CS515 Spring 08

Prof. Ron

Final Exam

due May 09, 2008

(1) Let $(B_j)_{j=-\infty}^{\infty}$ be the cubic B-spline basis associated with the knot sequence $\underline{t} := h\mathbb{Z}$, with h some (small) positive number. Your goal is to construct an approximation scheme

$$f \mapsto Af := \sum_{j=-\infty}^{\infty} \mu_j(f)B_j,$$

such that A is the identity on cubic polynomials, and, for each j

$$\mu_j(f) = af(h(j+1)) + bf(h(j+2)) + cf(h(j+3))$$

(i.e., μ_j involves evaluation of f at the three interior knots of the B-spline B_j , and nowhere else).

- (1) Find the value of the coefficients a, b, c. (Hints: those values do not depend on j, since the mesh is uniform. Choose a basis for the cubic polynomials, and find first the values the de Boor-Fix functionals attain on the cubic polynomial basis. Your μ_j 's should attain exactly the same values).
- (2) Employ your scheme in exactly the same setup as in Assignment 7 (81 knots on the interval [-2, 2] etc.) and compare the error of your scheme to the errors of the other schemes from Assignment 7.
- (2) Let ϕ be the function

$$\phi(t) := \begin{cases} 1, & 0 \le t < 1, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Prove that the function is refinable, and find its 2π -periodic refinement mask $H_0(\omega)$.
 - (b) What exactly is the transfer operator T associated with ϕ ?
 - (c) Show that T1 = 1 (here, '1' is the 2π -periodic constant function).
- (d) What property of the shifts $E(\phi)$ of ϕ is connected to the statement in (c)? State a relevant theorem studied in class.

(3)

- (a) Define B-splines.
- (b) Use your definition to conclude that $B(\cdot|-1,1,2)$ is positive on the interval (-1..2) and is zero elsewhere.

- (4) Consider the linear map $\Lambda'_{\tau}: g \mapsto (g(\tau_1), \dots, g(\tau_n))$ with $\tau_1 < \dots < \tau_n$ in some interval I.
 - (a) State the Schoenberg-Whitney Theorem.
 - (b) Choose a knot sequence **t** so that Λ'_{τ} maps $S_{3,\mathbf{t}}$ 1-1 onto \mathbb{R}^n (explain).
 - (c) What practical purpose could the resulting spline space $S_{3,t}$ serve?
- (5) Let $X = \mathbb{R}^I$ be the linear space of all real-valued functions on the interval I := [0..4], and consider the linear map $V : \mathbb{R}^3 \to X : a \mapsto \sum_{i=1}^3 v_i a(i)$ with

$$v_1(s) := (s-2)(s-3), \quad v_2(s) := (s-3)(s-1), \quad v_3(s) := (s-1)(s-2).$$

- (a) Prove that V is 1-1.
- (b) Prove that ran $V = \Pi_2$.
- (c) Construct a linear map $\Lambda': X \to \mathbb{R}^3$ for which $\Lambda'V = id$.

(note:) You may prefer to reorder this list of requests.

(d) Which of these maps is an analysis operator, a synthesis operator, a reconstruction map, a data map? Explain.