from numpy import *
from cvbLDA import cvbLDA
# Model params
(T,W) = (3,5)
alpha = .1 * ones((1,T))
beta = .1 * ones((T,W))
# Dataset
docs_w = [[1,2],[1,2],[3,4],
[3,4],[0],[0]]
docs_c = [[2,1],[4,1],[3,1],
[4,2],[5],[4]]
# Stopping conditions for inference
(maxiter,convtol) = (10,.01)
# Do CVB inference for LDA
(phi,theta,gamma) = cvbLDA(docs_w,docs_c,alpha,beta,
maxiter=maxiter,verbose=1,convtol=convtol)
'@'.join(['andrzeje','.'.join(['cs','wisc','edu'])])