
Patch-Based Image Classification Using Image
Epitomes

David Andrzejewski
CS 766 - Final Project

December 19, 2005

Abstract

Automatic image classification has many practical applications, in-
cluding photo collection organization and image search. In this project
I approach the image classification task through the use of image epit-
omes. The epitome of an image is a probabilistic model that serves as
a compact representation of the shape and texture information present
in the original image. I first create a collage of positive and negative
example images, then I generate the epitome representation of this
collage. Patches in the epitome which are much more likely to be
found in positive images than in negative ones can then be used to
classify new images.

1 Problem statement

Given sets of positive and negative example images, develop a classifier that
will be able to classify new test images as either positive or negative.

2 Image epitomes

Image epitomes were originally proposed in [3]. The epitome of an image
consists of a smaller bitmap and a set of mappings from patches in the
bitmap to patches in the original image. In this way, the original image
can be reconstructed from the epitome, although not perfectly. The epitome

1

model is useful for multiple vision applications, including segmentation and
denoising.

Each pixel in the epitome is modeled as a mixture of gaussians, one for
each color channel. For each patch in the original image, a posterior distri-
bution over all patches in the epitome is calculated to represent the possible
mappings. To learn the epitome, the mapping probabilities are initialized
along with the epitome pixel means and variances. The EM algorithm is
then applied to update these values for either a set number of iteration or
until convergence.

An essential aspect of the epitome is that, given an image patch in the
original image and the image epitome, one can calculate the posterior prob-
ability of the mapping from each patch in the epitome to the image patch.
The epitome patch with the highest posterior probability of mapping is then
used to generate that image patch in the reconstruction. A single epitome
patch can, and often does, generate many different patches in the original
image. This one-to-many mapping captures textual and shape regularity in
the original image.

The website [4] contains more information about image epitomes, as well
as example images and MATLAB code. The provided MATLAB code comes
in the form of two functions

[e,ev,p,etr] = epitome(x,K,N,T,NIT,sc,e,ev)

z = reconstruct(x,K,e,ev,emod,SPC)

The epitome function does NIT iterations of EM to learn an N by N
epitome of image x using T patches of size K by K. e and ev are optional
parameters that supply the initial values for the epitome. sc is another
optional parameter that can be used to specify different scaling factors - the
EM algorithm is repeated NIT times at each scale, and the end result is
used to initialize the epitome for the next scale. In order to save time, I did
not use the scaling parameter in this project.

The reconstruct function uses the original epitome (e,ev) along with the
original image x to reconstruct the original image with a modified epitome
emod. This is useful for tracing pixels from the epitome back into the original
image. This is well illustrated in the PowerPoint available from [4]. The
PowerPoint contains an image of a dog sitting on some gravel in front of
flowers. The pixels corresponding to the gravel in the epitome are then
colored bright teal, and this modified epitome is used to reconstruct the

2

original image, resulting in a reconstructed image where the gravel area is
bright teal.

One important aspect of the reconstruction algorithm is that the mapping
from the epitome to each patch in the original image is ”winner take all”.
That is, the epitome patch with the highest posterior probability of mapping
into an image patch is the only one used to generate that patch in the original
image. Patches in the original image are allowed overlap, and in this case
their contributions to a given pixel are simply averaged.

My project uses these two functions to learn epitomes and to reconstruct
images. I also use code fragments from these methods for some epitome-
related tasks, like determining which epitome patch has the maximum pos-
terior probability of mapping into a given image patch.

The image epitome concept was extended to video data in [1]. The ex-
tension is a natural one and involves modeling video data as a 3-dimensional
cube where individual frames from the video are stacked on top of one another
along the temporal axis. The video epitome then contains 3-dimensional
video cubes instead of 2-dimensional image patches. One of the authors has
video examples and code available on the web at [5]. While my project does
not explicitly use video epitomes, these resources were useful in gaining a
better understanding of the epitome model in general.

3 My approach

My approach to image classification exploits the epitome representation to
find patches that are effective at discriminating between positive and negative
example images. The approach is as follows

3.1 Train classifier

1. Create a training collage of positive and negative example images.

2. Learn the epitome of the training collage.

3. Calculate the conditional probability of each epitome patch being mapped
into an image given that the image is a positive (or negative) example.

3

4. Select the epitome patches that maximize the ratio

P (patchi = 1|pos)
P (patchi = 1|neg)

(1)

5. These patches, and their conditional probabilities of being mapped into
positive and negative example images, can then be used to classify new
images.

The conditional probabilities of a patch mapping into an image given that
the image is a positive example is simply calculated

P (patchi = 1|pos) =
Ni + α

N + α
(2)

where patchi = 1 means that patchi does map into the example image, Ni

is the number of positive example images that patch i maps into, and N is
the total number of positive example images. α is a psuedocount to avoid
getting zero probabilities. We say that patchi from the epitome maps into
an image if patchi has the highest posterior probability among all epitome
patches of mapping into an image patch for ≥ 1 image patch. The patch
mapping probability for negative example images is calculated in a similar
fashion.

3.2 Classify new test images

1. For each patch in the epitome, determine whether or not it maps into
the test image.

2. Use Bayes Rule and the patch mapping conditional probabilities to
calculate the odds ratio of

P (pos|patches)

P (neg|patches)
=

∏
i P (patchi|pos)∏
i P (patchi|neg)

(3)

where i ranges over the indices of all patches being used to classify.

3. Classify the test image using some threshold for the odds ratio.

The general classification decision framework and the Bayesian odds ratio
calculation are very similar to those used in [2].

4

4 Experiments

4.1 Experimental procedure

In order to test the effectiveness of this classification method, I created 2
datasets each consisting of 13 positive example images and 13 negative ex-
ample images. For one dataset, the 13 positive example images were close-up
images of a single human face, and for the other the 13 example images were
all pictures taken at beaches. For both datasets, the negative examples were
a haphazard jumble of images that did not fit the description of the positive
dataset. All images were obtained from either Google Image Search or Flickr.

To do a single experimental run, I randomly selected an equal number
of positive and negative images to be training examples and used them to
construct the training collage. The remaining example images were then
classified using the discriminative patches extracted from the training collage.
This procedure was repeated 3 times for each of the 2 datasets. Running the
experiments took between 12 and 13 hours for the faces dataset and about
15 hours for the beaches dataset. The difference is due to the fact that I
used more images for training on the beaches dataset, since the classifier
performed much worse on the beaches set than on the faces set when using
the same number of training examples.

4.2 Experimental parameters and setup

In order to make the training collage easier to construct, all images were re-
sized to be the same size (150 by 113). The epitome parameters K,N,T were
determined empirically by preliminary trial-and-error experiments. For the
image and training collage sizes we used, setting K=15, N=75, and T=1412
seemed to work well in simple trial experiments. For the faces dataset, I
trained on 5 positive and 5 negative examples, then tested on the remaining
8 positive and 8 negative examples. For the beaches dataset, I trained on
8 positive and 8 negative examples, then tested on the remaining 5 positive
and 5 negative examples. Originally, the classifier performed very poorly
(around 30% accuracy on positive test images) on the beaches dataset when
using only 5 pairs of training images.

5

4.3 Experimental results

The first dataset consists of 13 images that contain a human face, and 13
images that do not. On this dataset the classifier correctly classified approx-
imately 95.8% of the positive examples and 75% of the negative examples.
Adjusting the odds ratio classification threshold did not have much of an
effect on the results - images tended to get odds ratio scores that were either
very high or very low. For this data set, the incorrectly classified negative im-
ages were somewhat, but not totally, consistent across experiments. As one
would expect, the negative images that were misclassified tended to contain
coherent flesh-toned objects, such as a beige wildcat or a sandstone house.

The second dataset consisted of 13 images of scenes on the beach, and
13 non-beach images. On this dataset the classifier correctly classified about
53% of the positive images and 86.7% of the negative images. Again, the
threshold did not seem to matter much. The poor performance on positive
example images was somewhat surprising. I had selected beaches because I
thought the borders between sky and sea and sand would provide excellent
discriminative patches. From examining the misclassified positive example
images, it seemed that the discriminative patches selected from the training
collage epitome were very “picky” about the exact color of the sand, sea, and
sky. Beach images under darker illumination were misclassified often, even if
there were dark beach scenes in the training set. This seemed to be because
the dark training images contributed only sky patches to the discriminative
patch set instead of sand patches. The training image clustering modification
suggested below in the “Possible Improvements” section may be a potential
answer to this problem. On the other hand, the classifier did a very good job
at deciding what was not a beach. This may be due to the same “pickiness”
over sand, sea, and sky color that caused it to perform poorly at deciding
what was a beach.

5 Analysis of the approach

5.1 Approach drawbacks

There are several problems with the patch-based classifier. First, as a com-
pletely appearance-based classifier it can be very sensitive to changes in pose,
illumination, and scaling. The only way the classifier can handle these types
of variations is to include training examples that capture the variation, which

6

is an inherently inflexible workaround strategy. Second, the classifier uses
patches in a ”bag of words” strategy that discards any information about
the spatial distribution of the patches in the training example images. This
is a significant difference from the feature representation used in [2]. Finally,
it is also inconvenient to add new training examples to the classifier. With
the current classifier setup, in order to take a new training example into
account it would be necessary to create a brand new training collage and
re-learn the epitome.

5.2 Possible improvements

There are several ways that one could potentially improve the performance
of this classifier system. One potential modification would be to take positive
training example clusters into account. It may be that a significant subset
of the training images share a discriminating epitome patch, but the rest
do not. In this case, that epitome patch would not score highly overall for
its ability to discriminate between positive and negative training example
images, even though it is an excellent classifier patch for a subset of the
positive training examples. A practical example would be human faces under
low illumination versus human faces under normal illumination. Patches that
identify faces under low illumination could be missed because they do not
have a high probability of mapping into positive images overall. Checking for
patches that are excellent discriminators for a subset of the positive training
examples could result in a more robust classifier.

Also, the “winner take all” nature of the procedure for determining whether
an epitome patch gets mapped into an image or not could be altered. In the
current implementation, only the epitome patch with the highest posterior
probability of being mapped into a given patch in the original image is con-
sidered. This is obviously discarding information about other patches that
had high, but not highest, probabilities of mapping into this image patch.
Allowing “partial” mappings weighted by relative posterior probabilities may
help retain some of this information.

A scheme for capturing information about the relative spatial distribu-
tions of image patches mapped to by discriminative epitome patches may
also improve performance. An example of such a scheme can be found in [2].

Finally, the image epitome representation can also be modified in several
ways. The results shown in [3] were created using a modified epitome learner
that allowed varying block sizes, which allows tesselations of coarser and finer

7

blocks. The results in [3] show a clearly superior preservation of shapes and
structures from the original image. This may enhance the performance of
our classification application. Also, [3] mentions the fact that block map-
pings from the epitome to the image need not be limited to simple copying
operations. It would be possible to allow blocks to be scaled, rotated, or oth-
erwise transformed in the mapping process. This modification to the image
epitome model seems likely to result in a more robust patch-based classifier.

6 Conclusion

Patch-based image classification with image epitomes showed some success
at correctly classifying test images. It performed well on positive example
identification on the face dataset and negative example identification on the
beach dataset. But there are clearly problems with the technique, as it per-
formed quite poorly on positive example identification on the beach dataset
and somewhat poorly on negative example identification on the face dataset.
Many of the problems with the approach seem to stem from the somewhat
“brittle” nature of the patch-based approach. Making the epitome model
more flexible by allowing varying patch sizes and transformational mappings
may improve the performance considerably. The epitome representation cap-
tures textural and shape regularities present in image data, and the results
of my experiments suggest that it may be possible to successfully exploit this
property to find features that can be effectively used for image classification.

8

References

[1] V. Cheung, B. J. Frey, and N. Jojic, Video epitomes, Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2005.

[2] R. Fergus, P. Perona, A. Zisserman, Object Class Recognition by Unsu-
pervised Scale-Invariant Learning, Proc. of the IEEE Conf on Computer
Vision and Pattern Recognition, 2003.

[3] N. Jojic, B. J. Frey, and A. Kannan, Epitomic analysis of appearance and
shape, Proc. 9th Int. Conf. Computer Vision, 2003.

[4] http://research.microsoft.com/∼jojic/epitome.htm

[5] http://www.psi.toronto.edu/∼vincent/videoepitome.html

9

README

This section explains the some of the supplemental materials attached to the
physical handin of this final report.

Experimental results

• Result images = These are the resulting images from the experimental
runs

• Result report = This is the automatically generated text report of the
experiments

MATLAB code used in project

• epitome.m = Function to learn the epitome from an image, obtained
from [4]

• reconstruct.m = Function to reconstruct original image from the (pos-
sibly modified) epitome, obtained from [4]

• crossValidate.m = Top level script - handles experimental setup, reads
in images, randomly selects training/testing sets, calls experimentRun
for each iteration, and organizes reporting of experimental results

• experimentRun.m = Given training and testing image sets, run a single
classification experiment

• patchTrace.m = Reconstruct the original image, painting green borders
around patches in the image that were generated by discriminative
patches in the epitome - this code is a slightly modified version of
reconstruct.m from [4]

• classify.m = Given an image, the mapping status for the discriminative
patches(do they map into this image or not?), the conditional map-
ping probabilities P (patchi|pos) and P (patchi|neg) for each patch i,

calculate the classification odds ratio P (pos|patches)
P (neg|patches)

• getBest.m = Returns the coordinates of the k top-scoring epitome
patches, where k is a parameter

10

• isPatchMappedAll.m = Given an image and an epitome, for each patch
in the epitome determine whether or not it is mapped into the image

MATLAB code developed during project but not used for final results

• getPrecRec.m = Function to calculate precision and recall values for
varying classification threshold values - used to determine that test
images were either getting very high odds ratios or very low ones, so
the threshold does not make a significant difference

• findCritical.m = Calculates the positive/negative odds ratio of the av-
erage max posterior mapping probability for each epitome patch over
all training examples (this was my previous method for discriminative
patch identification - this code is not used in final implementation)

• findMaxPost.m = For an epitome patch and an example image, find
the max posterior probability of this epitome patch mapping into this
image (helper function used by findCritical)

• calcPosterior.m = Given a patch in the original image, calculate the
posterior probabilities of all epitome mappings into this patch (helper
function for findMaxPost)

It is also important to note that many of the MATLAB functions contain
code fragments from the epitome.m and reconstruct.m files obtained from
[4]. I have attempted to document these instances in the handin code by
clearly marking them with green ink and the letters “MSR” (for MicroSoft
Research).

11

