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1 Introduction

Expectation Maximization is a very general algorithm for doing maximum like-
lihood estimation of parameters in models which contain latent variables.

1.1 Definitions

x are the observed variables, y are the latent variables, and θ is the set of model
parameters.

1.2 Maximum Likelihood

We want to maximize the marginal log likelihood of the observed data x.

log(P (x|θ)) = log(
∑
y

P (x,y|θ))

1.3 Auxiliary distribution

We add an auxililary distribution q(y).

log(P (x|θ)) = log(
∑
y

P (x,y|θ))

= log(
∑
y

q(y)
P (x,y|θ)
q(y)

)

1.4 Jensen’s Inequality

Jensen’s Inequality states that for a convex function f(x)

E[f(x)] ≥ f(E[x]),
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which follows from the convexity of the epigraph of a convex function. The
reversed inequality holds for a concave function (such as log), which we apply
to lower bound the marginal log likelihood.

2 The EM Algorithm

2.1 E-step

We begin by applying Jensen’s Inequality to lower bound the marginal log-
likelihood log(P (x|θ)). We then use the linearity of expectation and log identi-
ties to further re-arrange this lower bound.

log(P (x|θ)) = log(
∑
y

q(y)
P (x,y|θ)
q(y)

)

≥ Eq[log(
P (x,y|θ)
q(y)

]

≥ Eq[log(
P (y|x, θ)P (x|θ)

q(y)
]

≥ Eq[log(P (x|θ)]− Eq[log(
q(y)

P (y|x, θ)
]

≥ Eq[log(P (x|θ))]−KL(q(y)‖P (y|x, θ))
≥ log(P (x|θ))−KL(q(y)‖P (y|x, θ))

The E-step consists of maximizing the lower bound with respect to q(y).
Since the first term does not depend on q(y), this simply means minimizing
the KL-divergence term. The Gibbs inequality states that KL-divergence is
non-negative, and in fact is zero only for identical distributions. Therefore we
maximize with respect to q(y) by setting q(y) = P (y|x, θ). Note that our lower
bound is actually equal to the log marginal likelihood for this q(y). Any increase
in this lower bound during the M-step therefore must increase the marginal log-
likelihood.

2.2 M-step

The M-step then consists of maximizing this lower bound with respect to the
parameters θ. Returning to our lower bound

log(P (x|θ)) ≥ Eq[log(
P (x,y|θ)
q(y)

]

≥ Eq[log(P (x,y|θ)]− Eq[log(q(y))]

≥ Eq[log(P (x,y|θ)] +H(q(y))
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Here the second entropy term does not depend on θ, so we simply set θ =
arg maxθ Eq[log(P (x,y|θ)]. That is, we wish to marginalize the expectation of
the complete-data log-likelihood with respect to our auxiliary distribution q(y).

Hopefully, P (x,y|θ) has been chosen “nicely” in that this expected complete-
data log-likelihood is easy to optimize. For example, in the Baum-Welch algo-
rithm for Hidden Markov Models, the inter-state transitions are modeled as ex-
ponential family distributions (multinomial), and their sufficient statistics are
the transition counts. Therefore the model is log-linear in the counts, and
we can therefore simply maximize the expected complete-data log-likelihood
log(P (x,y|θ)) with respect to the expected transition counts under q(y).

2.3 The Big Picture

Essentially, we are doing coordinate ascent optimization of the marginal log-
likelihood log(P (x|θ)). We achieve this by alternating between setting q(y) to
get a tight lower bound (E-step), and then setting θ to increase this bound (M-
step). Since we are guaranteed to increase log(P (x|θ)) every iteration, we will
eventually reach a local optimum.

3 Variants

3.1 Generalized EM

Generalized EM relaxes the requirement that the new θ maximize Eq[log(P (x,y|θ)]
during the M-step. As long as the new θ still increases the lower bound, the
algorithm will still converge to a local optimum.

3.2 Variational EM

Variational EM relaxes the requirement that q(y) = P (y|x, θ) during the E-
step. It may be that the true posterior is intractable (e.g., Latent Dirichlet
Allocation), so we use a simplified family of q(y) distributions (e.g., fully fac-
torized q(y) =

∏
i q(yi)) to approximate the true posterior distribution. The

E-step then consists of finding the q(y) in this restricted family which minimizes
the KL-divergence with the true posterior KL(q(y)‖P (y|x, θ)).

3.3 MCMC EM

We can think of the “output” of the E-step as being a distribution q(y) =
P (y|x, θ) which can be used to calculate (and optimize) Eq[log(P (x,y|θ)] dur-
ing the M-step. Even if we cannot calculate P (y|x, θ), we may still be able
to optimize Eq[log(P (x,y|θ)] by using Markov Chain Monte Carlo sampling
methods to approximate expectations of interest. For example, if we have a
model which is log-linear in some statistics (e.g., a multinomial distribution),
we can approximate the expected counts by averaging over samples taken from
P (y|x, θ).
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