Chapter 5

Describing Data Sources

In order for a data integration system to process a query over a set of data
sources, the system must know which sources are available, what data exists
in each source and how each source can be accessed. The source descriptions in
a data integration system encode this information. In this chapter we study the
different components of source descriptions and identify the tradeoffs involved
in designing formalisms for source descriptions.

Query (formulated on mediated schema)

Query reformulation

|

ogical query plan

Query optimizer

l Physical query plan

Replanning request Execution engine

_— ~ \'\\\\

‘wrapper‘ ‘wrapper‘ ‘wrapper‘ ‘wrapper‘ ‘wrapper‘

source| source; source, source, source|

Figure 5.1: Query processing in a data integration system. This chapter fo-
cuses on the reformulation step, highlighted in the dashed box.

To put the topic of this chapter in context, consider the architecture of a data
integration system, redrawn in Figure 5.1. Recall that a user or an application
pose a query to the data integration system using the relations and attributes
of the mediated schema. The system then reformulates the query into a query
over the data sources. The result of the reformulation is called a logical query

95



96 CHAPTER 5. DESCRIBING DATA SOURCES

plan. The logical query plan is later optimized so it runs efficiently. In this
chapter we show how source descriptions are expressed and how the system
uses them to reformulate the user’s query into a logical query plan.

5.1 Overview and Desiderata

Before we begin our technical discussion of source descriptions, it is instructive
to highlight the goals we that these descriptions are trying to achieve, and
outline basic desiderata from a source description formalism.

To understand the requirements from source descriptions, we use a scenario
that includes the following mediated schema and data sources. Note that the
first data source contains four tables, while the others each include a single
table. We refer to a relation in a data source by the relation name, prefixed by
the source name (e.g., S1.Movie).

Mediated schema:
Movie(title, director, year, genre), Actors(fitle, name)
Plays(movie, location, startTime), Reviews(title, rating, description)

Data sources:
ST:
Movie(MID, title)
Actor(AlD, firstName, lastName, nationality, yearOfBirth)
ActorPlays(AID, MID)
MovieDetail(MID, director, genre, year)
S2: S3:
Cinemas(place, movie, start) NYCCinemas(hame, title, startTime)
S4. S6:
Reviews(title, date, grade, reviewMovieGenres(title, genre)
S6: S7.
MovieDirectors(title, dir) MovieYears(title, year)

A source description needs to convey several pieces of information. The
main component of a source description, called a schema mapping, is a specifi-
cation of what data exists in the source and how the terms used in the source
schema relate to the terms used in the mediated schema. The schema map-
ping needs to be able to handle the following discrepancies between the source
schemata and the mediated schema:



5.1. OVERVIEW AND DESIDERATA 97

¢ Relation and attribute names: The relation and attribute names in the
mediated schema are likely to be different than they are in the sources,
even if they are speaking of the same terms. For example, the attribute
description in the mediated schema refers to the text description of a
review, which is the same as the attribute review in source S4. Similarly,
if the same relation or attribute name are used in the mediated schema
and in the source that does not necessarily entail that they mean the
same thing. For example the attribute name appears in both the Actors
relation in the mediated schema and in S3, but refers to actor names in
one case and to cinema names in the other.

e Tabular organization: The tabular organization of data can be differ-
ent between the mediated schema and the source. For example, in the
mediated schema, the relation Actor stores the relationship between ac-
tor names and movie titles. In contrast, in source S1, actors are modeled
with IDs, some of their data is stored in the relation Actor, and the re-
lationship with movies is stored in the relation ActorPlays. Hence, the
schema mapping needs to be able to specify that a join of two tables in the
source corresponds to a relation in the mediated schema and vice versa.

e Domain coverage: The coverage and level of detail of the two schemas
may differ. For instance, source ST models actors in more detail than the
mediated schema. The source models the year of birth and nationality of
actors in addition to their name.

e Data-level variations: The schemas may be assuming different con-
ventions for specifying data values. In the simple case, there may be a
difference in the scales used to specify values (e.g, GPA’s on a letter scale
versus a numeric scale). In other cases, names of people or companies
may be written differently. For example, in ST names of actors are broken
up into two columns, whereas in the mediated schema the full name is in
one column.

Collectively, these differences between the mediated schema and the source
schema (or between any pair of schema) are called semantic heterogeneity.
Bridging semantic heterogeneity is considered to be one of the key challenges
in data integration, and will be discussed extensively. We cover schema map-
pings in Sections 5.2.

In addition to schema mappings, the source descriptions also specify in-
formation that enables the data integration system to optimize queries to the



98 CHAPTER 5. DESCRIBING DATA SOURCES

sources and to avoid illegal access patterns. Specifically, the following two are
common.

Access-pattern limitations: Data sources may differ on which access pat-
terns they support. In the best case, a data source is a full fledged database
system, and we can send it any SQL query. However, many data sources are
much more limited. For example, a data source whose interface is a web form
constrains the possible access patterns. In order to get tuples from the source,
the data integration system needs to supply some set of legal input parameters.
We discuss limitations on access patterns to sources in Section 5.3. We post-
pone the discussion leveraging processing power of data sources to Chapter 9.

Source completeness: it is often important to know whether a source is
complete w.r.t. the contents it’s purported to have. When a data source is known
to be complete, the data integration system can save work by not accessing
other data sources that have overlapping data. For example, if S2.Cinemas is
known to have playing times of all movies in the country, then we can ignore S3
and 54 for many queries. In some cases, the data source may be complete w.r.t.
a subset of its contents. Given partially-complete sources, we also want to know
whether answers to our queries are guaranteed to be complete. We discuss how
a data integration handles knowledge about completeness in Section 5.5.

5.2 Schema mapping languages

Formally, a schema mapping is a set of expressions that describe a relationship
between a set of schemata (typically two). In our context, the schema mappings
describe a relationship between the mediated schema and the schema of the
sources. When a query is formulated in terms of the mediated schema, we use
the mappings to reformulate the query into appropriate queries on the sources.
The result of the reformulation is a logical query plan.

Schema mappings are also used in other contexts. In the context of data ex-
change and data warehousing (which we discuss in Chapter 16), schema map-
pings express a relationship between a source database and a target database.
In this context, we use the schema mappings to map the data from the source
database into the target database (which is often a data warehouse). A schema
mapping may also be used to describe the relationship between two databases
that store data. In this context, the goal of the schema mapping is typically to
merge the two databases into one. We discuss this case briefly in Chapter 18.



5.2. SCHEMA MAPPING LANGUAGES 99

5.2.1 Principles of schema mapping languages

In this chapter we use query expressions as the main mechanism for specifying
schema mappings, and we leverage the algorithms described in Chapter 4 for
query reformulation. In our description, we denote the mediated schema by G,
and the source schemata by 5i,...,.5,.

Semantics of schema mappings

The semantics of a schema mapping formalism are specified by defining which
instances of the mediated schema are consistent with given instances of the
data sources. Specifically, a semantic mapping M defines a relation My over

I(G) x I(Sy) x ... x I(S,)

where /(G) denotes the possible instances of the mediated schema, and /(S5)), ...
denote the possible instances of the source relations S, ..., S,, respectively. If
(g9,81,...,5,) € Mg, then g is a possible instance of the mediated schema when
the source relation instances are sq,...,s,. The semantics of queries over the
mediated schema are based on the relation M.

Definition 5.1: (Certain answers) Let M be a schema mapping between a
mediated schema G and source schemata Si,...,S,, that defines the relation
Mp over I(G) x I(Sy) X ... x I(Sy).

Let ) be a query over G, and let s, ..., s, be instances of the source relations.
We say that t is a certain answer of Q w.r.t. M and si,. .., s, if t € Q(g) for every
instance g of G such that (g, s1,...,8,) € Mg. O

Logical query plans

To obtain the certain answers, the data integration system will create a logical
query plan as a result of reformulation. The logical query plan is a query ex-
pression that refers only to the relations in the data sources. As we see later,
it is not always possible to create a query plan that generates all the certain
answers. Hence, in our discussion, we will analyze two different algorithmic
problems: finding the best possible logical query plan and finding all the cer-
tain answers.

As we discuss the different schema mapping languages, we keep the follow-
ing properties in mind:



100 CHAPTER 5. DESCRIBING DATA SOURCES

e Flexibility: given the significant differences between disparate schemata,
the schema mapping languages should be very flexible. That is, the lan-
guage should be able to express a wide variety of relationships between
schemata.

e Efficient reformulation: since our goal is to use the schema mapping
to reformulate queries, we should be able to develop reformulation algo-
rithms whose properties are well understood and are efficient in practice.
This requirement is often at odds with that of flexibility, because more
expressive languages are typically harder to reason about.

e Easy update: for a formalism to be useful in practice, it needs to be
easy to add and remove sources. If adding a new data source potentially
requires inspecting all other sources, the resulting system will be hard to
manage as it scales up to a large number of sources.

We discuss three schema mapping languages: Global-as-View (Section 5.2.2),
Local-as-View (Section 5.2.3), and Global-Local-as-View (Section 5.2.4) that
combines the features of the two previous ones. For historical reasons, the
formalism names leave some room for further explanation, and we do so as we
go along. We note that the topic of creating schema mappings is the subject of
Chapter 7.

5.2.2 Global-as-View

The first formalism we consider, Global-as-View (GAV), takes a very intuitive
approach to specifying schema mappings: GAV defines the mediated schema
as a set of views over the data sources. The mediated schema is often referred
to as a global schema, hence the name of the formalism.

Syntax and semantics

The syntax of GAV source descriptions is defined as follows.

Definition 5.2: (GAV schema mappings) Let G be a mediated schema, and
let S = {5,...,5,} be schemata of n data sources. A Global-as-View schema
mapping M is a set of expressions of the form G;(X) 2O Q(S)or G;(X) = Q(9),
where

e (G, is a relation in G, and appears in at most one expression in M, and



5.2. SCHEMA MAPPING LANGUAGES 101

e Q(S) is a query over the relations in S. O

Expressions with O make the open-world assumption. That is, the data
sources, and therefore the instances computed for the relations in the medi-
ated schema, are assumed to be incomplete. Expressions with = make the
closed-world assumption in that the instances computed for the relations in
the mediated schema are assumed to be complete. In Section 5.5 we show how
to state more refined notions of completeness for data sources.

Example 5.1: The following is a GAV schema mapping for some of the sources
in our running example. For readability, when illustrating GAV schema map-
pings, we typically abuse the notation by not showing the head of the query
over the data sources, Q(S) since it is the same as the relation G;.

The first expression shows how to obtain tuples for the Movie relation by
joining relations in S1. The second expression obtains tuples for the Movie re-
lation by joining data from sources S5, S6 and S7. Hence, the tuples that would
be computed for Movie are the result of the union of the first two expressions.
The third and fourth expressions generate tuples for the Plays relation by tak-
ing the union of S2 and S3.

Movie(title, director, year, genre) D S1.Movie(MID, fitle),
S1.MovieDetail(MID, director, genre, year)
Movie(title, director, year, genre) O S5.MovieGenres(title, genre),
S6.MovieDirectors(title, director),
S7.MovieYears(title, year)
Plays(movie, location, startTime) O S2.Cinemas(location, movie, startTime)
Plays(movie, location, startTime) O S3.NYCCinemas(location, movie, startTime)

O

The following definition specifies the relation My entailed by a GAV schema
mapping M, thereby defining its semantics.

Definition 5.3: (GAV semantics) Let M = M, ..., M, be a GAV schema map-
ping between G and S = {S,,...,S,}, where M, is of the form G;(X) 2 Q;(S), or
Gi<X) = Qz’(5>-

Let g be an instance of the mediated schema G, and let 5 = s;,...,s, be
instances of Sy, ..., Sy, respectively. The tuple of instances (g, s1,...,S,) 1sin Mg
if for every 1 < i <, the following holds:



102 CHAPTER 5. DESCRIBING DATA SOURCES

e if M; is a = expression, then the extension of G; in g is equal to the result
of evaluating (); on s,

e if M; is a D expression, then the extension of G; in ¢ is a superset of result
of evaluating (); on s. a

Reformulation in GAV

The main advantage of GAV is its conceptual simplicity. The mediated schema
is simply a view over the data sources. To reformulate a query posed over the
mediated schema, we simply need to unfold the query with the view definitions
(see Section 4.1). Furthermore, the reformulation resulting from the unfolding
is guaranteed to find all the certain answers. Hence, the following theorem
summarizes the complexity of reformulation and query answering in GAV.

Theorem 5.1: Let M = M;, ..., M, be a GAV schema mapping between G and
S = {S1,...,5,}, where M; is of the form G;(X) D Q;(S), or G;(X) = Qi(95).
Let () be a query over G.

If Q and the Q,;’s in M are conjunctive queries or unions of conjunctive
queries, even with interpreted and negated atoms, then the problem of find-
ing all certain answers to ) is in PTIME in the size of the data sources, and
the complexity of reformulation is in PTIME in the size of the query and source
descriptions. a

Example 5.2 Suppose we have the following query over the mediated schema,
asking for comedies starting after 8pm:

Q(title, location, startTime) :- Movie(title, director, year, *"comedy”),
Plays(title, location, st), st > 8pm

Reformulating Q with the source descriptions in Example 5.1 would yield
the following four logical query plans:

Q' (fitle, location, startTime) :- S1.Movie(MID, title),
S1.MovieDetail(MID, director, “comedy” year),
S2.Cinemas(location, movie, st), st > 8pm

Q' (title, location, startTime) :- S1.Movie(MID, title),
MovieDetail(MID, director, "comedy” year),
S3.NYCCinemas(location, title, st), st > 8pm



5.2. SCHEMA MAPPING LANGUAGES 103

Q' (title, location, startTime) :- S5.MovieGenres(title, genre), S6.MovieDirectors(title, director)
S7.MovieYears(title, year), S2.Cinemas(location, movie, st), st :
Q’(title, location, startTime) :- S5.MovieGenres(title, genre), S6.MovieDirectors(title, director)
S7.MovieYears(title, year), S3.NYCCinemas(location, title, st), s

We note two points about the above reformulation. First, the reformulation
may not be the most efficient method to answer the query. For example, in this
case it may be better to factor common subexpressions (namely, Movie and
Plays) in order to reduce the number of joins necessary to evaluate the query.
We discuss query optimization for data integration in Chapter 9.

Second, note that in the last two reformulations, the subgoals of S6.MovieDirectors
and S7.MovieYears are redundant, since all we really need from the Movies re-
lation is the genre of the movie. However, there is no way of reaching this
conclusion with GAV descriptions since the way Movie is defined requires a
tuple for all three of S5, S6 and S7. O

Discussion

In terms of modeling, GAV source descriptions specify directly how to compute
tuples of the mediated schema relations from tuples in the sources. We’ve al-
ready seen one limitation of GAV in Example 5.2 when we could not remove
the redundant subgoals of S6 and S7. The following is a more extreme example
of where translating data sources into the mediated schema is limiting.

Example 5.3: Suppose we have a data source S8 that stored pairs of (actor,
director) who worked together on movies. The only way to model this source in
GAV is with the following two descriptions that use NULL liberally.

Actors(NULL, actor) D S8(actor, director)
Movie(NULL, director, NULL, NULL) D S8(actor, director)

Note that these descriptions essentially create tuples in the mediated schema
that include NULLs in all columns except one. For example, if the source S8
would include the tuples {Keaton, Allen} and {Pacino, Coppola}, then the
tuples computed for the mediated schema would be:

Actors(NULL, Keaton), Actors(NULL, Pacino)
Movie(NULL, Allen, NULL, NULL), Movie(NULL, Coppola, NULL, NULL)

Now suppose we have the following query that essentially recreates S8:



104 CHAPTER 5. DESCRIBING DATA SOURCES

Q(actor, director) :- Actors(title, actor), Movie(title, director, genre, year)

We would not be able to retrieve the tuples from S8 because the source descrip-
tions lost the relationship between actor and director. a

A final limitation of GAV is that adding and removing sources involves con-
siderable work and knowledge of the sources. For example, suppose we discover
another source that includes only movie directors (similar to S6). In order to up-
date the source descriptions, we need to specify exactly which sources it needs
to be joined with in order to produce tuples of Movie. Hence, we need to be
aware of all sources that contribute movie years and movie genres (of which
there may also be many). In general, if adding a new source requires that we
are familiar with all other sources in the system, then the system is unlikely
to scale to a large number of sources.

5.2.3 Local-as-View

Local-as-view (LAV) takes an opposite approach to GAV. Instead of specifying
how to compute tuples of the mediated schema, LAV focuses on describing each
data source as precisely as possible and independently of any other sources.

Syntax and semantics

LAV expressions describe data sources as queries over the mediated schema.

Definition 5.4: (LAV schema mappings) Let G be a mediated schema, and
let S = {S),...,S,} be schemata of n data sources. A Local-as-View schema
mapping M is a set of expressions of the form S;(X) C Qi(G) or Si(X) =
Q:(G), where

e (); is a query over the mediated schema G, and

e S, is a source relation and it appears at most one expression in M. a

As with GAV, LAV expressions with C make the open-world assumption
and expressions with = make the closed-world assumption. However, LAV de-
scriptions make completeness statements about data sources, not about the
relations in the mediated schma.



5.2. SCHEMA MAPPING LANGUAGES 105

Example 5.4: In LAV, sources S5-S7 would be described as follows, simply as
projection queries over the Movie relation in the mediated schema. Note that
here too we abuse the notation for clarity and omit the head of the Q,’s.

S5.MovieGenres(title, genre) C Movie(title, director, year, genre)
S6.MovieDirectors(title, dir) € Movie(title, director, year, genre)
S7.MovieYears(title, year) C Movie(title, director, year, genre)

With LAV we can also model the source S8 as a join over the mediated schema:
S8(actor, dir) € Movie(title, director, year, genre), Actors(title, actor)

Furthermore, we can also express constraints on the contents of data sources.
For example, we can describe the following source that includes movies pro-
duced after 1970 and are all comedies:

SQ(title, year, "comedy”) C Movie(title, director, year, *comedy”), year > 1970. O

As with GAV, the semantics of a LAV schema mapping are defined by spec-
ifying the relation My defined by M.

Definition 5.5: (LAV semantics) Let M = M, ..., M; be a LAV schema mapping
between G and S = {Si,...,S,}, where M; is of the form S;(X) C Q;(G) or
Si(X) = Qi(G).

Let g be an instance of the mediated schema G, and let s = sq,...,s, be
instances of Si, ..., S,, respectively. The tuple of instances (g, s1,...,S,) isin My
if for every 1 < i <, the following holds:

e if M; is a = expression, then the result of evaluating (); over g is equal to
Sis

e if M; is a C expression, then the result of evaluating (); over g is a subset
Si.

Reformulation in LAV

The main advantage of LAV is that data sources are described in isolation
and the system, not the designer, is responsible for finding ways of combining
data from multiple sources. As a result, it is easier for a designer to add and
remove sources.



106 CHAPTER 5. DESCRIBING DATA SOURCES

Example 5.5: Consider the following query asking for comedies produced
after 1960:

Q(title) :- Movie(title, director, year, "comedy”), year > 1960.

Using the sources S5-S7, we would generate the following reformulation from
the LAV source descriptions:

Q' (title) :- S5.MovieGenres(title, *comedy”), S7.MovieYears(title, year), year > 1960.

Note that unlike GAYV, the reformulation here did not require a join with the
MovieDirectors relation in S6. Using the source S9, we would also create the
following reformulation:

Q' (fitle) :- S(title, year,"comedy”)

Note that here the reformulation does not need to apply the predicate on year,
because S9 is already known to contain only movies produced after 1970. a

Of course, to obtain this flexibility, we need to develop more complex query
reformulation algorithms. Fortunately, the techniques for answering queries
using views (Section 4.3) give us a framework for establishing results for refor-
mulation in LAV.

To see why answering queries using views applies in our context, simply
consider the following. The mediated schema represents a database whose tu-
ples are unknown. The data sources in LAV are described as view expressions
over the mediated schema. The extensions of the views are the data stored
in the data sources. For example, S8 is described as a join over the mediated
schema. Hence, to answer a query formulated over the mediated schema, we
need to reformulate it into a query over the known views, i.e., the data sources.
Unlike the traditional setting of answering queries using views, here the orig-
inal database (i.e., the mediated schema) never had any tuples stored in it.
However, that makes no difference to the query reformulation algorithms.

The above formulation of the problem immediately yields a plethora of algo-
rithms and complexity results regarding reformulation for LAV, as summarized
by the following theorem. The proof of the theorem is a corollary of the results
in Chapter 4.

Theorem 5.2: Let M = M,, ..., M; be a LAV schema mapping between G and
S ={S1,...,Su}, where M, is of the form S;(X) C Q;(G) or S;(X) = Q;(G). Let
Q be a conjunctive query over G.



5.2. SCHEMA MAPPING LANGUAGES 107

e If all the QQ;’s in M are conjunctive queries with no interpreted predicates
or negation, and all the M;’s are C expressions, then all the certain answers
can be found in time polynomial in the size of the data and of the size of
M.

e Ifall the Q);’s in M are conjunctive queries with no interpreted predicates or
negation, and some of the expressions in M are = expressions, then finding
all the certain answers to () is co-NP hard in the size of the data.

e If some of the ();’s include interpreted predicates, then finding all then
finding all certain answers to () is co-NP hard in the size of the data. O

We also note that finding all certain answers is co-NP hard in the size of the
data if the @);’s include unions or negated predicates.

We generate logical query plans for LAV schema mappings using any of the
algorithms described in Chapter 4 for finding a maximally-contained rewrit-
ing of a query using a set of views. The computational complexity of finding
the maximally-contained rewriting is polynomial in the number of views and
the size of the query. Checking whether the maximally-contained rewriting
is equivalent to the original query is NP-complete. We note that in practice,
even when the complexity of finding all the certain answers is co-NP hard, the
logical query plan created by the algorithms will typically find all the certain
answers.

Discussion

The added flexibility of LAV is also the reason for the increased computational
complexity of answering queries. Fundamentally, the reason is that LAV en-
ables expressing incomplete information. Given a set of data sources, GAV
mappings define a single instance of the mediated schema that is consistent
with the sources, and therefore query answering can simply be done on that
instance. For that reason, the complexity of query answering is similar to that
of query evaluation over a database. In contrast, given a set of LAV source de-
scriptions, there are a set of instances of the mediated schema that are consis-
tent with the data sources. As a consequence, query answering in LAV amounts
to querying incomplete information, which is computationally more expensive.

Finally, we note a shortcoming of LAV. Consider the relations S1.Movie(MID,
fitle) and S1.MovieDetail(MID, director, genre, year). The join between these
two relations requires the MID key, which is internal to S1 and not modeled
in the mediated schema. Hence, while it is possible to model the fact that



108 CHAPTER 5. DESCRIBING DATA SOURCES

MovieDetaqil contains directors, genres and years of movies, LAV descriptions
would lose the connection of those attributes with the movie title. The only
way to circumvent that is to introduce an identifier for movies in the mediated
schema. However, identifiers are typically not meaningful across multiple data
sources, and hence we’d need to introduce a special identifier for every source
where it is needed.

5.2.4 Global-and-Local-as-View

Fortunately, the two formalisms described above can be combined into one for-
malism that has the expressive power of both (with the sole cost of inventing
another unfortunate acronym).

Syntax and semantics

In the Global-and-Local-as-View formalism (GLAV) the expressions in the schema
mapping include a query over the data sources on the left hand side, and a
query on the mediated schema on the right-hand side. Formally, GLAV is de-
fined as follows.

Definition 5.6: (GLAV schema mapping) Let G be a mediated schema, and let
S ={851,...,S5,} be schemata of n data sources. A GLAV schema mapping M is
a set of expressions of the form Q%(X) C Q%(X) or Q°(X) = QY (X) where:

e Q% is a query over the mediated schema G whose head variables are X,
and

e )% is a query over the data sources whose head variables are also X. a

Example 5.6: Suppose source S1 was known to have only comedies produced
after 1970, then we could describe it using the following GLAV expression.
Note that here too we abuse the notation by omitting the heads of the Q%’s and
the Q’s:

S1.Movie(MID, title), S1.MovieDetail(MID, director, genre, year) C
Movie(title, director, "comedy”, year), year > 1970. O

The semantics of GLAV are defined by specifying the relation My defined by
M.



5.2. SCHEMA MAPPING LANGUAGES 109

Definition 5.7: (GLAV semantics) Let M = M,, ..., M, be a GLAV schema map-
ping between G and S = {Si,...,S.}, where M; is of the form Q%(X) C QYX)
or @°(X) = QY(X).

Let g be an instance of the mediated schema G, and let s = sq,...,s, be

instances of Si, ..., S,, respectively. The tuple of instances (g, s1,...,s,) Isin Mg
if for every 1 < i <, the following holds:

e if M; is a = expression, then S;(5) = Q;(g),

e if M; is a C expression, then then S;(5) C Q;(g). O

Reformulation in GLAV

Reformulation in GLAV amounts to composing the LAV techniques with the
GAV techniques. Given a query (), it can be reformulated in the following two
steps:

e Find a rewriting Q' of the query Q using the views Q¢, ..., Q%,

e Create Q" by replacing every occurrence of QY in Q' with Q7, and unfold-
ing the result so it mentions only the source relations.

Applying Q" to the source relations will yield all the certain answers in the
cases specified in the theorem below. Consequently, the complexity of finding
the certain answers and of finding a logical query plan in GLAV is the same as
that for LAV.

Theorem 5.3: Let M = M,,..., M, be a GLAV schema mapping between a
mediated schema G and source schemas S = {Si,...,S,}, where M; is of the
form Q%(X) C Q%X) or Q%(X) = Q%(X), and assume that each relation in
the mediated schema or in the sources appears in at most one M;. Let () be a
conjunctive query over G.

Assume that the Q7’s are conjunctive queries or unions of conjunctive queries,
even with interpreted predicates and negated predicates.

o Ifall the Q%’s in M are conjunctive queries with no interpreted predicates
or negation, and all the M; are C expressions, then all the certain answers
can be found in time polynomial in the size of the data and of the size of M,
and the complexity of reformulation is polynomial in the number of data
sources.



110 CHAPTER 5. DESCRIBING DATA SOURCES

o Ifall the Q%’s in M are conjunctive queries with no interpreted predicates
or negation, and some of the M,’s are = expressions, then finding all the
certain answers to () is co-NP hard in the size of the data.

o If some of the Q%’s include interpreted predicates, then finding all then
finding all certain answers to () is co-NP hard in the size of the data. O

The reformulations created as described above produce only certain an-
swers when some of the relations occur in more than one )/;, but may not
produce all the certain answers. We note that in practice, the real power of
GLAV is the ability to use both GAV and LAV descriptions, even if none of the
source descriptions uses the power of both.

5.3 Access-pattern limitations

Thus far, the logical plans we have generated assumed that we can access the
relations in the data sources in any way we want. In particular, this means the
data integration system can choose any order it deems most efficient to access
the data sources, and is free to pose any query to each source. In practice,
there are often significant limitations on the allowable access patterns to data
sources. The primary examples of such limitations involve sources served by
forms on the web and data available through specific interfaces defined by web
services. Typically, such interfaces define a set of required inputs that must be
given in order to obtain an answer, and it is rarely possible to obtain all the
tuples from such sources. In some other cases, limitations on access patterns
are imposed in order to restrict the queries that can be asked of a source and
therefore limit the load on the source.

This section begins by discussing how to model limitations on access pat-
terns to data sources, and then describes how to refine a logical query plan into
an executable plan that adheres to these limitations. We will see that access-
pattern limitations can have subtle effects on query plans.

5.3.1 Modeling access-pattern limitations

We model access-pattern limitations by attaching adornments to relations of
data sources. Specifically, if a source relation has n attributes, then an adorn-
ment consists of a string of length n, composed of the letters b and f. The
meaning of the letter b in an adornment is that the source must be given val-
ues for the attribute in that position. An f adornment means that the source



5.3. ACCESS-PATTERN LIMITATIONS 111

does not need a value for that position. If there are multiple sets of allowable
inputs to the source, we attach several adornments to the source.

Example 5.7: To illustrate the concepts in this section we use an example
in the domain of publications and citations. Consider a mediated schema that
includes the following relations: Cites stores pairs of publications identifiers
(X,Y), where publication X cites publication Y, AwardPaper stores the iden-
tifiers of papers that received an award, and DBPapers stores the identifiers of
papers in the field of Databases.

The following LAV expressions also express the access-pattern limitations
to the sources:

S1: CitationDB!/ (X,Y) C Cites(X.Y)
S2: CitingPapers/(X) C Cites(X,Y)
S3: DBSource/(X) € DBpapers(X)
S4: AwardDB!(X) € AwardPaper(X)

The first source stores pairs of citations where the first paper cites the second,
but requires that the citing paper be given as input (hence the bf adornment).
The second source stores all the papers that cite some paper, and enables to
query for all such papers. The third source stores papers in the database field,
but does not have any access restrictions, and the fourth source stores all the
papers that won awards, but requires that the identifier of the paper be given
as input. That is, you can ask the source if a particular paper won an award,
but cannot ask for all award papers. O

5.3.2 Generating executable plans

Given a set of access-pattern limitations, we need to generate logical plans
that are executable. Intuitively, an executable query plan is one in which we
can always supply values to data sources when they are required. Hence, a
key aspect of executable plans is the order of its subgoals. Formally, executable
query plans are defined as follows.

Definition 5.8 (Executable query plans) Let ¢,(X)), ..., q.(X,) be a conjunctive
query plan over a set of data sources, and let BF; be the set of adornments
describing the access-pattern limitations to the source g;.

We say that ¢1(X1),...,q.(X,) is an executable plan if there is a choice of
adornments bf,...,bf,, such that



112 CHAPTER 5. DESCRIBING DATA SOURCES

e bf; € BF;,and

e if the variable X appears in position k of ¢;(X;) and the k’th letter of bf; is
b, then X appears in a subgoal q;(X,;) where j < i. a

Note that changing the order of the subgoals in the plan does not affect
the results. Figure 5.2 shows how to find an executable re-ordering of a given
logical query plan with a simple greedy algorithm. Intuitively, the algorithm
orders the subgoals in the plan beginning with those who have a completely
free adornment (i.e., all f’s), and then iteratively adds subgoals whose require-
ments are satisfied by subgoals earlier in the plan. If the algorithm manages
to insert all the subgoals into the plan, then it is executable. Otherwise, there
is no executable ordering of the subgoals.

Algorithm FindExecutablePlan(Q, BF)

/% Q is a logical query plan of the form: ¢;(X1), ..., g.(X,)
/x BF = BF1,...,BF,, where BF; is a set of adornments for g;.

EP = empty list. /x EP is the resulting plan.
fori=1,...,n, initialize AD; = BF;.
/*x As we add subgoals to the plan, AD; records their new allowable access patterns.

until no new subgoals can be added to £ P do
Choose a subgoal ¢;(X;) € Q, such that AD; has an adornment that is all f’s and ¢;(X;) & EP.

Add ¢;(X;) to the end of EP.
for every variable X € X; )
if X appears in position £ of ¢g;(X;) and position k of an adornment ad € AD; is b,

then change position & to f.

if all the subgoals in ) are in EP, return EP as an executable plan
else return No executable ordering.

Figure 5.2: An algorithm for finding an executable ordering of a logical query
plan.

When we cannot find an executable ordering of the subgoals in a query plan,
then the question is whether we can add subgoals to make the plan executable,
and whether the new plan is guaranteed to find all the certain answers.

Example 5.8 Consider the following query over our mediated schema, asking
for all the papers citing paper with identifier #001:



5.3. ACCESS-PATTERN LIMITATIONS 113
Q(X) :- Cites(X,001)

Ignoring the access-pattern limitations, the following plan would suffice

Q' (X) :- CitationDB(X,001).

However, that plan is not executable because CitationDB requires an input
to its first field. Fortunately, the following longer plan is executable:

aX) :- CitingPapers(X), CitationDB(X,001).
O

The above example showed that it is possible to add subgoals to the plan to
obtain an executable plan. The following example shows that there may not be
any limit on the length of such a plan!

Example 5.9: Consider the following query, asking for all papers that won
awards, and let’s ignore S2 for the purpose of this example.

Q(X) :- AwardPaper(X).

Since the view AwardDB requires its input to be bound, we cannot query it
without a binding. Instead, we need to find candidate award papers. One way
to find candidates is to query the source DBSource, obtaining all database pa-
pers, and feed these papers to the source AwardDB. Another set of candidates
can be computed by papers cited by database papers, i.e., joining DBSource
with the source CitationDB. In fact, for any integer n, we can begin by finding
papers reachable by citations chains of length n starting from database papers,
and then querying AwardDB to see whether any of these papers won an award.
As we see below, we can create a logical query plan for each such n, and we
can never decide without querying the data that we can stop at a certain n.
Hence, since we need to create the executable query plan based on the source
descriptions and the query, there is no bound on the length of such a plan.

Q' (X) :- DBSource(X), AwardDB(X)
Q'(X) :- DBSource(V), CitationDB(V,X 1), ..., CitationDB(X,,.X), AwardDB(X).

O



114 CHAPTER 5. DESCRIBING DATA SOURCES

Fortunately, even if there is no bound on the length of a query plan, there
is a compact recursive query plan that is executable and that will obtain all
the possible answers. A recursive query plan is a datalog program whose base
predicates are the data sources, and is allowed to compute intermediate re-
lations in addition to the query relation. Let us first see how to construct a
recursive plan for our example.

Example 5.10: The key to constructing the recursive plan is to define a new
intermediate relation papers whose extension is the set of all papers reachable
by citation chains from database papers. The papers relation is defined by
the first two rules below. The third rule joins the papers relation with the
AwardDB relation. Note that each of the rules in the plan is executable.

papers(X) :- DBsource(X)
papers(X) :- papers(Y), CitationDB(Y,X)
Q' (X) :- papers(X), AwardDB(X).

O

We now describe how to build such a recursive plan in the general case.
We describe the construction for the case in which every source has a single
adornment, but the generalization for multiple adornments is straightforward.
Given a logical query plan () over a set of sources 51, ...,5,, we create an exe-
cutable query plan in two steps.

Step 1: We define an intermediate (IDB) relation Dom that will include all the
constants in the domain that we can obtained from the sources. Let S;( X1, ..., X})
be a data source, and assume without loss of generality that the adornment of
S; requires that arguments Xi,..., X, (for [ < k) must be bound and the rest
are free. We add the following rules, for [ + 1 < j < k:

Dom(X)) :- Dom(Xj), ..., Dom(X)), S;(X1, ..., Xk)

Note that at least one of the sources must have an adornment that is all /s,
otherwise we cannot answer any query. Those sources will provide the base
case rules for Dom.

Step 2: We modify the original query plan by inserting atoms of the Dom
relation as necessary. Specifically, for every variable X in the plan, let k be
the first subgoal in which it appears. If the adornment of ¢, (X}) has a b in any



5.4. INTEGRITY CONSTRAINTS ON THE MEDIATED SCHEMA 115

of the positions that X appears in qx(X:), then we insert the atom Dom(X) in
front of ¢ (X}). O

The above algorithm is obviously inefficient in many cases. In practice,
the Dom relation need only include values for columns that need to be bound
in some source. Furthermore, we can refine the Dom relation into multiple
relations, each one containing the constants relevant to a particular column
(e.g., we can create one relation for movie names and another for city names).
Finally, we note that in practice we often have a reasonable list of constants in
particular domains. For example, there are many geographical databases with
lists of country and city names, and good collections of movie names. In these
cases, we can use these lists in place of Dom.

5.4 Integrity constraints on the mediated schema

When we design a mediated schema, we often have additional knowledge about
the domain. We express such knowledge in the form of integrity constraints,
such as functional dependencies or inclusion constraints. This section shows
how the presence of integrity constraints in the mediated schema affects the
query plans we need to create in order to obtain all certain answers. Integrity
constraints affect both LAV and GAV source descriptions.

5.4.1 LAV with Integrity Constraints

The following example illustrates the complications that arise when we have
integrity constraints in LAV.

Example 5.11: Consider a mediated schema that includes a single relation
representing flight schedule information, including the pilot and aircraft that
are planned for each flight.

Schedule(airline, fightNum, date, pilot, aircraft)

Suppose we have the following functional dependencies on the Schedule rela-
tion:

Pilot — Airline and Aircraft — Airline.

The first functional dependency expresses the fact that pilots work for only one
airline, and second specifies that there is no joint ownership of aircraft between
airlines. Suppose we have the following LAV schema mapping of a source S:



116 CHAPTER 5. DESCRIBING DATA SOURCES

S(date, pilot, aircraft) C schedule(airline, fightNum, date, pilot, aircraft)

The source S records the dates on which pilots flew different aircraft. Now
suppose a user asks for pilots that work for the same airline as Mike:

q(p) :- schedule(airline, fightNum, date, *mike”, aircraft), schedule(airline, f, d, p, @)

Source S doesn’t record the airlines that pilots work for, and therefore, with-
out any further knowledge, we cannot compute any answers to the query Q.
Nonetheless, using the functional dependencies of relation schedule, conclu-
sions can be drawn on which pilots work for the same airline as Mike. For
example, if both Mike and Ann are known to have flown aircraft #111, then
Ann works for the same airline as Mike because of the functional dependency
Aircraft — Airline. Moreover, if Ann is known to have flown aircraft #222, and
John has flown aircraft #222 then Ann and John work for the same airline
because of the functional dependency Aircraft — Airline. Hence, we can infer
that John and Mike work for the same airline. In general, we can consider any
logical query plan, q°,,, of the following form:

a'n(E) - (D1’ mike”,C1), S(D2. p2. C1). S(D3. p2. C2), S(D4, p3.Co), ...,
S(DZn—Qr Prn. Cn—l)r S(DQn—ll Pn. Cn): S(DQn: P. Cn)

For any n, Q', may yield results that shorter plans did not, and therefore
there is no limit on the length of a logical query plan that we need to consider.
Fortunately, as in the case of access-pattern limitations, recursive query plans
come to our rescue. We now describe the construction of a recursive query
plan that is guaranteed to produce all certain answers even in the presence of
functional dependencies. a

date | pilot | aircraft
1/1 | Mike #111
5/2 | Ann #111
1/3 | Ann #222
4/3 | John #222

Figure 5.3: A database of pilots’ schedules.

The input to the construction is the logical query plan, q°, generated by the
Inverse-rules Algorithm (Section 4.3.5). The inverse rule created for source S
is shown below. Recall that f; and f, are Skolem functions and they are used
to represent objects about which we have incomplete information.



5.4. INTEGRITY CONSTRAINTS ON THE MEDIATED SCHEMA 117

schedule(f,(d,p,q), fo(d,p.a), d, p, a) :- S(d, p, a)

The inverse rules alone don’t take into account the presence of the func-
tional dependencies. For example, applying the inverse rule on the on the table
shown in Figure 5.3 would yield the following tuples:

schedule(fi1(1/1, Mike, #111), fo(1/1, Mike, #111), 1/1, Mike, #111)
schedule(f1(5/2, Ann, #111), fo(5/2, Ann, #111), 5/2, Ann, #111)
schedule(f1(1/3, Ann, #222), fo(1/3, Ann, #222), 1/3, Ann, #222)
schedule(f1(4/3, John, #222), f»(4/3, John, #222), 4/3, John, #222)

Because of the functional dependencies on the schedule relation, it is pos-
sible to conclude that f,(1/1, Mike, #111) is equal to f,(6/2, Ann, #111), and
that both are equal to f,(1/3, Ann, #222) and f,(4/3, John, #222).

We enable the recursive query plan to make such inferences by introducing
a new binary relation €. The intended meaning of € is that e(c¢;,¢,) holds if and
only if ¢; and ¢, must be equal constants under the given functional dependen-
cies. Hence, the extension of € includes the extension of = (i.e., for every X,
e(X., X)), and the tuples that can be derived by the following chase rules (e(A4,
A" is a shorthand for e(A;.A')).....e(A, A)).

Definition 5.9: (chase rules) Let A — B be a functional dependency satisfied by
a relation P in the mediated schema. Let C be the atiributes of P that are not in
A, B. The chase rule corresponding to A — B is the following:

e(B.B") - p(A, B,C), p(A", B, C"), e(A, A).

O

Given a set of functional dependencies X on the mediated schema, we denote
by chase(¥) the set of chase rules corresponding to the functional dependencies
in X. In our example, the chase rules are:

e(XY) :-schedule(X, F, B D, A), schedule(Y, F', P, D", A), e(A, A)
e(X,Y) :- schedule(X, E P D, A), schedule(Y, F',P’,D’, A), e(PP)

The chase rules allow us to derive the following facts in relation e:

e(f1(1/1, Mike, #111), f1(5/2, Ann, #111))
e(f1(5/2, Ann, #111), £1(1/3, Ann, #222))
e(f1(1/3, Ann, #222), f1(4/3, John, #222))



118 CHAPTER 5. DESCRIBING DATA SOURCES

The extension of € is reflexive by construction, and is symmetric because
of the symmetry in the chase rules. To guarantee that e is an equivalence
relation, we add the following rule that enforces the transitivity of e.

T: eX)Y) -e(X,2), eZY).

The final step in the construction is to rewrite the query Q' in a way that it
can use the equivalences derived in relation €. We initialize g to Q" and apply
the following transformations:

1. If ¢ is a constant in one of the subgoals of “, we replace it by a new
variable Z, and add the subgoal e(Z,c).

2. If X is a variable in the head of q”, we replace X in the body of g” by a
new variable X', and add the subgoal e(X’ X).

3. If a variable Y that is not in the head of 9" appears in two subgoals of q”,
we replace one of its occurrences by Y’, and add the subgoal e(Y".Y).

We apply the above steps until no additional changes can be made to Q”. In our
example query q° would be rewritten to:

q”“(P) :- schedule(A, F, D, M, C), schedule(A’, F', D", P", C"), e(M, "mike"),
e(P’. P), e(A, A)

The resulting query plan includes Q“, the chase rules, and the transitivity
rule T. It can be shown that the above construction is guaranteed to yield all
the certain answers to the query in the presence of functional dependencies.
The bibliographic notes include a reference to the full proof of this claim.

5.4.2 GAV with Integrity Constraints

A key property of GAV schema mappings is that unlike LAV mappings, they
do not model incomplete information. Given a set of data sources and a GAV
schema mapping, there is a single instance of the mediated schema that is
consistent with the sources, thereby considerably simplifying query processing.
With integrity constraints, as the following example illustrates, this property
no longer holds.



5.5. ANSWER COMPLETENESS 119

flight
flightNum | origin | destination
222 Seattle SFO
333 SFO Saigon
schedule
airline flightNum | date | pilot aircraft
United #111 1/1 Mike | Boeing777-15
Singapore Airlines #222 1/3 Ann | Boeing777-17

Table 5.1: Pilot and flight schedules.

Example 5.12: Suppose that in addition to the schedule relation, we also
had a relation flight(fightNum, origin, desfination) storing the beginning and
ending points of every flight. In addition, we have the following integrity con-
straint stating that every flight number appearing in the schedule relation
must also appear in the flight relation:

schedule(flightNum) C flight(fightNum).

Assume that we have two sources whose mappings are trivial (see Table 5.1).
Each source provides tuples for one of the relations in the mediated schema.
Consider the query asking for all flight numbers:

q(fN) :- schedule(airline, fN, date, pilot, aircraft), flight(fN, origin, destination)

In GAV we would answer this query by unfolding it and joining the two
tables in Table 5.1. However, that join would not yield the correct answer.
Specifically, flight #111 appears in the schedule relation, but not in flight, and
therefore would not appear in the result. We do not know exactly the flight de-
tails of flight#111, but we know that one has to exist, and therefore the answer
to g should include #111. Note that this situation arises if we make the open-
world assumption. If we made the closed-world assumption, the data sources
in this example would be inconsistent with the schema mapping. O

Using techniques similar to those in LAV, there is a way to extend the logical
query plans to ensure that we obtain all the certain answers. We refer the
reader to the bibliographic notes for futher details.

5.5 Answer Completeness

We'’ve already seen that the schema mapping formalisms can express complete-
ness of data sources, and we’ve also seen how completeness of data sources can



120 CHAPTER 5. DESCRIBING DATA SOURCES

affect the complexity of finding the certain answers. Knowing that sources
are complete is useful for creating more efficient query answering plans. In
particular, if there are several sources that contain similar data, then unless
we know that one of them is complete, we need to query them all in order to
get all the possible answers. This section considers a more refined notion of
completeness, called local completeness.

Local completeness

In practice, sources are often locally complete. For example, a movie database
may be complete w.r.t. more recent movies, but incomplete w.r.t. earlier ones.
The following example shows how we can extend LAV expressions with local
completeness information. Similarly, we can also describe local completeness
in GAV.

Example 5.13: Recall that in LAV, sources S5-S7 were described as follows:

S5.MovieGenres(title, genre) C Movie(title, director, year, genre)
S6.MovieDirectors(title, dir) € Movie(title, director, year, genre)
S7.MovieYears(title, year) C Movie(title, director, year, genre)

We can add the following local completeness (LC) descriptions:

LC(S5.MovieGenres(title, genre), genre="comedy”)
LC(S6.MovieDirectors(title, dir), American(director))
LC(S7.MovieYears(title, year), year > 1980)

The above assertions express that S5 is complete w.r.t. comedies, S6 is com-
plete for American directors (where American is a relation in the mediated
schema), and that S7 is complete w.r.t. movies produced in 1980 or after. a

Formally, we specify local-completeness statements by specifying a constraint
on the tuples of a source.

Definition 5.10: (Constraint) Let M be a LAV expression of the form S(X) C
Q(X), where S is a data source and Q(X) is a conjunctive query over the me-
diated schema. A constraint C' on M is a conjunction of atoms of relations in
the mediated schema or of atoms of interpreted predicates that does not include
relation names mentioned in Q. The atoms may include variables in X or new
ones. We denote the complement of C by —C. a



5.5. ANSWER COMPLETENESS 121

The semantics of the local-completeness expression LC(S, C) is that in ad-
dition to the original expression, we also have the following expression in the
schema mapping. Note that we add the conjuncts of C to Q.

S(X) = Q(X). C.

When schema mappings can include local-completeness statements, a nat-
ural question to ask is the following: given a query over the mediated schema,
is the answer to the query guaranteed to be complete?

Example 5.14: Consider the following two queries over the sources in Exam-
ple 5.13:

g, (fitle) :- Movie(title, director, genre, "comedy”), year > 1990, American(director)
g (fitle) :- Movie(title, director, genre, "comedy”), year > 1970, American(director)

The answer to Q; is guaranteed to be complete because it only touches on com-
plete parts of the sources: comedies by American directors produced after 1980.
On the other hand, the answer to 9, may not be complete if the source S/ is
missing movies produced between 1970 and 1980. O

Formally, we define answer-completeness as follows. Intuitively, the definition
says that whenever two instances of the data sources agree on the tuples for
which the sources are known to be locally complete, they will have the same
certain answers.

Definition 5.11: (answer-completeness) Let M be a LAV schema mapping for
sources Sy, ..., S, that includes a set of expressions of the form S;(X;) C Q;(X;),
and a set of local-completeness assertions of the form: LC(S;,C;). Let ) be a
conjunctive query over the mediated schema.

The query @ is answer-complete w.r.t. M if for any pair instances d;,ds of
the data sources, such that for every i, if d; and d, have the same tuples of S;
satisfying C;, then the certain answers to () over d; are the same as the certain
answers to () over ds. O

In the context of GAV, an important special case of answer completeness
is to determine whether we have complete data for a relation in the mediated
schema given the sources.



122 CHAPTER 5. DESCRIBING DATA SOURCES

Detecting answer-completeness

We now describe an algorithm for deciding when a query is answer complete.
To focus on the interesting aspects of the algorithm, we consider a simplified
setting. We assume that data sources correspond directly to relations in the
mediated schema, augmented with a conjunction of interpreted atoms. Specif-
ically, we assume LAV expressions of the form:

Si(X) C Ri(X),C

where R; is a relation in the mediated schema and C’ is a conjunction of atoms
of interpreted predicates.

Figure 5.4 shows the algorithm for determining answer completeness by
reducing it to the problem of query containment. The intuition behind the al-
gorithm is the following. Since the sources S; are complete for tuples satisfying
C;, the only tuples in S; that may be missing are ones that satisfy —C;. We
define the view V] to be the relation that includes the tuples of S; that satisfy C;
and tuples that may be missing from S;. The view V; obtains the tuples satisfy-
ing C; from S; (since S; has them all) and the tuples satisfying —~C; from a new
relation F; whose tuples we don’t know. Note that with appropriate extensions
for the E;’s it is possible to create an instance of V; that is equal to any possible
instance of S;.

The algorithm then compares the query Q with the query (' in which occur-
rences of S; are replaced with V;. If the two queries are equivalent, then for any
instance of the S;’s and the E;’s we obtain the same result. Since () does not
depend on the FE;’s, this means that () is completely determined by the tuples
of S; that satisfy C;.

The following theorem establishes the correctness of Algorithm decide-completeness.

Theorem 5.4: Let M be a LAV schema mapping for sources Sy, ..., S, that

includes the expressions S;(X;) C R(X;),C!, and a set of local-completeness as-
sertions LC(S;, C;). Let () be a conjunctive query over the mediated schema.

Algorithm decide-completeness returns yes if and only () is answer-complete
w.r.t. M. O

Proof: For the first direction, suppose (), is not equivalent to (. We show
that () is not is answer-complete w.r.t. M.

Since Q); # @, there is a database instance d on which @ and ), return dif-
ferent answers. Let d; be the instance of the data sources where the extension



5.6. DATA-LEVEL HETEROGENEITY 123

algorithm decide-completeness(Q, M)
/* @ is a conjunctive query over the sources S1,...,Sy;
/x M includes the LAV expressions: S;(X;) C R(X;), C..
and the local-completeness assertions: LC(S;, C;).
The procedure returns yes if and only if Q) is answer-complete w.r.t. M. x/

Let E1, ..., E, be new relation symbols.
Define the views V4, ...,V,, as follows:

Vi(X;) : —Ei(X;), ~C;.
Let Q1 be the query in which every occurrence of S; in () is replaced by V;.
return yes if and only if @ is equivalent to Q1.
end.

Figure 5.4: An algorithm for detecting answer-completeness of a query.

of S; is its extension in d. Let d, be the instance of the data sources in which
the extension of S; is the extension of V; in d. The instances d; and d, agree on
the tuples of S; that satisfy C;, for 1 < i < n, but do not agree on the certain
answers to (), and therefore () is not answer-complete w.r.t. M.

For the other direction, assume ); = (). Let d; and d, be two instances
of the sources that agree on the tuples of S; that satisfy C;. Define d; to be
the restriction of d; (and hence also d,) that include only the tuples of S; that
satisfy C;. Since @); = @ it is easy to see that Q(d;) = Q(d3) and similarly that
Q(d2) = Q(ds). Hence, Q(d1) = Q(d2). =

5.6 Data-Level Heterogeneity

The schema mappings described thus far assumed that whenever an expres-
sion in the mapping requires joining tuples from different sources, then the
join columns will have comparable values. For example, in the movie domain,
we assumed that whenever a movie occurs in a source, it occurs with the same
title string as in all other sources in which it appears.

In practice, sources differ not only on the structure of their schema, but
they also differ considerably on how they represent values and objects in the
world. We refer to these differences as data-level heterogeneity. Data-level
heterogeneity can be broadly classified into two types.



124 CHAPTER 5. DESCRIBING DATA SOURCES

Differences of scale

The first kind of data-level heterogeneity occurs when there is some mathe-
matical transformation between the values in one source and the other. Exam-
ples of this type of heterogeneity are when one source represents temperatures
in Celsius while does it in Fahrenheit, or when one source represents course
grades on a numerical ladder while the other uses letter grades. In some cases
the transformation may require values from different columns. For example,
one source may represent first name and last name in two different columns
while another may concatentate them in one column. In other cases, the trans-
formation may require deeper knowledge of the semantics. For example, in one
database prices may include local taxes while in another they do not. It is im-
portant to keep in mind that these transformations are not always reversible,
therefore limiting the queries that can be answered in some cases.

This kind of data-level heterogeneity can be reconciled by adding the trans-
formation function to the expression in the schema mapping. For example, the
first expression below translates the temperatures in the source from Fahren-
heit to Celsius, and in the second expression, we adjust the price obtained from
the source to include the local taxes.

S(city, temp -32 * 5/9, month) C Weather(city, temp, humidity, month)
CDStore(cd, price) C CDPrices(cd, state, price * (1+rate)), LocallTaxes(state

Multiple references to the same entity

The second kind of data-level heterogeneity occurs when there are multiple
ways of referring to the same object in the real world. Common examples of
this case include different ways of referring to companies (e.g., IBM versus In-
ternational Business Machines, or Google versus Google Inc.), and people (e.g.,
Jack M. Smith versus J. M. Smith). Reconciling multiple references to the same
real-world entity gets more complicated when referring to complex objects. For
example a reference to a publication includes a list of references to authors, a
title, a year of publication, and a reference to venue of the publication. Further-
more, data need not always be clean, complicating the reconciliation problem
even further. In some cases, we don’t even know the exact truth. For exam-
ple, biologists have many ways of referring to genes or species and it’s not even
known how to resolve all the references.

To resolve this kind of heterogeneity we create a concordance table, whose
rows include multiple references to the same object. Specifically, the first col-

, rate).



5.7. BIBLIOGRAPHIC NOTES 125

umn includes references from the first source and the second includes refer-
ences from the second source. When we join the two sources, we perform an
intermediate join with the concordance table to obtain the correct answers. For
example, Figure 5.6 shows a concordance table for two sources that describe
different attributes of countries.

Clearly, the hard problem is to create the concordance table in applications
where there are large number of rows. We focus the problem of automatic
reference reconciliation in Chapter 8.

Country GDPs Country Water Access
Congo, Republic of the Congo (Dem. Rep.)
Korea, South South Korea
Isle of Man Man, Isle of
Burma Myanmar
Virgin Islands Virgin Islands of teh US
Palestinian Territories West Bank

5.7 Bibliographic Notes

Global-as-View was used in the earliest data integration systems (e.g., Multi-
base [197]) and several systems since then [61, 116, 147, 279]. Local-as-View
was introduced by the Information Manifold System [206] and used in [99, 194]
and others. GLAV was introduced in [122], and is the main formalism used in
data exchange systems (see Chapter 16). In fact, GLAV is essentially a for-
malism for specifying tuple-generating dependencies [4], and hence some of
the theory on integrity constraints can be applied to data integration and ex-
change. The development of multiple schema mapping languages lead to sev-
eral comparisons between the formalisms [200, 203, 290].

Restrictions on access patterns were first discussed by Rajaraman et al. [261].
They considered the problem of answering queries using views when views
have adornments describing the limitations on access patterns. They showed
that in the case of looking for an equivalent rewriting of a query using views,
the bound on the length of the rewriting established by [204] (namely, the
number of subgoals in the query) no longer holds. Instead, they established
a new bound which is the sum of the number of subgoals and of the number
of variables in the query. Kwok and Weld [194] showed that if we are looking



126 CHAPTER 5. DESCRIBING DATA SOURCES

for the maximally-contained rewriting of a query in the presence of access-
pattern limitations, then there may be no bound on its length. The recursive
query plan that generates all the certain answers was described by Duschka et
al. [97, 100]. Friedman and Weld [121] and Lambrecht et al. [196] describe how
to further optimize the recursive query plan. Manolescu et al. [114] show the
effects of binding patterns on traditional System-R style query optimization.
Levy et al. [206] describe a more complex model for access-pattern limitations,
where in addition to modeling the input, we also model the output. Then, if the
sources have more than one capability record, they show that the problem of
finding an executable plan is NP-Complete.

Integrity constraints in the mediated schema and their effects on finding the
certain answers was first discussed in the context of LAV in Duschka et al. [97,
99]. There the authors show that it is possible to find all the certain answers to
a query even if there are functional dependencies and/or full dependencies on
the mediated schema. Our examples are taken from [97]. Integrity constraints
on GAV were considered by Cali et al. [47], where the authors showed that it is
possible to find all the certain answers in the presence of key constraints and
inclusion dependencies.

The study of answer-completeness in databases goes back to Motro [241].
Etzioni et al. [105] introduced the local-completeness notation in the context of
information gathering agents and showed some of its basic properties. The
completeness algorithm we described is based on [202]. There it is shown
that the problem of determining completeness can be reformulated as the prob-
lem of determining independence of queries from updates [38, 101, 102, 207],
which, in turn, can be reduced to a containment checking problem [207]. Flo-
resecu et al. [113] described a formalism for expressing degree of completeness
via a probability that a tuple will be in a source. Probabilistic approaches to
schema mapping are now gaining attention again, and we discuss them further
in Chapter 13.



