
CS515 Spring 07

Prof. Ron

Assignment #4a: Part II

Prepared by Narfi Stefansson

Due February 28, 2008

Matlab assignment

After this second Matlab assignment, you should be familiar with the following commands:
path addpath

startup load

save sort

min max

sum abs

== <=

>= ~=

& |

~ find

all conv

norm(.,2), norm(.,1), norm(.,inf) clear

^ .̂ (pointwise exponentiation)
/ ./ (pointwise division)
* (matrix mult) .* (pointwise multiplication)
diag orient tall/landscape

subplot suptitle

hold on/off plot and *, --, r, g, ...

axis on/off axis(a)

axis tight clf

fft ifft

and comfortable with using:
logical indices
submatrices: A(ind1, ind2) = ...

If you are familiar with the above Matlab commands, skip the preface and go directly
to the last page, where the actual assignment is to be found. Otherwise, keep on reading.

Preface

If you want to be able to conveniently organize your projects, homework etc. you should
consider putting all the files for each problem set or project into a separate directory and
then use:

• path
• addpath
• startup

By giving the command path at the Matlab prompt, you will see Matlab’s current search
path. You can add to Matlab’s path by either issuing the command:
path(’~/matlab/cs514/HWK1/’, path);

or
addpath(’~/matlab/cs514/HWK1/’);

The file ~/matlab/startup.m is read (and run) every time you start Matlab, so you may
want to add some commands to that file to e.g. add to Matlab’s search path at startup.
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• load
• save

You can save your variables to disk by using the save command. save saves all variables
to the file matlab.mat. save mysave.mat saves to the file mysave.mat. And you use load

or load mysave.mat to load the variables back into Matlab.
In the 1st assignment, we accessed individual elements of matrices as well as single rows

and columns. But it is also possible to access other submatrices of a matrix A. Look at the
following example:
A = [1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12];

B = A([1,2], [3, 4]) gives:

B =

3 4

7 8

We can look at this as:
the first row of B is taken from row 1 of A. And from that row of A, we take entries 3 and 4.
And the second row of B is taken from row 2 of A, and from that row we take entries 3 and
4.

Or, we can look at this as:
The first column of B is taken from column 3 of A, the first element of that column is taken
from row 1 of A and the second element of that column is taken from row 2 of A. Etc.

We can also repeat indices as often as we wish:
A(3, [2 2 2])

10 10 10

In general, if A is a matrix and b and c are vectors of integers, then
B = A(b,c);

creates a matrix B of the size length(b)-by-length(c), whose entries B(i,j) are A(b(i),c(j)).
Of course this is provided the entries in b are all between 1 and the number of rows in A,
and the entries in c are all between 1 and the number of columns in A. You should also recall
that b and c can be replaced by :.

When just one argument is used for indexing a matrix, the matrix is treated as a vector,
namely the vector A(:), that is obtained by concatenating the columns of the matrix A. An
example is given below.

The commands

• sort
• min
• max

all accept both vectors and matrices as arguments and can return either 1 or 2 arguments.
s = sort(A);

If A is a vector, s is a vector of the same size as A, with the elements of A sorted in ascending
order. If A is a matrix, sort(A) treats the columns of A as vectors, returning sorted columns.
The command:
[s, ind] = sort(A);

returns s as before, as well as an array of indices, ind. The size of ind is size(A), and each
column of ind is a permutation vector of the corresponding column of A. In particular, if A
is a vector, then s = A(ind).

If A is a vector, then m = max(A); returns the maximum element of A. And if A is a matrix
then m = max(A); treats the columns of A as vectors, returning a row rector containing the
maximum element from each column.
max can also return 2 output arguments: [m, ind] = max(A); returns m as before as well
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as the indices of the maximum values of A. If A is a vector, then m = A(ind), but if A is a
matrix, then m(i) = A(ind(i), i) for i = 1, ..., size(A,2).

Note that if you want to find the maximum element of a matrix A, and not just the
maximum element in each column of A, you have to use either max(A(:)) or max(max(A)).

It should now come as now surprise that

• sum

works on each column of its input argument, if it is a matrix. If the input argument is a
vector, sum simply returns the sum of its elements. There is also prod, cumsum and cumprod.

• abs

abs(A) has the same size as A, with each element of A replaced by its absolute value or
modulus.

The relational operators

• == (equal to)
• <= (less than or equal to)
• >= (greater than or equal to)
• ~= (not equal to)

obey the same rule as all (actually, most) other binary operators in Matlab, which is as
follows: Binary operators accept two matrices as arguments and they have to be of the
same size. Except if one of them is a scalar, in which case it is regarded as a matrix of the
same size as the other argument, with all elements equal to the scalar value.
As an example, we take the == operator. The command
[1, 2; 3, 4] == [1, 1; 4, 4] returns

1 0

0 1

And now we try to let one argument be a matrix and the other be a scalar:
[1, 2; 3, 4] >= 3 returns

0 0

1 1

An equivalent way of doing this, albeit more cumbersome, would have been to issue the
command: [1, 2; 3, 4] >= 3*ones(2, 2).

The relational operators listed above return matrices containing true and false, and they
can, in turn, be used as indices as the following example shows:
A = [1, 2; 3, 4];

A(A >= 3)

3

4

We get a powerful tool when we combine the relational operators with the logical operators

• & (and)
• | (or)
• ~ (not)

Again, the same rule as before applies: A & B is defined for matrices A and B that are of the
same size, or if one of them is a scalar. Now A and B are matrices containing true and false,
with the convention if A or B contain numerical values, then non-zero numerical values are
interpreted as true, and zeros are interpreted as false.

3



• find

In its simplest form, when A is a vector, k = find(A) returns the indices of the elements of
A that are true (or non-zero, if A contains numerical values). If A is a matrix, k = find(A)

returns the indices of the true elements of A(:). Look at the following:
A = [1, 3, 6; -3, 10, 50]

A =

1 3 6

-3 10 50

k = find(A < 0 | A >= 15)

k =

2

6

I.e. the 2nd and 6th elements of A(:) are < 0 or >= 15:
A(k) gives:

-3

50

Make sure you understand how the vector k was used as an index into the matrix A, and
compare the above to the command:
A(A < 0 | A >= 15)

The function

• all

tests whether all elements are true. If A is a vector then all(A) returns logical true if all
elements of A are true (or non-zero) and logical false otherwise. If A is a matrix, all(A)
treats the columns of A as vectors, returning a row vector of true and false. With A as above:
A = [1, 3, 6; -3, 10, 50];

we can easily see which columns have only non-negative elements:
all(A >= 0)

0 1 1

There are many ways to look at the convolution operator, and one of these ways is
to look at its relationship with trigonometric polynomials. Let a and b be trigonometric
polynomials with positive exponents:

a(ω) =

m
∑

k=0

a(k)eikω

b(ω) =

n
∑

k=0

b(k)eikω

then the product ab is a trigonometric polynomial with (no more than) m + n + 1 nonzero
coefficients. And we let c(k) be the coefficients of that polynomial:

ab(ω) =

m+n
∑

k=0

c(k)eikω .

• conv

4



This is exactly what the Matlab command conv does: It accepts 2 vectors as input (which
would in our notation be [a(0), ..., a(m)] and [b(0), ..., b(n)]) and returns the
coefficients of the product of the corresponding trigonometric polynomials, [c(0), ...,

c(m + n)]:

conv([a(0), ...,a(m)], [b(0), ...,b(n)]) = [c(0), ...,c(m + n)].

It is very instructive to do a few calculations by hand and compare with the conv command in
Matlab, and you are encouraged to do so. As an example, if we want to convolve the vectors
[1, 3, 5] and [0, 2, 4] by hand, we multiply together the trigonometric polynomials

1 + 3eiω + 5e2iω and 2eiω + 4e2iω.

Once we have expanded the product and collected all terms, we get:

(

1 + 3eiω + 5e2iω
) (

2eiω + 4e2iω
)

= 2eiω + 10e2iω + 22e3iω + 20e4iω

which is in perfect agreement with Matlab:
conv([1, 3, 5], [0, 2, 4])

0 2 10 22 20

The command

• norm

calculates matrix or vector norm. If A is a matrix then norm(A) is the 2-norm of A.
If A is a vector, norm(A) is the 2-norm of A. You may also need to use norm(A, 1) and
norm(A, inf).

• clear

The clear command clears variables from the memory. By itself, clear removes all variables
from the memory, clear x removes only the variable x from the memory.

Common arithmetic operations:

• ^

• /

• *

• .̂

• ./

• .*

The first three operations deviate a little bit from the Matlab convention that binary oper-
ators accept as input either two matrices of the same size, or a matrix and a scalar. But a
moment’s reflection should be enough to convince you that this is natural since these three
operate on the entire matrices, and not just element-by-element. Some examples are given
below.
^ If X is a matrix and p is an integer, X ^ p = X*X*...*X, p times.
/ slash or matrix right division. B/A is roughly the same as B*inv(A).
* matrix multiplication. If both A and B are matrices, A*B is the matrix product of A and
B. If one of the two is a scalar, A*B is the scalar-matrix product of A and B.
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However, the remaining three are pointwise operations, and in all cases A and B must
have the same size, unless one of them is a scalar.
.̂ pointwise exponentiation. A.̂ B is the matrix with elements A(i,j) to the B(i,j)

power.
./ pointwise division. A./B is the matrix with elements A(i,j)/B(i,j).
.* pointwise multiplication. A.*B is the matrix with elements A(i,j)*B(i,j).

Consider these examples:
A = [1, 2; 3, 4];

B = [1, 2; 3, 4];

A.̂ 3 (raising each element to the third power)

1 8

27 64

A.*B (element-by-element multiplication)

1 4

9 16

A./B (element-by-element division)

1 1

1 1

• diag

The command diag creates diagonal matrices and extracts the diagonals of a matrix. If
v is a vector, then A = diag(v) creates a matrix with v on the main diagonal and zeros
elsewhere. A = diag(v, k) creates a matrix with v on the k-th diagonal of A. See diag in
the helpdesk.
If A is a matrix, then diag(A) returns the diagonal of A, and diag(A, k) returns the
elements on the k-th diagonal of A.

You can put several functions on one picture by using:

• plot
• hold

Try the following commands:
x = linspace(0, pi, 10); plot(x, sin(x), x, cos(x));

x = linspace(0, pi, 10); plot(x, sin(x), ’r--’, x, cos(x), ’g*’);

and notice how you can depict several functions in one picture as well as add attributes to
each of the graphs, such as colors, (r or g), dashed lines (--) or disconnected stars (*). You
can also tell Matlab to hold the current figure and add to it:
x = linspace(0, pi, 10); plot(x, sin(x));

hold on; plot(x, cos(x), ’r--’); hold off;

If you omit the hold commands, Matlab will create the first plot, clear that graph and then
draw the second figure. If you want to clear the current figure, use:

• clf

You can further improve on the appearance of the plot by using the axis command.

• axis on
• axis off
• axis tight
• axis equal
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See help axis.
You can put several plots on one figure by using

• subplot

The command subplot(r, c, i) divides the current figure into r*c subfigures, which are
laid out in r rows and c columns. They are numbered row-wise and the i-th subfigure is
set to be the current subfigure . You should try the following:
x = linspace(0, pi, 10);

subplot(2, 2, 1); plot(x, sin(x)); title(’sin’);

subplot(2, 2, 2); plot(x, cos(x)); title(’cos’);

subplot(2, 2, 3); plot(x, tan(x)); title(’tan’);

subplot(2, 2, 4); plot(x, atan(x)); title(’atan’);

When figures contain many fine details, as is often the case after heavy use of the subplot
command, it becomes important to make sure that the details are all visible. By default
Matlab leaves wide margins around its plots, but this can be changed by using orient.

• orient

The command orient tall tells Matlab to print the current figure in portrait mode and
to reduce the borders around it, and orient landscape tells Matlab to print in landscape
mode.

• suptitle

One thing is missing from Matlab and that is the ability to automatically add a title to
the top of the figure, above all subplots. The function suptitle does just that, and it is
available on the course homepage. You should download the file and install in your Matlab
path and experiment with it. Try to issue the subplot commands given above, followed by,
say:
suptitle(’3 trig functions and one inverse trig function’)

Last, but not least, are the functions:

• fft
• ifft

The functions fft and ifft are, as the names suggest, the Fast Fourier Transform and its
inverse.
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Assignment

1. Write a Matlab function that accepts 3 arguments, m and n which are assumed to be
integer, and s which is assumed to be a 2-by-2 matrix of integers.

Your function should return a matrix with 2 rows, such that its columns list the points
[

j
k

]

that satisfy:

1 ≤ j ≤ m, 1 ≤ k ≤ n, and
[

j
k

]

∈ sZ
2

where the last condition means that there should exist [ p
o ] ∈ Z

2 such that
[

j
k

]

= s [ p
o ].

Furthermore, your function should not print out anything. Note: try to avoid any use,
in this question, for or while loops (it is possible to do without any loop).

Turn in a printout of your function as well as the results from calling your function
with the following parameters:

(a) m = 4, n = 6, s = [ 2 0
0 2 ]

(b) m = 5, n = 6, s =
[

1 1
1 −1

]

Hints: (1) There is only one vector [ p
o ] such that

s

[

p
o

]

=

[

j
k

]

,

so the real issue is whether the entries of this unique solution are integers. (2) You
may find it useful to look at the Matlab function meshgrid and to use round.

2. Let f be the function

f(x) := x2e−3x2

+ (x/40)2

Return on one page plots of

(a) y = f(x),−10 ≤ x ≤ 10

(b) y = f ′(x),−10 ≤ x ≤ 10

(c) y = f ′′(x),−10 ≤ x ≤ 10

as well as numerical estimates of where the function attains its global maximum/maxima
on the interval [−10, 10].

Note: instead of finding expressions for f ′ and f ′′ you may find the following approx-
imations useful: Let h > 0 be small, then

f ′(x) ≈
f(x + h) − f(x − h)

2h

f ′′(x) ≈
f(x + h) + f(x − h) − 2f(x)

h2

If you are courageous, consider using the Matlab commands diff and inline, as in:
fs = ’x ^ 2 - x ^ 3’;

dfs = diff(fs)

df = inline(dfs)
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