Overhead of log s + O(1) is worse than dse − s, but can still be

amortized out.

End result: for any graph G , any t permutations of G has

KT-complexity at most ts + t1−δpoly(n).

In general, for any circuit C of max-entropy s, any t samples from

C has KT-complexity at most ts + t1−δpoly(|C |).

27

Entropy estimation

Entropy Estimator Theorem.

Let C be any circuit sampling a distribution of max-entropy

smax and min-entropy smin. Let y be the concatenation of t in-

dependent samples from C . Then KT(y)/t is typically between

smin − o(1) and smax + o(1), and never much larger.

KT (y)/t

smin smax

Nice case: smax − smin = o(1). C is “almost flat”.

28

Extensions for General Isomorphism

Problems

General isomorphism problem

Group H acts on a universe Ω. Given ω0, ω1 ∈ Ω, decide whether

some h ∈ H sends ω0 to ω1. Assume products, inverses, etc. are

efficiently computable.

Example 1: With GI, H = Sn, Ω = labeled n-vertex graphs, where

H acts by permuting labels. ω0 = G0 and ω1 = G1. Find a

permutation sending G0 to G1.

Example 2: “Matrix Subspace Conjugacy”. Ω = subspaces of

Fn×n, given by a basis (a set of matrices). H = GLn(F), acting by

conjugation. Given {M1,M2, . . . ,Mk} and {N1,N2, . . . ,Nk}, is

there T so that

span{T−1M1T ,T
−1M2T , . . . ,T

−1MkT} = span{N1,N2, . . . ,Nk}?

29

Beyond GI

With the entropy estimator theorem in hand, the techniques for GI

mostly generalize

Only obstacle: PAC overestimating θ/underestimating log |Aut(G)|

Recall, we did this by

1. using a search-to-decision reduction to find generators for

Aut(G), and

2. computing |Aut(G)| efficiently from its generators

What to do when a search-to-decision reduction isn’t known?

What if the ambient group isn’t Sn?

30

PAC underestimating log |Aut(G)|

Idea: PAC underestimate log |Aut(G)| using the entropy estimator

theorem again

Aut(G) efficiently samplable implies amortized KT-complexity

PAC underestimates log |Aut(G)|

Let y ′ = π1π2 · · ·πt be t random elements of Aut(G)

Need Aut(G) efficiently samplable twice:

- Construction of y ′ in the algorithm

- Analysis of KT(y ′)

Note: these sampling procedures need not be the same.

Show

- how to use MKTP to sample Aut(G) with only G on hand

- for every G , there is a circuit CG which samples Aut(G) uniformly

31

How to sample Aut(G) with MKTP

Recall that MKTP can be used to invert circuits.

Inversion Lemma. There is a poly-time randomized Turing

machine M using oracle access to MµP so that the following

holds. For any circuit C , if σ ∼ {0, 1}n,

Pr[C (τ) = C (σ)] ≥ 1/poly(|C |) where τ = M(C ,C (σ))

[Allender–Buhrman–Koucký–van Melkebeek–Ronneburger]

Let C sample a random permutation π and output π(G)

Pick π ∼ Sn at random, let τ = M(C , π(G)). With probability

1/poly(n), τ(G) = π(G), so τ−1 ◦ π ∈ Aut(G).

Conditioned on π(G), τ and π are independent, so τ−1 ◦ π is

uniform on Aut(G).
32

How to sample Aut(G) with a small circuit

A sequence π1, π2, . . . , πk of elements of a finite group Γ is said to

be Erdős–Rényi if the ‘random subproduct’

πr11 π
r2
2 · · ·π

rk
k , ri ∼ {0, 1}

is distributed approximately uniformly on Γ. (smax − smin = o(1))

Erdős and Rényi showed that every finite group has such a

generating set of size poly(log |Γ|).

With Γ = Aut(G), obtain an ER generating set of size poly(n).

Hardwire the ER set into a circuit sampling the random

subproduct.

33

Other Applications of KT v. Entropy

KT versus entropy: other applications

More theorems and consequences:

• Any ‘explicit’ iso. problem is in ZPPMKTP

• New proof of SZK ⊆ BPPMKTP

• DET ⊆ ACMKTP
0 . Consequently, MKTP 6∈ AC0[p]

[Allender–Hirahara]

• Random-3SAT, Planted Clique ≤ MKTP

[Hirahara–Santhanam]

34

Open Problems

Open problem: SZK?

Techniques essentially boil down to estimating entropy by

KT-complexity

Complete problem for SZK: determine whether a given samplable

distribution has entropy at least a given threshold

Entropy estimator theorem can reproduce SZK ⊆ BPPMKTP

SZK ⊆ ZPPMKTP ?

Obstacle is devising witnesses for non-flat distributions

There are distributions with low entropy but supported on every

string—nontrivial worst-case bound on KT-complexity is

impossible.

35

Open problem: What about MCSP?

The argument should work for MCSP, but fails for annoying

technical reasons. This is true even for rigid-GI.

Use KT complexity in two ways:

• Counting argument: KT(y) & ts + t whp

• Encoding: any string of length ts has KT . ts

For circuits, we get:

• Counting argument: CSIZE(y) & (ts + t)/ log(ts + t) whp

• Encoding: any string of length ts has CSIZE . ts/ log(ts)

Low-order terms matter: best known bounds require

exponentially-large t to force gap between the isomorphic and

nonisomorphic cases

36

Open problem: What about MCSP?

Resolving these bounds is only so satisfactory: the answer probably

depends on the precise measure of circuit complexity.

Better: boost the gap in entropy between the isomorphic and

nonisomorphic cases, then use polynomial relationship between KT

and circuit size

37

Summary

• Reviewed old reductions to MCSP/MKTP based on Inversion

Lemma

• Showed a different kind of reduction from GI to MKTP

based on estimating entropy by KT complexity

• Stated Encoding Lemma and Entropy Estimator Theorem

• Sketched extension to general isomorphism problems

• Listed other uses of estimating entropy by KT complexity

• Open problems: SZK? MCSP?

Questions?

38

Thank you!

Random-3SAT reduces to MKTP [Hirahara–Santhanam]

Random-3SAT (baby version): Given either

• Satisfiable 3-CNF

• Random 3-CNF with many clauses (likely unsatisfiable)

distinguish between the two cases.

Idea: Existence of a satisfying assignment gives information about

the 3-CNF, so it should be easier to describe.

For a satisfying assignment x , sample a random clause that x

satisfies. Entropy: log
(n
3

)
+ log(7).

=⇒ amortized KT-complexity always bounded

For random 3-CNF: random clause has entropy log
(n
3

)
+ log(8)

=⇒ amortized KT-complexity typically high

39

Planted Clique reduces to MKTP [Hirahara–Santhanam]

Planted clique: Given either

• Uniformly random graph

• Uniformly random graph union with a random k-clique

distinguish between the two cases.

Uniformly random graph has entropy
(n
2

)
Random graph with clique has entropy at most

(n
2

)
+ log

(n
k

)
−
(k
2

)
[Hirahara–Santhanam] show KT-complexity closely matches entropy

40

	Graph Isomorphism in ZPP^MKTP
	Definitions
	Rigid graphs
	General graphs

	Generic Encoding Lemma
	Extensions for General Isomorphism Problems
	Other Applications of KT v. Entropy
	Open Problems
	Thank you!

