
Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 1

Crash Recovery

Chapter 20

If you are going to be in the logging business, one of the
things that you have to do is to learn about heavy
equipment.

Robert VanNatta,
Logging History of Columbia County

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 2

Review: The ACID properties

❖ A tomicity: All actions in the Xact happen, or none happen.

❖ C onsistency: If each Xact is consistent, and the DB starts
consistent, it ends up consistent.

❖ I solation: Execution of one Xact is isolated from that of
other Xacts.

❖ D urability: If a Xact commits, its effects persist.

❖ The Recovery Manager guarantees Atomicity & Durability.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 3

Motivation

❖ Atomicity:
– Transactions may abort (“Rollback”).

❖ Durability:
– What if DBMS stops running? (Causes?)

crash!
❖ Desired Behavior after

system restarts:
– T1, T2 & T3 should be

durable.
– T4 & T5 should be

aborted (effects not seen).

T1
T2
T3
T4
T5

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 4

Assumptions

❖ Concurrency control is in effect.
– Strict 2PL, in particular.

❖ Updates are happening “in place”.
– i.e. data is overwritten on (deleted from) the disk.

❖ A simple scheme to guarantee Atomicity &
Durability?

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 5

Handling the Buffer Pool

❖ Force every write to disk?
– Poor response time.
– But provides durability.

❖ Steal buffer-pool frames
from uncommited Xacts?
– If not, poor throughput.
– If so, how can we ensure

atomicity?

Force

No Force

No Steal Steal

Trivial

Desired

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 6

More on Steal and Force

❖ STEAL (why enforcing Atomicity is hard)
– To steal frame F: Current page in F (say P) is

written to disk; some Xact holds lock on P.
◆ What if the Xact with the lock on P aborts?
◆ Must remember the old value of P at steal time (to

support UNDOing the write to page P).

❖ NO FORCE (why enforcing Durability is hard)
– What if system crashes before a modified page is

written to disk?
– Write as little as possible, in a convenient place, at

commit time,to support REDOing modifications.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 7

Basic Idea: Logging

❖ Record REDO and UNDO information, for
every update, in a log.
– Sequential writes to log (put it on a separate disk).
– Minimal info (diff) written to log, so multiple

updates fit in a single log page.

❖ Log: An ordered list of REDO/UNDO actions
– Log record contains:

<XID, pageID, offset, length, old data, new data>
– and additional control info (which we’ll see soon).

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 8

Write-Ahead Logging (WAL)

❖ The Write-Ahead Logging Protocol:
� Must force the log record for an update before the

corresponding data page gets to disk.
ó Must write all log records for a Xact before commit.

❖ #1 guarantees Atomicity.
❖ #2 guarantees Durability.

❖ Exactly how is logging (and recovery!) done?
– We’ll study the ARIES algorithms.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 9

WAL & the Log

❖ Each log record has a unique Log Sequence
Number (LSN).
– LSNs always increasing.

❖ Each data page contains a pageLSN.
– The LSN of the most recent log record

for an update to that page.

❖ System keeps track of flushedLSN.
– The max LSN flushed so far.

❖ WAL: Before a page is written,
– pageLSN ≤ flushedLSN

LSNs

DB

pageLSNs

RAM

flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
in RAM

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 10

Log Records

Possible log record types:
❖ Update
❖ Commit
❖ Abort
❖ End (signifies end of

commit or abort)
❖ Compensation Log

Records (CLRs)
– for UNDO actions

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

update
records
only

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 11

Other Log-Related State

❖ Transaction Table:
– One entry per active Xact.
– Contains XID, status (running/commited/aborted),

and lastLSN.

❖ Dirty Page Table:
– One entry per dirty page in buffer pool.
– Contains recLSN -- the LSN of the log record which

first caused the page to be dirty.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 12

Normal Execution of an Xact

❖ Series of reads & writes, followed by commit or
abort.
– We will assume that write is atomic on disk.

◆ In practice, additional details to deal with non-atomic writes.

❖ Strict 2PL.
❖ STEAL, NO-FORCE buffer management, with

Write-Ahead Logging.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 13

Checkpointing

❖ Periodically, the DBMS creates a checkpoint, in
order to minimize the time taken to recover in the
event of a system crash. Write to log:
– begin_checkpoint record: Indicates when chkpt began.
– end_checkpoint record: Contains current Xact table and

dirty page table. This is a `fuzzy checkpoint’:
◆ Other Xacts continue to run; so these tables accurate only as of

the time of the begin_checkpoint record.
◆ No attempt to force dirty pages to disk; effectiveness of

checkpoint limited by oldest unwritten change to a dirty page.
(So it’s a good idea to periodically flush dirty pages to disk!)

– Store LSN of chkpt record in a safe place (master record).
Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 14

The Big Picture: What’s Stored Where

DB

Data pages
each
with a
pageLSN

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

RAM

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecords

LOG

master record

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 15

Simple Transaction Abort

❖ For now, consider an explicit abort of a Xact.
– No crash involved.

❖ We want to “play back” the log in reverse
order, UNDOing updates.
– Get lastLSN of Xact from Xact table.
– Can follow chain of log records backward via the

prevLSN field.
– Before starting UNDO, write an Abort log record.

◆ For recovering from crash during UNDO!

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 16

Abort, cont.

❖ To perform UNDO, must have a lock on data!
– No problem!

❖ Before restoring old value of a page, write a CLR:
– You continue logging while you UNDO!!
– CLR has one extra field: undonextLSN

◆ Points to the next LSN to undo (i.e. the prevLSN of the record
we’re currently undoing).

– CLRs never Undone (but they might be Redone when
repeating history: guarantees Atomicity!)

❖ At end of UNDO, write an “end” log record.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 17

Transaction Commit

❖ Write commit record to log.
❖ All log records up to Xact’s lastLSN are

flushed.
– Guarantees that flushedLSN ≥ lastLSN.
– Note that log flushes are sequential, synchronous

writes to disk.
– Many log records per log page.

❖ Commit() returns.
❖ Write end record to log.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 18

Crash Recovery: Big Picture

❖ Start from a checkpoint (found
via master record).

❖ Three phases. Need to:
– Figure out which Xacts

committed since checkpoint,
which failed (Analysis).

– REDO all actions.
◆ (repeat history)

– UNDO effects of failed Xacts.

Oldest log
rec. of Xact
active at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 19

Recovery: The Analysis Phase

❖ Reconstruct state at checkpoint.
– via end_checkpoint record.

❖ Scan log forward from checkpoint.
– End record: Remove Xact from Xact table.
– Other records: Add Xact to Xact table, set

lastLSN=LSN, change Xact status on commit.
– Update record: If P not in Dirty Page Table,

◆ Add P to D.P.T., set its recLSN=LSN.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 20

Recovery: The REDO Phase
❖ We repeat History to reconstruct state at crash:

– Reapply all updates (even of aborted Xacts!), redo CLRs.

❖ Scan forward from log rec containing smallest
recLSN in D.P.T. For each CLR or update log rec
LSN, REDO the action unless:
– Affected page is not in the Dirty Page Table, or
– Affected page is in D.P.T., but has recLSN > LSN, or
– pageLSN (in DB) ≥ LSN.

❖ To REDO an action:
– Reapply logged action.
– Set pageLSN to LSN. No additional logging!

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 21

Recovery: The UNDO Phase

ToUndo={ l | l a lastLSN of a “loser” Xact}
Repeat:

– Choose largest LSN among ToUndo.
– If this LSN is a CLR and undonextLSN==NULL

◆ Write an End record for this Xact.
– If this LSN is a CLR, and undonextLSN != NULL

◆ Add undonextLSN to ToUndo
– Else this LSN is an update. Undo the update,

write a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 22

Example of Recovery

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

05

10

20

30

40

45

50

60

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

prevLSNs

RAM

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 23

Example: Crash During Restart!

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

CLR: Undo T2 LSN 20, T2 end

LSN LOG
00,05

10

20

30

40,45

50

60

70

80,85

90

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

undonextLSN

RAM

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 24

Additional Crash Issues

❖ What happens if system crashes during
Analysis? During REDO?

❖ How do you limit the amount of work in
REDO?
– Flush asynchronously in the background.
– Watch “hot spots”!

❖ How do you limit the amount of work in
UNDO?
– Avoid long-running Xacts.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 25

Summary of Logging/Recovery

❖ Recovery Manager guarantees Atomicity &
Durability.

❖ Use WAL to allow STEAL/NO-FORCE w/o
sacrificing correctness.

❖ LSNs identify log records; linked into
backwards chains per transaction (via
prevLSN).

❖ pageLSN allows comparison of data page and
log records.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 26

Summary, Cont.

❖ Checkpointing: A quick way to limit the
amount of log to scan on recovery.

❖ Recovery works in 3 phases:
– Analysis: Forward from checkpoint.
– Redo: Forward from oldest recLSN.
– Undo: Backward from end to first LSN of oldest

Xact alive at crash.

❖ Upon Undo, write CLRs.
❖ Redo “repeats history”: Simplifies the logic!

