
Magellan: Toward Building
Entity Matching Management Systems

[Technical Report]

Pradap Konda1, Sanjib Das1, Paul Suganthan G.C.1, AnHai Doan1,
Adel Ardalan1, Jeffrey R. Ballard1, Han Li1, Fatemah Panahi1, Haojun Zhang1,

Jeff Naughton1, Shishir Prasad3, Ganesh Krishnan2, Rohit Deep2, Vijay Raghavendra2

1University of Wisconsin-Madison, 2@WalmartLabs, 3Instacart∗

ABSTRACT
Entity matching (EM) has been a long-standing challenge
in data management. Most current EM works focus only on
developing matching algorithms. We argue that far more
efforts should be devoted to building EM systems. We dis-
cuss the limitations of current EM systems, then present as
a solution Magellan, a new kind of EM systems. Magellan
is novel in four important aspects. (1) It provides how-to
guides that tell users what to do in each EM scenario, step
by step. (2) It provides tools to help users do these steps; the
tools seek to cover the entire EM pipeline, not just match-
ing and blocking as current EM systems do. (3) Tools are
built on top of the data analysis and Big Data stacks in
Python, allowing Magellan to borrow a rich set of capabil-
ities in data cleaning, IE, visualization, learning, etc. (4)
Magellan provides a powerful scripting environment to fa-
cilitate interactive experimentation and quick “patching” of
the system. We describe research challenges raised by Mag-
ellan, then present extensive experiments with 44 students
and users at several organizations that show the promise of
the Magellan approach.

1. INTRODUCTION
Entity matching (EM) identifies data instances that refer

to the same real-world entity, such as (David Smith, UW-
Madison) and (D. M. Smith, UWM). This problem has been a
long-standing challenge in data management [16, 22]. Most
current EM works however has focused only on developing
matching algorithms [16, 22].

Going forward, we believe that building EM systems is
truly critical for advancing the field. EM is engineering
by nature. We cannot just keep developing matching al-
gorithms in a vacuum. This is akin to continuing to develop

∗Work done while at WalmartLabs

join algorithms without having the rest of the RDBMSs. At
some point we must build end-to-end systems to evaluate
matching algorithms, to integrate research and development
efforts, and to make practical impacts.

In this aspect, EM can take inspiration from RDBMSs
and Big Data systems. Pioneering systems such as System
R, Ingres, and Hadoop have really helped push these fields
forward, by helping to evaluate research ideas, providing an
architectural blueprint for the entire community to focus on,
facilitating more advanced systems, and making widespread
real-world impacts.

The question then is what kinds of EM systems we should
build, and how? In this paper we begin by showing that
current EM systems suffer from four limitations that prevent
them from being used extensively in practice.

First, when performing EM users often must execute many
steps, e.g., blocking, matching, exploring, cleaning, debug-
ging, sampling, labeling, estimating accuracy, etc. Current
systems however do not cover the entire EM pipeline, pro-
viding support for only a few steps (e.g., blocking, match-
ing), while ignoring less well-known yet equally critical steps
(e.g., debugging, sampling).

Second, EM steps often exploit many techniques, e.g.,
learning, mining, visualization, outlier detection, informa-
tion extraction (IE), crowdsourcing, etc. Today however it
is very difficult to exploit a wide range of such techniques.
Incorporating all such techniques into a single EM system is
extremely difficult. EM is often an iterative process. So the
alternate solution of moving data repeatedly among an EM
system, a data cleaning system, an IE system, etc. does not
work either, as it is tedious and time consuming. A major
problem here is that most current EM systems are stand-
alone monoliths that are not designed from the scratch to
“play well” with other systems.

Third, users often have to write code to “patch” the sys-
tem, either to implement a lacking functionality (e.g., ex-
tracting product weights) or to glue together system com-
ponents. Ideally such coding should be done using a script
language in an interactive environment, to enable rapid pro-
totyping and iteration. Most current EM systems however
do not provide such facilities.

Finally, in many EM scenarios users often do not know
what steps to take. Suppose a user wants to perform EM
with at least 95% precision and 80% recall. Should he or she
use a learning-based EM approach, a rule-based approach,

1

or both? If learning-based, then which technique to select
among the many existing ones (e.g., decision tree, SVM,
etc.)? How to debug the selected technique? What to do if
after many tries the user still cannot reach 80% recall with
a learning-based approach? Current EM systems provide no
answers to such questions.

The Magellan Solution: To address these limitations,
we describe Magellan, a new kind of EM systems currently
being developed at UW-Madison, in collaboration with Wal-
martLabs. Magellan (named after Ferdinand Magellan, the
first end-to-end explorer of the globe) is novel in several im-
portant aspects.

First, Magellan provides how-to guides that tell users what
to do in each EM scenario, step by step. Second, Magellan
provides tools that help users do these steps. These tools
seek to cover the entire EM pipeline (e.g., debugging, sam-
pling), not just the matching and blocking steps.

Third, the tools are being built on top of the Python data
analysis and Big Data stacks. Specifically, we propose that
users solve an EM scenario in two stages. In the develop-
ment stage users find an accurate EM workflow using data
samples. Then in the production stage users execute this
workflow on the entirety of data. We observe that the de-
velopment stage basically performs data analysis. So we de-
velop tools for this stage on top of the well-known Python
data analysis stack, which provide a rich set of tools such as
pandas, scikit-learn, matplotlib, etc. Similarly, we develop
tools for the production stage on top of the Python Big Data
stack (e.g., Pydoop, mrjob, PySpark, etc.).

Thus, Magellan is well integrated with the Python data
eco-system, allowing users to easily exploit a wide range of
techniques in learning, mining, visualization, IE, etc.

Finally, an added benefit of integration with Python is
that Magellan is situated in a powerful interactive scripting
environment that users can use to prototype code to “patch”
the system.

Challenges: Realizing the above novelties raises major
challenges. First, it turns out that developing effective how-
to guides, even for very simple EM scenarios such as apply-
ing supervised learning to match, is already quite difficult
and complex, as we will show in Section 4.

Second, developing tools to support these guides is equally
difficult. In particular, current EM work may have dismissed
many steps in the EM pipeline as engineering. But here we
show that many such steps (e.g., loading the data, sampling
and labeling, debugging, etc.) do raise difficult research
challenges.

Finally, while most current EM systems are stand-alone
monoliths, Magellan is designed to be placed within an “eco-
system” and is expected to “play well” with others (e.g.,
other Python packages). We distinguish this by saying that
current EM systems are “closed-world systems” whereas Mag-
ellan is an “open-world system”, because it relies on many
other systems in the eco-system in order to provide the
fullest amount of support to the user doing EM. It turns
out that building open-world systems raises non-trivial chal-
lenges, such as designing the right data structures and man-
aging metadata, as we discuss in Section 5.

In this paper we have taken the first steps in addressing
the above challenges. We have also built and evaluated Mag-
ellan 0.1 in several real-world settings (e.g., at WalmartLabs,
Johnson Control Inc., Marshfield Clinic) and in data science

Name City State

Dave Smith Madison WI

Joe Wilson San Jose CA

Dan Smith Middleton WI

Name City State

David D. Smith Madison WI

Daniel W. Smith Middleton WI

a1

a2

a3

b1

b2

Matches

(a1, b1)

(a3, b2)

Table A Table B

Figure 1: An example of matching two tables.

classes at UW-Madison. In summary, we make the following
contributions:

• We argue that far more efforts should be devoted to
building EM systems, to significantly advance the field.

• We discuss four limitations that prevent current EM
systems from being used extensively in practice.

• We describe the Magellan system, which is novel in
several important aspects: how-to guides, tools to sup-
port all steps of the EM pipeline, tight integration with
the Python data eco-system, easy access to an interac-
tive scripting environment, and open world vs. closed
world systems.

• We describe significant challenges in realizing Magel-
lan, including the novel challenge of designing open-
world systems (that operate in an eco-system).

• We describe extensive experiments with 44 students
and real users at various organizations that show the
utility of Magellan, including improving the accuracy
of an EM system in production.

A shorter version of this technical report has been published
in VLDB-2016. Magellan will be released at the website
sites.google.com/site/anhaidgroup/projects/magellan in Sum-
mer 2016, to serve research, development, and practical uses.
Finally, the ideas underlying Magellan can potentially be ap-
plied to other types of DI problems (e.g., IE, schema match-
ing, data cleaning, etc.), and an effort has been started to
explore this direction and to foster an eco-system of open-
source DI tools (see Magellan’s website).

2. THE CASE FOR ENTITY MATCHING
MANAGEMENT SYSTEMS

2.1 Entity Matching
This problem, also known as record linkage, data match-

ing, etc., has received much attention in the past few decades
[16, 22]. A common EM scenario finds all tuple pairs (a, b)
that match, i.e., refer to the same real-world entity, between
two tables A and B (see Figure 1). Other EM scenarios in-
clude matching tuples within a single table, matching into
a knowledge base, matching XML data, etc. [16].

Most EM works have developed matching algorithms, ex-
ploiting rules, learning, clustering, crowdsourcing, among
others [16, 22]. The focus is on improving the matching ac-
curacy and reducing costs (e.g., run time). Trying to match
all pairs in A×B often takes very long. So users often em-
ploy heuristics to remove obviously non-matched pairs (e.g.,
products with different colors), in a step called blocking, be-
fore matching the remaining pairs. Several works have stud-
ied this step, focusing on scaling it up to large amounts of
data (see Section 8).

2

Name Affiliation Scenarios Blocking Matching Exploration,
cleaning

User
 interface Language Open

source Scaling

Active Atlas
University of

Southern
California

Single table, two
tables Hash-based ML-based (decision

tree) No GUI,
commandline Java No No

BigMatch US Census
Bureau

Single table, two
tables

Attribute
equivalence, rule-

based
Not supported No Commandline C No

Yes (supports
parallelism on
a single node)

D-Dupe University of
Maryland

Single table, two
tables

Attribute
equivalence Relational clustering GUI C# No No

Dedoop University of
Leipzig Single table

Attribute
equivalence,

sorted
neighborhood

ML-based (decision
tree, logistic

regression, SVM
etc.)

No GUI Java No Yes (Hadoop)

Dedupe Datamade Single table, two
tables

Canopy clustering,
predicate-based

Agglomerative
hierarchical

clustering-based

Browsing,
statistics, basic
transformation,
cleaning certain
attribute types

Commandline Python Yes Yes

DuDe University of
Potsdam

Single table, two
tables

Sorted
neighborhood Rule-based Statistics Commandline Java Yes No

Febrl
Australian
National

University

Single table, two
tables

Full index,
blocking index,
sorting index,

suffixarray index,
qgram index,
canopy index,

stringmap index

Fellegi-Sunter,
optimal threshold,

k-means,
FarthestFirst, SVM,

TwoStep

Browsing,
statistics, basic
transformation,
cleaning certain
attribute types

GUI,
commandline Python Yes No

FRIL Emory
University

Single table, two
tables

Attribute
equivalence,

sorted
neighborhood

Expectation
maximization

Basic
transformation,
cleaning certain
attribute types

GUI Java Yes
Yes (supports
parallelism on
a single node)

MARLIN University of
Texas at Austin Canopy clustering ML-based (decision

tree, SVM) No

Merge
Toolbox

University of
Duisburg-Eissen

Single table, two
tables

Attribute
equivalence,

canopy clustering

Probabilistic,
expectation

maximization
No GUI Java No No

NADEEF
Qatar Computing

Research
Institute

Single table, two
tables Rule-based No GUI Java No No

OYSTER University of
Arkansas

Single table, two
tables

Attribute
equivalence Rule-based Statistics Commandline Java Yes No

pydedupe
GPoulter
(GitHub

username)

Single table, two
tables

Attribute
equivalence

ML-based, rule-
based

Browsing,
statistics, basic
transformation,
cleaning certain

data types

Commandline Python Yes No

RecordLinkag
e

Institute of
Medical

Biostatistics,
Germany

Single table, two
tables

Attribute
equivalence

ML-based,
probabilistic

Browsing,
statistics, basic
transformation,
cleaning certain
attribute types

Commandline R Yes No

SERF Stanford
University Single table R-Swoosh algorithm No Commandline Java No No

Silk Free University
of Berlin RDF data Rule-based Browsing, basic

transformation GUI Java Yes

Yes (supports
parallelism on
a single node,

Hadoop)

TAILOR Purdue
University

Single table, two
tables

Attribute
equivalence,

sorted
neighborhood

Probabilisitic,
clustering, hybrid,

induction
No GUI Java No No

WHIRL William Cohen Vector space model Commandline C++ No No

Table 1: Characteristics of 18 non-commercial EM systems.

2.2 Current Entity Matching Systems
In contrast to the extensive effort on matching algorithms

(e.g., 96 papers were published on this topic in 2009-2014

alone, in SIGMOD, VLDB, ICDE, KDD, and WWW), there
has been relatively little work on building EM systems. As
of early 2016 we counted 18 major non-commercial systems

3

(e.g., D-Dupe, DuDe, Febrl, Dedoop, Nadeef), and 15 ma-
jor commercial ones (e.g., Tamr, Data Ladder, Informatica
Data Quality). In what follows we examine these two types
of systems in detail.

2.2.1 Non-Commercial EM Systems
Table 1 summarizes the characteristics of 18 non-commercial

systems (see [16] for a discussion of such systems up to 2012).
Empty cells mean reliable information cannot be gleaned
from the documentation and system examination. This ta-
ble shows that

• The systems focus on the scenarios of matching within
a single table or across two tables.

• They provide a wide range of methods for the well-
known blocking and matching steps, but no guidance
on how to select appropriate blockers and matchers.

• Eight systems provide limited data exploration capa-
bilities (e.g., browsing, showing statistics about the
data) and cleaning capabilities (mostly ways to per-
form relatively simple transformations such as regex-
based ones and to clean certain common attributes
such as person names). No system provides support
for less well-known but critical steps such as debug-
ging, sampling, and labeling.

• No system provides how-to guides that tell users how
to do EM, step by step. And no system makes a dis-
tinction between the development stage and the pro-
duction stage (i.e., guiding users to develop a good EM
workflow in the development stage and then execute
the workflow in the production stage).

• Less than half of the systems are open source. No
system provides any easy interfacing with data science
stacks (and is not intentionally designed to interface
with such stacks).

• Thirteen systems are written in languages such as C,
C#, C++, and Java, and thus are not situated in a
powerful scripting environment that facilitates rapid
and iterative experimentation (e.g., examining the ef-
fect of a data cleaning operation, trying out a different
blocker or matcher).

• About half of the systems provide just commandline
interfaces, while the remaining half also provide GUIs.
A few systems provide limited scaling capabilities.

2.2.2 Commercial EM Systems
We compiled a list of 15 commercial EM systems from our

experience working in industry, and from examining quar-
terly reports such as “The Forrester Wave: Data Quality
Solutions” and other trade literature. Tables 2-3 summarize
the characteristics of these systems. Again, the empty cells
in the tables mean reliable information cannot be gleaned
from the documentation and system examination.

Table 2 summarizes the general characteristics of the com-
mercial systems. It shows that

• Five systems focus exclusively on EM. The remaining
ten systems provide EM as a part of data integration
or cleaning pipelines.

• The systems focus on the scenarios of matching within
a single table or across two tables. Unlike non-commercial
systems, these systems have very sophisticated GUI or
Web-based user interfaces.

• There is no how-to guide that tells users how to do
EM, step by step. Instead, the vendors sell consult-
ing services (sometimes called “data stewarding”) that
presumably help users use the systems. Seven systems
make no distinction between the development stage
and the production stage. For the remaining eight
systems we cannot reliably tell from the documenta-
tion, but they do not seem to make such a distinction
either.

• Many systems use languages such as C++ and Java.
As far as we can tell, no system (except GraphLab
Create) is situated in a powerful scripting environment
for rapid and iterative experimentation.

• No system is open source and designed to interface well
with tools in a data science stack.

Table 3 summarizes the support for the entire EM pipeline
in these systems. It shows that

• These systems support far more types of input data
(e.g., relational tables, JSON, CSV, XML) than the
non-commercial systems.

• There seems to be more support for data exploration
and cleaning (compared to non-commercial systems),
though still limited. Data exploration is typically ac-
complished via GUIs that display statistics about the
data (e.g., the percentage of missing values of an at-
tribute). Many systems provide tools to clean com-
mon kinds of attributes (e.g., addresses, phone num-
bers, person names). But powerful general-purpose
data cleaning tools are typically missing.

• Interestingly, these systems do not seem to provide as
many different types of blocking and matching as the
non-commercial systems. For example, the most com-
mon type of supported blocking is attribute equiva-
lence, and the most common type of supported match-
ing is rule-based. It is possible that these systems need
to scale EM to very large amounts of data and so they
intentionally limit the set of blocking and matching
techniques considered for now, to ensure scalability.
Indeed, virtually all systems provide capabilities to
scale, using Hadoop and Spark.

• There is very limited or no support for other critical
steps of the EM pipeline, such as sampling, debugging,
and labeling. For example, there is no support for de-
bugging blockers, and support for debugging matchers
is typically limited to showing which EM rule fires on
a given tuple pair.

We now describe a few selected commercial systems, specif-
ically SAS Data Quality, Informatica Data Quality, Data-
Match, and Tamr.

SAS Data Quality: This system (henceforth SAS for
short) provides EM as a part of their data quality pipeline.
SAS focuses on the scenarios of matching within a single

4

 Purpose and how EM fits in Supported EM
scenarios

Main user
interface

Distinction between
dev. and prod. stages Language Scripting

environment
DataMatch
from Data

Ladder

Data cleaning, data matching.
EM forms the core of their

solution
Multiple tables GUI No No

Dedupe.io
Record linkage, deduplication.

EM forms the core of their
solution

Single table, two tables Web-based No No

FuzzyDupes
Duplicate detection, data

cleaning. EM forms the core of
their solution

Single table, two tables GUI No No

Graphlab
Create

EM is offered as a service on
top of their GraphLab platform

Single table, two tables,
linking records to a KB Web-based C++ Yes

IBM
InfoSphere

Customer data analytics. EM is
supported by a component
(BigMatch) in the product

Single table, two tables Web-based Java No

Informatica
Data Quality

Improve data quality. EM forms
a part of data quality pipeline Single table, two tables GUI No

LinkageWiz
Data matching and data

cleaning. EM forms the core of
their solution

Single table, two tables GUI No No

Oracle
Enterprise

Data Quality

Improve data quality. EM forms
a part of data quality pipeline Single table, two tables GUI No

Pentaho Data
Integration

ETL, data integration. EM
forms a part of ETL/data

integration pipe line
Single table, two tables GUI Java No

SAP Data
Services

Improve data quality, data
integration. EM forms a part of

data integration pipeline
Single table, two tables GUI No

SAS Data
Quality

Improve data quality. EM forms
a part of data quality pipeline

Single table, multiple
tables Web-based Limited support

Strategic
Matching

Data matching and data
cleaning. EM forms the core of

their solution
Single table, two tables GUI No No

Talend Data
Quality

Improve data quality. EM forms
a part of data quality pipeline Single table, two tables GUI No

Tamr Data curation. EM forms a part
of data curation pipeline Multiple tables Web-based No Java No

Trillium Data
Quality

Improve data quality. EM forms
a part of data quality pipeline

Single table, multiple
tables GUI No

Table 2: Characteristics of 15 commercial EM systems (Part 1).

table or across multiple tables. The EM workflow supported
in SAS consists of five major steps.

First, the user loads the data into SAS. SAS supports var-
ious data formats and sources, such as Excel, CSV, XML,
delimited text files, relational databases, and HDFS.

Second, the user explores the loaded data. SAS lets the
user perform pattern analysis, column analysis, and domain
analysis. In pattern analysis the user can verify if the data
values in an attribute match the expected pattern (e.g., 9-
digits for SSN, 10-digits for phone numbers), and visualize
the distribution and frequency for various patterns, e.g., how

many phone numbers were of the form (xxx) xxx-xxxx). In
column analysis, the user can explore various statistics (e.g.,
cardinality, number of missing values, range, min, mean,
median) of a column in a table. In domain analysis, the user
can verify if the data conforms to the expected or accepted
data values and ranges (e.g., age is between 0 and 150 years).

Third, the user cleans and standardizes the data. In clean-
ing, the user can fix capitalization in data values, remove
punctuations, break a “full name” column into “first name”
and “last name” columns by specifying a delimiter, etc. In
standardization, the user specifies that an attribute is of the

5

 Supported data
formats/sources

Data
exploration

support

Data
cleaning
support

Down
sampling

input
table(s)

Blocking

Support to
combine
multiple
blockers

Debugging
blocker
output

Labeling
 data Matching

Debugging
matcher
output

Scaling

DataMatch from
Data Ladder

Relational databases,
XLS, DB2, CSV,

delimited text files

Browsing,
statistics Yes No Not supported No No No Rule-based Limited

support Yes

Dedupe.io Relational databases
(Postgres), CSV, XLS,

Canopy
clustering,

predicate-based
blocking

No No Yes Clustering-
based (AHC)

Limited
support Yes

FuzzyDupes
Relational databases,
XLS, CSV, delimited

text files
 No No No No Yes

Graphlab Create

Relational databases,
CSV, Pandas

dataframes , HDFS,
Amazon S3, JSON

Browsing,
statistics Attribute

equivalence No Clustering-
based (KNN) Yes (Hadoop,

Spark)

IBM InfoSphere

Relational databases,
XLS, delimited text
files, XML, JSON,

HDFS, text files

Browsing,
statistics Yes

Attribute
equivalence,

blocking based
on first 3

characters,
phonetic codes

 Rule-based Yes (Hadoop)

Informatica
Data Quality

Relational databases,
CSV, excel, XML,
delimited text files,

HDFS

Browsing,
statistics Yes No Attribute

equivalence No No No Rule-based Yes

LinkageWiz XLS, delimited text
files, SPSS

Browsing,
statistics Yes No Attribute

equivalence No No No Rule-based Limited
support

Oracle
Enterprise Data

Quality

Relational databases,
XLS, delimited text files

Browsing,
statistics Yes No No No No Rule-based Limited

support

Yes (Hadoop,
Hive, HBase,
Pig, Sqoop,

Spark)

Pentaho Data
Integration

Relation databases,
CSV, XML, JSON,
MongoDB, NuoDB,

Couchbase, Avro

Browsing,
statistics Yes No Rule-based

Yes (Hadoop,
Spark, Mongo
DB, Splunk,
Cassandra)

SAP Data
Services

Relational databases,
CSV, XLS, JSON,

XML, HDFS

Browsing,
statistics Yes No Attribute

equivalence No No No Rule-based Yes (Hadoop,
Spark)

SAS Data
Quality

Relational databases,
XLS and delimited text

files, XML

Browsing,
statistics Yes Not supported Hash-based Yes (Hadoop)

Strategic
Matching

Relational databases
(SQL server), MS

Access, SAS

Browsing,
statistics Yes No No No Rule-based Limited

support

Talend Data
Quality

Relational databases,
CSV, XLS, XML,
JSON, EBCDIC

Browsing,
statistics Yes No Attribute

equivalence No No No Rule-based Limited
support

Yes (Hadoop,
Spark)

Tamr

Relational databases,
JSON, XML, YAML,

RDF, HDFS, Hive,
Amazon/redshift,

Google cloud storage,
MongoDB, Cloudant,
Cassandra, CSV, XLS

 No Modified k-
means No No Yes Rule-based Limited

support Yes

Trillium Data
Quality

Relational databases,
CSV, XLS, JSON,

HDFS, NoSQL

Browsing,
statistics Yes Rule-based Yes (Hadoop,

Spark)

Table 3: Characteristics of 15 commercial EM systems (Part 2).

type “name”, “address”, “phone”, etc. and SAS makes sure
that names are capitalized consistently, addresses use “st.”
as an abbreviation for street names, etc.

Fourth, the user performs hash-based matching in a single
table or across multiple tables. Specifically, the user first se-
lects the attributes (say a1, a2, a3) to consider for matching.
For every tuple t, SAS will then generate a hash code, h(t),
which is a concatenation of multiple smaller hash codes, one
per attribute, i.e., h(t) = h(t.a1)!h(t.a2)!h(t.a3), where ! is
the concatenating delimiter.

SAS generates the hash code per attribute by taking two

inputs from the user: (a) type value for the attribute from
a pre-defined set, comprising standard types such as name,
address, organization, date, zip, and (b) a sensitivity value
for the attribute telling SAS how sensitive the hashing func-
tion should be to variations in values (e.g., a low sensitivity
will result in same hash code for Rob, Robert, Bob, Bobby;
a moderate sensitivity will result in same hash code for Rob
and Robert, but a different hash code for Bob and Bobby;
a high sensitivity will result in different hash codes for each
of them).

Finally, after the hash codes have been generated for each

6

tuple in a table (or multiple tables), SAS will show the tu-
ples grouped into clusters, each cluster having tuples with
the same hash code. The user then consolidates the data
by taking one of the three actions of deleting (i.e., physi-
cally deleting duplicate tuples), merging (i.e., keeping the
best information across multiple tuples), or retaining all the
tuples.

Informatica Data Quality: This system provides EM as
a part of its data quality pipeline. Specifically, it supports
matching within a single table or across two tables. The
supported EM workflow consists of six steps.

First, the user loads the data into the system. The system
supports various data formats such as CSV, Excel, XML,
delimited text files etc.

Second, the user explores the data to identify attributes to
use for blocking and matching. The system provides tools to
analyze individual attributes and explore various statistics
about the attributes.

Third, the user cleans and standardizes the data. Specifi-
cally, the user can fix variations in format or spelling, remove
punctuations, fix capitalization etc. Further, the system also
provides support to standardize certain attribute types like
address, phone number etc.

Fourth, the user performs blocking by selecting an at-
tribute to be used as a blocking key. Records with same
blocking key are grouped together.

Next, the user will perform matching within each group.
Specifically, the system supports 4 types of matchers: Ham-
ming distance, edit distance, Jaro distance, and bigram.
The user needs to specify which matchers to use, along with
a matching threshold and weights for different matchers.
Record pairs whose aggregate score is greater than or equal
to the matching threshold are considered duplicates. The
system groups the matching record pairs into clusters.

Finally, the user examines the clusters of records and de-
cides to either consolidate the duplicate records into a mas-
ter record or delete the duplicate records.

DataMatch: DataMatch from Data Ladder provides a
software suite for data cleansing, matching, and deduplica-
tion. Entity matching is the core of their solution. Specifi-
cally, the tool supports deduplicating a single table or match-
ing multiple tables. The matching workflow consists of the
following six steps: (1) loading the data, (2) profiling, (3)
cleaning and standardizing, (4) matching, (5) viewing and
consolidating the results, and (6) exporting the results.

The user begins by loading the data into the tool (the
tool supports various data formats/sources such as XLS,
SQL server, MySQL, MS Access, CSV, DB2, and delimited
text file). Next, the user can explore the data to assess
the data quality and get some useful statistics (e.g., missing
values, presence of non-printable characters, mean, median,
mode). Next, the user can clean and standardize the data.
The tool provides support for basic transformations such as
making strings uppercase/lowercase/proper case, removing
non-printable characters, removing characters specified by
the user, and cleaning email using predefined regular expres-
sions. Further, the tool also provides support to standardize
certain attribute types such as person names, address, etc.

After cleaning, the user will perform matching. The tool
supports only rule-based matching. Specifically, the user
will specify the features (using a predefined list of similar-
ity functions) to be computed for the attributes from the

tables, and provide a matching threshold. Tuple pairs with
the aggregate score greater than or equal to the matching
threshold are considered matches. Next, the user can view
and consolidate the matched tuple pairs. The user can man-
ually review and clean the matches by flagging tuple pairs
as non-matches.

Next, the matched tuple pairs are clustered by the system
into groups, where all tuples in a group match and tuples
across groups do not. Next, the user can specify how the
group should be merged to form a canonical tuple. Specif-
ically, for each attribute the user can specify whether the
longest string should be taken, the average value (in the
case of numerical values) should be taken, etc. Also, the
user can control this decision per tuple pair.

Finally, the user can export the results. The tool pro-
vides exporting the results to various file formats/sinks such
as XLS, SQL server, MySQL, MS Access, CSV, DB2, and
delimited text file.

Tamr: This system has entity matching as a compo-
nent in a data curation pipeline. This EM component effec-
tively does deduplication and merging: given a set of tuples
D, clusters them into groups of matching tuples, and then
merges each group into a super tuple.

Toward the above goal, Tamr starts by performing block-
ing on the set of tuples D. Specifically, it creates a set of
categories, then use some relatively inexpensive similarity
measure to assign each tuple in D to one or several cate-
gories. Only tuples within each category will be matched
against one another.

Next, Tamr obtains a set of tuple pairs and asks users
to manually label them as matched / non-matched. Tamr
takes care to ensure that there are a sufficient number of
matched tuple pairs in this set. Next, Tamr uses the labeled
data to learn a set of matching rules. These rules use the
similarity scores among the attributes of a tuple pair, or the
probability distributions of attribute similarities for match-
ing and non-matching pairs (these probabilities in turn are
learned using a Naive Bayes classifier).

Next, the matching rules are applied to find matching
tuple pairs. Tamr then runs a correlation clustering algo-
rithm that uses the matching information to group tuples
into matching group. Finally, all tuples within each group
are consolidated using user-defined rules to form a super
tuple.

2.3 Key Limitations of Current Systems
Overall, we found that commercial EM systems are better

than non-commercial EM systems in terms of support for
the types of input data, user interfaces, data exploration
and cleaning, and scaling. They appear less powerful than
the non-commercial ones in terms of the types of supported
blocking and matching techniques.

Both types of systems however suffer from the following
four major problems that we believe prevent these systems
from being used widely in practice:

1. Systems Do Not Cover the Entire EM Pipeline:
When performing EM users often must execute many steps,
e.g., blocking, matching, exploration, cleaning, extraction
(IE), debugging, sampling, labeling, etc. Current systems
provide support for only a few steps in this pipeline, while
ignoring less well-known yet equally critical steps.

7

For example, all 33 systems that we have examined pro-
vide support for blocking and matching. Twenty systems
provide limited support for data exploration and cleaning.
There is no meaningful support for any other steps (e.g.,
debugging, sampling, etc.). Even for blocking the systems
merely provide a set of blockers that users can call; there
is no support for selecting and debugging blockers, and for
combining multiple blockers.

2. Difficult to Exploit a Wide Range of Techniques:
Practical EM often requires a wide range of techniques,
e.g., learning, mining, visualization, data cleaning, IE, SQL
querying, crowdsourcing, keyword search, etc. For example,
to improve matching accuracy, a user may want to clean
the values of attribute “Publisher” in a table, or extract
brand names from “Product Title”, or build a histogram for
“Price”. The user may also want to build a matcher that
uses learning, crowdsourcing, or some statistical techniques.

Current EM systems do not provide enough support for
these techniques, and there is no easy way to do so. Incorpo-
rating all such techniques into a single system is extremely
difficult. But the alternate solution of just moving data
among a current EM system and systems that do cleaning,
IE, visualization, etc. is also difficult and time consuming.
A fundamental reason is that most current EM systems are
stand-alone monoliths that are not designed from the scratch
to “play well” with other systems. For example, many cur-
rent EM systems were written in C, C++, C#, and Java,
using proprietary data structures. Since EM is often iter-
ative, we need to repeatedly move data among these EM
systems and cleaning/IE/etc systems. But this requires re-
peated reading/writing of data to disk followed by compli-
cated data conversion.

3. Difficult to Write Code to “Patch” the System:
In practice users often have to write code, either to im-
plement a lacking functionality (e.g., to extract product
weights, or to clean the dates), or to tie together system
components. It is difficult to write such code correctly in
“one shot”. Thus ideally such coding should be done using
an interactive scripting environment, to enable rapid proto-
typing and iteration. This code often needs access to the
rest of the system, so ideally the system should be in such
an environment too. Unfortunately only 5 out of 33 systems
provide such settings (using Python and R).

4. Little Guidance for Users on How to Match: In
our experience this is by far the most serious problem with
using current EM systems in practice. In many EM scenar-
ios users simply do not know what to do: how to start, what
to do next? Interestingly, even the simple task of taking a
sample and labeling it (to train a learning-based matcher)
can be quite complicated in practice, as we show in Section
4.3. Thus, it is not enough to just build a system consisting
of a set of tools. It is also critical to provide step-by-step
guidance to users on how to use the tools to handle a par-
ticular EM scenario. No EM system that we have examined
provides such guidance.

2.4 Entity Matching Management Systems
To address the above limitations, we propose to build a

new kind of EM systems. In contrast to current EM sys-
tems, which mostly provide a set of implemented match-
ers/blockers, these new systems are far more advanced.

First and foremost, they seek to handle a wide variety
of EM scenarios. These scenarios can use very different EM
workflows. So it is difficult to build a single system to handle
all EM scenarios. Instead, we should build a set of systems,
each handling a well-defined set of similar EM scenarios.
Each system should target the following goals:

1. How-to Guide: Users will have to be “in the loop”.
So it is critical that the system provides a how-to guide
that tells users what to do and how to do it.

2. User Burden: The system should minimize the user
burden. It should provide a rich set of tools to help
users easily do each EM step, and do so for all steps
of the EM pipeline, not just matching and blocking.
Special attention should be paid to debugging, which
is critical in practice.

3. Runtime: The system should minimize tool runtimes
and scale tools up to large amounts of data.

4. Expandability: It should be easy to extend the sys-
tem with any existing or future techniques that can
be useful for EM (e.g., cleaning, IE, learning, crowd-
sourcing). Users should be able to easily “patch” the
system using an interactive scripting environment.

Of these goals, “expandability” deserves more discussion. If
we can build a single “super-system” for EM, do we need
expandability? We believe it is very difficult to build such a
system. First, it would be immensely complex to build just
an initial system that incorporates all of the techniques men-
tioned in Goal 4. Indeed, despite decades of development,
today no EM system comes close to achieving this.

Second, it would be very time consuming to maintain and
keep this initial system up-to-date, especially with the latest
advances (e.g., crowdsourcing, deep learning).

Third, and most importantly, a generic EM system is un-
likely to perform equally well for multiple domains (e.g.,
biomedicine, social media, payroll). Hence we often need
to extend and customize it to a particular target domain,
e.g., adding a data cleaning package specifically designed
for biomedical data (written by biomedical researchers). For
the above three reasons, we believe that EM systems should
be fundamentally expandable.

Clearly, systems that target the above goals seek to man-
age all aspects of the end-to-end EM process. So we refer to
this kind of systems as entity matching management systems
(EMMSs). Building EMMSs is difficult, long-term, and will
require a new kind of architecture compared to current EM
systems. In the rest of this paper we describe Magellan, an
attempt to build such an EMMS.

3. THE MAGELLAN APPROACH
Figure 2 shows the Magellan architecture. The system tar-

gets a set of EM scenarios. For each EM scenario it provides
a how-to guide. The guide proposes that the user solve the
scenario in two stages: development and production.

In the development stage, the user seeks to develop a good
EM workflow (e.g., one with high matching accuracy). The
guide tells the user what to do, step by step. For each step
the user can use a set of supporting tools, each of which is in
turn a set of Python commands. This stage is typically done
using data samples. In the production stage, the guide tells

8

Data Analysis Stack

pandas, scikit-learn, matplotlib,
…

Python Interactive Environment
 Script Language

Development Stage

Supporting tools

(as Python commands)

Data samples

EM
Workflow

Production Stage

Supporting tools

(as Python commands)

Original data

Big Data Stack

PySpark, mrjob, Pydoop,
 …

Facilities for Lay Users

GUIs, wizards, …

EM
Scenarios

How-to
Guides

Power Users

Figure 2: The Magellan architecture.

the user how to implement and execute the EM workflow on
the entirety of data, again using a set of supporting tools.

Both stages have access to the Python script language and
interactive environment (e.g., iPython). Further, tools for
these stages are built on top of the Python data analysis
stack and the Python Big Data stack, respectively. Thus,
Magellan is an “open-world” system, as it often has to bor-
row functionalities (e.g., cleaning, extraction, visualization)
from other Python packages on these stacks.

Finally, the current Magellan is geared toward power users
(who can program). We envision that in the future facili-
ties for lay users (e.g., GUIs, wizards) can be laid on top
(see Figure 2), and lay user actions can be translated into
sequences of commands in the underlying Magellan.

In the rest of this section, we describe EM scenarios, work-
flows, and the development and production stages. Section
4 describes the how-to guides, and Section 5 describes the
challenges of designing Magellan as an open-world system.

3.1 EM Scenarios and Workflows
We classify EM scenarios along four dimensions:

• Problems: Matching two tables; matching within a
table; matching a table into a knowledge base; etc.

• Solutions: Using learning; using learning and rules;
performing data cleaning, blocking, then matching;
performing IE, then cleaning, blocking, and matching;
etc.

• Domains: Matching two tables of biomedical data;
matching e-commerce products given a large product
taxonomy as background knowledge; etc.

• Performance: Precision must be at least 92%, while
maximizing recall as much as possible; both precision
and recall must be at least 80%, and run time under
four hours; etc.

An EM scenario can constrain multiple dimensions, e.g.,
matching two tables of e-commerce products using a rule-
based approach with desired precision of at least 95%.

Clearly there is a wide variety of EM scenarios. So we will
build Magellan to handle a few common scenarios, and then
extend it to more similar scenarios over time. Specifically,
for now we will consider the three scenarios that match two

given relational tables A and B using (1) supervised learn-
ing, (2) rules, and (3) learning plus rules, respectively. These
scenarios are very common. In practice, users often try Sce-
nario 1 or 2, and if neither works, then a combination of
them (Scenario 3).

EM Workflows: As discussed earlier, to handle an EM
scenario, a user often has to execute many steps, such as
cleaning, IE, blocking, matching, etc. The combination of
these steps form an EM workflow. Figure 9 shows a sample
workflow (which we explain in detail in Section 4.6).

3.2 The Development vs. Production Stages
From our experience with real-world users’ doing EM, we

propose that the how-to guide tell the user to solve the EM
scenario in two stages: development and production. In the
development stage the user tries to find a good EM workflow,
e.g., one with high matching accuracy. This is typically done
using data samples. In the production stage the user applies
the workflow to the entirety of data. Since this data is often
large, a major concern here is to scale up the workflow.
Other concerns include quality monitoring, logging, crash
recovery, etc. The following example illustrates these two
stages.

Example 1. Consider matching two tables A and B each
having 1M tuples. Working with such large tables will be very
time consuming in the development stage, especially given
the iterative nature of this stage. Thus, in the development
stage the user U starts by sampling two smaller tables A′ and
B′ from A and B, respectively. Next, U performs blocking
on A′ and B′. The goal is to remove as many obviously non-
matched tuple pairs as possible, while minimizing the number
of matching pairs accidentally removed. U may need to try
various blocking strategies to come up with what he or she
judges to be the best.

The blocking step can be viewed as removing tuple pairs
from A′×B′. Let C be the set of remaining tuple pairs. Next,
U may take a sample S from C, examine S, and manually
write matching rules, e.g., “If titles match and the numbers
of pages match then the two books match”. U may need
to try out these rules on S and adjust them as necessary.
The goal is to develop matching rules that are as accurate
as possible.

Once U has been satisfied with the accuracy of the match-
ing rules, the production stage begins. In this stage, U exe-
cutes the EM workflow that consists of the developed blocking
strategy and matching rules on the original tables A and B.
To scale, U may need to rewrite the code for blocking and
matching to use Hadoop or Spark. 2

As described, these two stages are very different in nature:
one goes for accuracy and the other goes for scaling (among
others). Consequently, they will require very different sets
of tools. We now discuss developing tools for these stages.

Development Stage on a Data Analysis Stack: We
observe that what users try to do in the development stage
is very similar in nature to data analysis tasks, which an-
alyze data to discover insights. Indeed, creating EM rules
can be viewed as analyzing (or mining) the data to discover
accurate EM rules. Conversely, to create EM rules, users
also often have to perform many data analysis tasks, e.g.,
cleaning, visualizing, finding outliers, IE, etc.

9

As a result, if we are to develop tools for the development
stage in isolation, within a stand-alone monolithic system, as
current work has done, we would need to somehow provide a
powerful data analysis environment, in order for these tools
to be effective. This is clearly very difficult to do.

So instead, we propose that tools for the development
stage be developed on top of an open-source data analysis
stack, so that they can take full advantage of all the data
analysis tools already (or will be) available in that stack.
In particular, two major data analysis stacks have recently
been developed, based on R and Python (new stacks such as
the Berkeley Data Analysis Stack are also being proposed).
The Python stack for example includes the general-purpose
Python language, numpy and scipy packages for numeri-
cal/array computing, pandas for relational data manage-
ment, scikit-learn for machine learning, among others. More
tools are being added all the time, in the form of Python
packages. By Oct 2015, there were 490 packages available in
the popular Anaconda distribution. There is a vibrant com-
munity of contributors to continuously improve this stack.

For Magellan, since our initial target audience is the IT
community, where we believe Python is more familiar, we
have been developing tools for the development stage on the
Python data analysis stack.

Production Stage on a Big Data Stack: In a sim-
ilar vein, we propose that tools for the production stage,
where scaling is a major focus, be developed on top of a
Big Data stack. Magellan uses the Python Big Data stack,
which consists of many software packages to run MapReduce
(e.g., Pydoop, mrjob), Spark (e.g., PySpark), and parallel
and distributed computing in general (e.g., pp, dispy).

Expandability Revisited: We are now in a position to
discuss how Magellan addresses the expandability require-
ment outlined in Section 2.4. Current EM systems address
expandability in two ways: adding external libraries or mov-
ing data among a set of stand-alone systems (e.g., an EM
system, an IE system, a visualization system, etc.).

Both methods are problematic. To add an external library
we need to write extra code to convert between the data
structures used by the system and the library. This is time
consuming and may not even be feasible if we do not have
access to the system code. Moving data repeatedly among a
set of stand-alone systems is very cumbersome as it requires
repeatedly writing data to disk, reading data from disk, and
converting between the various data formats.

As discussed in Section 2.3, the root of these problems is
that most current EM systems are not designed from the
scratch to support expandability. In contrast, Magellan as-
sumes that there is already an eco-system of “systems” (in
form of Python packages) that have been designed to ex-
pand (i.e., “play well” with one another) and that Magellan
will have to be in that eco-system and to “play well” too.

In sum, the Magellan solution for expandability is to de-
sign the system such that it can be easily “plugged” into an
existing and expanding data management eco-system, and
that it can combine well with tools in this eco-system.

As an aside, this approach also brings the non-trivial ben-
efit that we are filling in “gaps” in the Python data man-
agement eco-system. This eco-system is important because
more and more users are using its tools to analyze data,
but so far good EM tools (and good data integration tools

1. Load tables A and B into Magellan. Downsample if necessary.

2. Perform blocking on the tables to obtain a set of
candidate tuple pairs C.

3. Take a random sample S from C and label pairs in S as
matched / non-matched.

4. Create a set of features then convert S into a set of feature vectors H.
Split H into a development set I and an evaluation set J.

5. Repeat until out of debugging ideas or out of time:

(a) Perform cross validation on I to select the best matcher.
Let this matcher be X.

(b) Debug X using I. This may change the matcher X, the data, labels,
and the set of features, thus changing I and J.

6. Let Y be the best matcher obtained in Step 5. Train Y on I,
then apply to J and report the matching accuracy on J.

Figure 3: The top-level steps of the guide for the
EM scenario of matching using supervised learning.

in general) have been missing, seriously hampering user ef-
forts.

In the rest of this paper we will focus on the development
stage, leaving the production stage for subsequent papers.

4. HOW-TO GUIDES AND TOOLS
We now discuss developing how-to guides as well as tools

to support these guides. Our goal is twofold:

• First, we show that even for relatively simple EM sce-
narios (e.g., matching using supervised learning), a
good guide can already be quite complex. Thus de-
veloping how-to guides is a major challenge, but such
guides are absolutely critical in order to successfully
guide the user through the EM process.

• Second, we show that each step of the guide, including
those that prior work may have viewed as trivial or
engineering (e.g., sampling, labeling), can raise many
interesting research challenges. We provide prelimi-
nary solutions to several such challenges in this paper.
But much more remains to be done.

Recall that Magellan currently targets three EM scenarios:
matching two tables A and B using (1) supervised learning,
(2) rules, and (3) both learning and rules. For space reasons,
we will focus on Scenario 1, briefly discussing Scenarios 2-
3 in Section 4.7. For Scenario 1, we further focus on the
development stage.

The Current Guide for Learning-Based EM: Figure
3 shows the current guide for Scenario 1: matching using
supervised learning. The figure lists only the top six steps.
While each step may sound like fairly informal advice (e.g.,
“create a set of features”), the full guide itself (available
with Magellan 0.1) is considerably more complex and actu-
ally spells out in detail what to do (e.g., run a Magellan com-
mand to automatically create the features). We developed
this guide based on observing how real-world users (e.g., at
WalmartLabs and Johnson Control) as well as students in
several UW-Madison classes handled this scenario.

The guide states that to match two tables A and B, the
user should load the tables into Magellan (Step 1), do block-
ing (Step 2), label a sample of tuple pairs (Step 3), use

10

the sample to iteratively find and debug a learning-based
matcher (Steps 4-5), then return this matcher and its esti-
mated matching accuracy (Step 6).

We now discuss these steps, possible tools to support
them, and tools that we have actually developed. Our goal
is to automate each step as much as possible, and where it is
not possible, then to provide detailed guidance to the user.
We focus on discussing problems with current solutions, the
design alternatives, and opportunities for automation. For
ease of exposition, we will assume that tables A and B share
the same schema.

4.1 Loading and Downsampling Tables
Downsampling Tables: We begin by loading the two
tables A and B into memory. If these tables are large (e.g.,
each having 100K+ tuples), we should sample smaller tables
A′ and B′ from A and B respectively, then do the develop-
ment stage with these smaller tables. Since this stage is
iterative by nature, working with large tables can be very
time consuming and frustrating to the user.

Random sampling however does not work, because tables
A′ and B′ may end up sharing very few matches, i.e., match-
ing tuples (especially if the number of matches between A
and B is small to begin with). Thus we need a tool that
samples more intelligently, to ensure a reasonable number
of matches between A′ and B′.

We have developed such a tool, shown as the Magellan
command c1 in Figure 4. This command first randomly
selects B size tuples from table B to be table B′. For each
tuple x ∈ B′, it finds a set P of k/2 tuples from A that may
match x (using the heuristic that if a tuple in A shares many
tokens with x, then it is more likely to match x), and a set
Q of k/2 tuples randomly selected from A\P . Table A′ will
consist of all tuples in such P s and Qs. The idea is for A′

and B′ to share some matches yet be as representative of A
and B as possible.

To find P , the command relies on the heuristic that if two
tuples share many tokens, then they are likely to match.
Thus, it builds an inverted index I of (token, tuple id) over
table A, probes I to find all tuples in A that share tokens
with x, rank these tuples in decreasing number of shared
tokens, then take (up to) the top k/2 tuples to be the set
P . Note that index I is built only once, at the start of the
command. The command then randomly samples k − |P |
tuples in A \ P to be the set Q.

More Sophisticated Downsampling Solutions: The
above command was fast and quite effective in our exper-
iments. However it has a limitation: it may not get all
important matching categories into A′ and B′. If so, the
EM workflow created using A′ and B′ may not work well on
the original tables A and B.

For example, consider matching companies. Tables A and
B may contain two matching categories: (1) tuples with sim-
ilar company names and addresses match because they refer
to the same company, and (2) tuples with similar company
names but different addresses may still match because they
refer to different branches of the same company. Using the
above command, tables A′ and B′ may contain many tuple
pairs of Case 1, but no or very few pairs of Case 2.

To address this problem, we are working on a better “down-
sampler”. Our idea is to use clustering to create groups of
matching tuples, then analyze these groups to infer match-

c1: down_sample_tables (A, B, B_size, k)
c2: debug_blocker (A, B, C, output_size = 200)
c3: get_features_for_matching (A, B)
c4: select_matcher (matchers, table, exclude_attrs, target_attr, k = 5)
c5: vis_debug_dt (matcher, train, test, exclude_attrs, target_attr)

Figure 4: Sample commands discussed in Section 4.
Magellan has 53 such commands.

Figure 5: Magellan console in interactive IPython.

ing categories, then sample from the categories. Major chal-
lenges here include how to effectively cluster tuples from the
large tables A and B, and how to define and infer matching
categories accurately.

4.2 Blocking to Create Candidate Tuple Pairs
In the next step, we apply blocking to the two tables A′

and B′ to remove obviously non-matched tuple pairs. Ide-
ally, this step should be automated (as much as possible).
Toward this goal, we distinguish three cases.

(1) We already know which matcher we want to use. Then
it may be possible to analyze the matcher to infer a blocker,
thereby completely automating the blocking step. For ex-
ample, when matching two sets of strings (a special case of
EM [16]), often we already know the matcher we want to use
(e.g., jaccard(x, y) > 0.8, i.e., predicting two strings x and y
matched if their Jaccard score exceeds 0.8). Prior work [16]
has analyzed such matchers to infer efficient blockers that
do not remove true matches. Thus, debugging the blocker
is also not necessary.

(2) We do not know yet which matcher we want to use, but
we have a set T of tuple pairs labeled matched / no-matched.
Then it may be possible to partially automate the blocking
step. Specifically, the system can use T to learn a blocker
and propose it to the user (e.g., training a random forest

11

Id Name Zip code

a1 Bill George 94107

a2 Mark Levene 94108

a3 Levent Koc 94132

a4 Michael Franklin 94122

Table A

Id Name Zip code

b1 William George 94107

b2 Aaron Miller 94122

b3 Levent Koch 94122

b4 Mark Levene 94107

Table B

block

attr. equivalence on
zip code

A.Id B.Id

a1 b1

a2 b4

a4 b2

a4 b3

(a) (b)

1. (a2, b4)

2. (a3, b3)

(c)

Figure 6: An example for debugging blocker output.

Figure 7: The GUI of the blocking debugger.

then extracting the negative rules of the forest as blocker
candidates [26]). The user still has to debug the blocker to
check that it does not accidentally remove too many true
matches.

(3) We do not know yet which matcher we want to use,
and we have no labeled data. This is the case considered in
this paper, since all we have so far are the two tables A′ and
B′. In this case the user often faces three problems (which
have not been addressed by current work): (a) how to select
the best blocker, (b) how to debug a given blocker, and (c)
how to know when to stop? Among these, the first problem
is open to partial automation.

Selecting the Best Blocker: A straightforward solu-
tion is to label a set of tuple pairs (e.g., selected using ac-
tive learning [26]), then use it to automatically propose a
blocker, as in Case 2. To propose good blockers, however,
this solution may require labeling hundreds of tuple pairs
[26], incurring a sizable burden on the user.

This solution may also be unnecessarily complex. In prac-
tice, a user often can use domain knowledge to quickly pro-
pose good blockers, e.g., “matching books must share the
same ISBN”, in a matter of minutes. Hence, our how-
to guide tries to help the user identify these “low-hanging
fruits” first.

Specifically, many blocking solutions have been developed,
e.g., overlap, attribute equivalence (AE), sorted neighbor-
hood (SNB), hash-based, rule-based, etc. [16]. From our ex-
perience, we recommend that the user try successively more
complex blockers, and stop when the number of the tuple
pairs surviving blocking is already sufficiently small. Specif-
ically, the user can try overlap blocking first (e.g., “matching
tuples must share at least k tokens in an attribute x”), then
AE (e.g., “matching tuples must share the same value for
an attribute y”). These blockers are very fast, and can sig-
nificantly cut down on the number of candidate tuple pairs.
Next, the user can try other well-known blocking methods
(e.g., SNB, hash) if appropriate. This means the user can
use multiple blockers and combine them in a flexible fashion
(e.g., applying AE to the output of overlap blocking).

Example 2. Figure 5 shows a case where the user has
loaded two tables A and B into Python, inspected the tables
by using the visualization capabilities of the pandas Python
package, then performed AE blocking on zipcode (see the line
starting with In [6]).

Finally, if the user still wants to reduce the number of can-
didate tuple pairs further, then he or she can try rule-based
blocking. It is difficult to manually come up with good
blocking rules. So we will develop a tool to automatically
propose rules, as in Case 2, using the technique in [26], which
uses active learning to select tuple pairs for the user to label.

Debugging Blockers: Given a blocker L, how do we
know if it does not remove too many matches? We have de-
veloped a debugger to answer this question, shown as com-
mand c2 in Figure 4. Suppose applying L to A′ and B′

produces a set C of tuple pairs (a ∈ A′, b ∈ B′). Then
D = A′ ×B′ \ C is the set of all tuple pairs removed by L.

The debugger examines D to return a list of k tuple pairs
in D that are most likely to match (k = 200 is the default).
The user U examines this list. If U finds many matches in
the list, then that means blocker L has removed too many
matches. U would need to modify L to be less “aggressive”,
then apply the debugger again. Eventually if U finds no
or very few matches in the list, U can assume that L has
removed no or very few matches, and thus is good enough.

Example 3. Given the two tables A and B in Figure 6.a,
attribute equivalence-based blocking on zipcode will produce
the set of tuple pairs in Figure 6.b. Applying the debugger
to Tables A and B and the set of tuple pairs (that survive
blocking) may produce the ranked list of two tuple pairs in
Figure 6.c. (Figure 7 shows a screen shot of how the ranked
list is typically presented to the user in Magellan.)

When the user examines these two tuple pairs, he/she may
realize that both of them are likely to be matches. This means
that the blocker has been too aggressive, in that it has dropped
too many true matches. In this case, the user may decide
not to use this attribute equivalance-based blocker.

Developing the above debugger raises two challenges. First,
how can it judge that a tuple pair is likely to match? Sec-
ond, how can it search D very fast (given that debugging
is interactive by nature)? To address the first challenge, we
first select a set of attributes judged to be discriminative, in
that if two tuples (a ∈ A′, b ∈ B′) share similar or identical
values for most of these attributes, then they are likely to
match. Let x be an attribute, we compute

• unique(x,A′) to be the number of unique values of x
in A′ divided by the number of non-empty values of x
in A′,

12

• missing(x,A′) to be the number of missing values of
x in A′ divided by the number of tuples in A′, and

• s(x,A′) = unique(x,A′) + 1−missing(x,A′).

The score s(x,A′) indicates how discriminative attribute x
is in table A′. Intuitively, the higher unique(x,A′), the more
likely that a value of x can uniquely identify a tuple in A′,
unless x has a lot of missing values, which is taken into
account using 1−missing(x,A′).

Defining s(x,B′) similarly, we can define a discriminative-
ness score for x across both tables: s(x) = s(x,A′) ·s(x,B′).
We then select the top k attributes with the highest s(x)
scores (where k is pre-specified), to be used in the debugger.

Let the set of selected attributes be T . For each tuple
a ∈ A′, let t(a) be the string resulting from concatenating
the values of the selected attributes. Define t(b) similarly
for each tuple b ∈ B′. Let J(t(a), t(b)) be the Jaccard score
between t(a) and t(b), assuming each of these strings have
been tokenized into a set of 3-grams. Then the debugger
returns the top k tuple pairs (a, b) in D = A′ ×B′ \C with
the highest J(t(a), t(b)) scores. Intuitively, the debugger
states that these pairs are likely to be matches, so the user
should check them. To find these pairs fast, the debugger
uses indexes on the tables. We omit further details for space
reasons.

Knowing When to Stop Modifying the Blockers: How
do we know when to stop tuning a blocker L? Suppose
applying L to A′ and B′ produces the set of tuple pairs
block(L,A′, B′). The conventional wisdom is to stop when
block(L,A′, B′) fits into memory or is already small enough
so that the matching step can process it efficiently.

In practice, however, this often does not work. For exam-
ple, since we work with A′ and B′, samples from the original
tables, monitoring |block(L,A′, B′)| does not make sense.
Instead, we want to monitor |block(L,A,B)|. But applying
L to the large tables A and B can be very time consum-
ing, making the iterative process of tuning L impractical.
Further, in many practical scenarios (e.g., e-commerce), the
data to be matched can arrive in batches, over weeks, ren-
dering moot the question of estimating |block(L,A,B)|.

As a result, in many practical settings users want block-
ers that have (1) high pruning power, i.e., maximizing 1 −
|block(L,A′, B′)|/|A′ × B′|, and (2) high recall, i.e., maxi-
mizing the ratio of the number of matches in block(L,A′, B′)
divided by the number of matches in A′ ×B′.

Users can measure the pruning power, but so far they
have had no way to estimate recall. This is where our de-
bugger comes in. In our experiments (see Section 6) users
reported they had used our debugger to find matches that
the blocker L had removed, and when they found no or only
a few matches, they concluded that L had achieved high
recall and stopped tuning the blocker.

4.3 Sampling and Labeling Tuple Pairs
Let L be the blocker we have created. Suppose applying

L to tables A′ and B′ produces a set of tuple pairs C. In
the next step, user U should take a sample S from C, then
label the pairs in S as matched / no-matched, to be used
later for training matchers, among others.

At a first glance, this step seems very simple: why not
just take a random sample and label it? Unfortunately in
practice this is far more complicated.

Figure 8: The GUI of the matching debugger.

For example, suppose C contains relatively few matches
(either because there are few matches between A′ and B′,
or because blocking was too liberal, resulting in a large C).
Then a random sample S from C may contain no or few
matches. But the user U often does not recognize this until
U has labeled most of the pairs in S. This is a waste of
U ’s time and can be quite serious in cases where labeling is
time consuming or requires expensive domain experts (e.g.,
labeling drug pairs when we worked with Marshfield Clinic).
Taking another random sample does not solve the problem
because it is likely to also contain no or few matches.

To address this problem, our guide builds on [26] to pro-
pose that user U sample and label in iterations. Specifically,
suppose U wants a sample S of size n. In the first iteration,
U takes and labels a random sample S1 of size k from C,
where k is a small number. If there are enough matches in
S1, then U can conclude that the “density” of matches in C
is high, and just randomly sample n− k more pairs from C.

Otherwise, the “density” of matches in C is low. So U
must re-do the blocking step, perhaps by creating new block-
ing rules that remove more non-matching tuple pairs in C,
thereby increasing the density of matches in C. After block-
ing, U can take another random sample S2 also of size k
from C, then label S2. If there are enough matches in S2,
then U can conclude that the density of matches in C has
become high, and just randomly sample n − 2k more pairs
from C, and so on.

4.4 Selecting a Matcher
Once user U has labeled a sample S, U uses S to se-

lect a good initial learning-based matcher. Today most EM
systems supply the user with a set of such matchers, e.g.,
decision tree, Naive Bayes, SVM, etc., but do not tell the
user how to select a good one.

Our guide addresses this problem. Specifically, user U
first calls the command c3 in Figure 4 to create a set of fea-
tures F = {f1, . . . , fm}, where each feature fi is a function
that maps a tuple pair (a, b) into a value. This command
creates all possible features between the attributes of tables
A′ and B′, using a set of heuristics. For example, if at-
tribute name is textual, then the command creates feature
name 3gram jac that returns the Jaccard score between the
3-gram sets of the two names (of tuples a and b).

Next, U converts each tuple pair in the labeled set S into
a feature vector (using features in F), thus converting S
into a set H of feature vectors. Next, U splits H into a
development set I and an evaluation set J .

Let M be the set of all learning-based matchers supplied
by the EM system. Next, U uses command c4 in Figure 4

13

to perform cross validation on I for all matchers in M , then
examines the results to select a good matcher. Command c4
highlights the matcher with the highest accuracy. However,
if a matcher achieves just slightly lower accuracy (than the
best one) but produces results that are easier to explain and
debug (e.g., a decision tree), then c4 highlights that matcher
as well, for the user’s consideration.

Thus, the entire process of selecting a matcher can be
automated (if the user does not want to be involved), and
in fact Magellan does provide a single command to execute
the entire process.

4.5 Debugging a Matcher
Let the selected matcher be X. In the next step user

U debugs X to improve its accuracy. Such debugging is
critical in practice, yet has received very little attention in
the research community.

Our guide suggests that user U debug in three steps: (1)
identify and understand the matching mistakes made by X,
(2) categorize these mistakes, and (3) take actions to fix
common categories of mistakes.

Identifying and Understanding Matching Mistakes:
U should split the development set I into two sets P and Q,
train X on P then apply it to Q. Since U knows the labels of
the pairs in Q, he or she knows the matching mistakes made
by X in Q. These are false positives (non-matching pairs
predicted matching) and false negatives (matching pairs pre-
dicted not). Addressing them helps improve precision and
recall, respectively.

Next U should try to understand why X makes each
mistake. For example, let (a, b) ∈ Q be a pair labeled
“matched” for which X has predicted “not matched”. To
understand why, U can start by using a debugger that ex-
plains how X comes to that prediction. For example, if X is
a decision tree then the debugger (invoked using command
c5 in Figure 4) can show the path from the root of the tree
to the leaf that (a, b) has traversed. Examining this path, as
well as the pair (a, b) and its label, can reveal where things
go wrong. In general things can go wrong in four ways:

• The data can be dirty, e.g., the price value is incorrect.

• The label can be wrong, e.g., (a, b) should have been
labeled “not matched”.

• The feature set is problematic. A feature is misleading,
or a new feature is desired, e.g., we need a new feature
that extracts and compares the publishers.

• The learning algorithm employed by X is problem-
atic, e.g., a parameter such as “maximal depth to be
searched” is set to be too small.

Currently Magellan has debuggers for a set of learning-based
matchers, e.g., decision tree, random forest (Figure 8 shows
a screen shot of the matching debugger for one of these
matcher types.) We are working on improving these debug-
gers and developing debuggers for more learning algorithms.

Categorizing Matching Mistakes: After U has exam-
ined all or a large number of matching mistakes, he or she
can categorize them, based on problems with data, label,
feature, and the learning algorithm.

Examining all or most mistakes is very time consuming.
Thus a consistent feedback we have received from real-world

A

B

clean,
extract, transform

block
clean,

extract, transform

Candidate
Set C match

Figure 9: The EM workflow for the learning-based
matching scenario.

users is that they would love a tool that can automatically
examine and give a preliminary categorization of the types
of the matching mistakes. As far as we can tell, no such tool
exists today.

Handling Common Categories of Mistakes: Next U
should try to fix common categories of mistakes by modify-
ing the data, labels, set of features, and the learning algo-
rithm. This part often involves data cleaning and extraction
(IE), e.g., normalizing all values of attribute “affiliation”, or
extracting publishers from attribute “desc” then creating a
new feature comparing the publishers.

This part is often also very time consuming. Real-world
users have consistently indicated needing support in at least
two areas. First, they want to know exactly what kinds
of data cleaning and IE operations they need to do to fix
the mistakes. Naturally they want to do as minimally as
possible. Second, re-executing the entire EM process after
each tiny change to see if it “fixes” the mistakes is very time
consuming. Hence, users want an “what-if” tool that can
quickly show the effect of a hypothetical change.

Proxy Debugging: Suppose we need to debug a matcher
X but there is no debugger for X, or the debugger exists
but is not very informative. In this case X is effectively a
“blackbox”. To address this problem, in Magellan we have
introduced a novel debugging method. In particular, we
propose to train another matcher X ′ for which there is a
debugger, then use that debugger to debug X ′, instead of X.
This “proxy debugging” process cannot fix problems with
the learning algorithm of X, but it can reveal problems with
the data, labels, features, and fixing them can potentially
improve the accuracy of X itself. Section 6.2 shows cases of
proxy debugging working quite well in practice.

Selecting a Matcher Again: So far we have discussed
selecting a good initial learning-based matcher X, then de-
bugging X using the development set I. To debug, user U
splits I into training set P and testing set Q, then identifies
and fixes mistakes in Q. Note that this splitting of I into P
and Q can be done multiple times. Subsequently, since the
data, labels, and features may have changed, U would want
to do cross validation again to select a new “best matcher”,
and so on (see Step 5 in Figure 3).

4.6 The Resulting EM Workflow
After executing the above steps, user U has in effect cre-

ated an EM workflow, as shown in Figure 9. Since this
workflow will be used in the production stage, it takes as
input the two original tables A and B. Next, it performs a
set of data cleaning, IE, and transformation operations on
these tables. These operations are derived from the debug-
ging step discussed in Section 4.5.

14

Next, the workflow applies the blockers created in Sec-
tion 4.2 to obtain a set of candidate tuple pairs C. Finally,
the workflow applies the learning-based matcher created in
Section 4.5 to the pairs in C.

Note that the steps of sampling and labeling a sample S
do not appear in this workflow, because we need them only
in the development stage, in order to create, debug, and
train matchers. Once we have found a good learning-based
matcher (and have trained it using S), we do not have to
execute those steps again in the production stage.

4.7 How-to Guides for Scenarios with Rules
Recall that Magellan currently targets three EM scenar-

ios. So far we have discussed a how-to guide and tools for
Scenario 1: matching using supervised learning. We now
briefly discuss Scenarios 2 and 3.

Scenario 2 uses only rules to match. This is desirable in
practice for various reasons (e.g., when matching medicine
it is often important that we can explain the matching deci-
sion). For this scenario, we have developed guides and tools
to help users (a) create matching rules manually, (b) create
rules using a set of labeled tuple pairs, or (c) create rules
using active learning.

Scenario 3 uses both supervised learning and rules. Users
often want this when using neither learning nor rules alone
gives them the desired accuracy. For this scenario, we have
also developed a guide and tools to help users. Our guide
suggests that users do learning-based EM first, as described
earlier for Scenario 1, then add matching rules “on top” of
the learning-based matcher, to improve matching accuracy.
We omit further details for space reasons.

5. DESIGNING FOR AN OPEN WORLD
So far we have discussed how-to guides and tools to sup-

port the guides. We now turn to the challenge of designing
these tools as commands in Python.

This challenge turned out to be highly non-trivial, as we
will see. It raises a fundamental question: what do we mean
by “building on top of a data analysis stack”? To answer,
we introduce the notion of closed-world vs. open-world sys-
tems for EM contexts. We show that Magellan should be
built as an open-world system, but building such systems
raises difficult problems such as designing appropriate data
structures and managing metadata. Finally, we discuss how
Magellan addresses these problems.

5.1 Closed-World vs. Open-World Systems
A closed-world system controls its own data. This data

can only be manipulated by its own commands. For this
system, its own world is the only world. There is nothing
else out there and thus it does not have a notion of hav-
ing to “play well” with other systems. It is often said that
RDBMSs are such closed-world systems. Virtually all cur-
rent EM systems can also be viewed as closed-world systems.

In contrast, an open-world system K is aware that there
is a whole world “out there”, teeming with other systems,
and that it will have to interact with them. The system
therefore possesses the following characteristics:

• K expects other systems to be able to manipulate K’s
own data.

• K may also be called upon by other systems to ma-
nipulate their own data.

• K is designed in a way that facilitates such interaction.

Thus, by building Magellan on the Python data analysis
stack we mean building an open-world system as described
above (where “other systems” are current and future Python
packages in the stack). This is necessary because, as dis-
cussed earlier, in order to do successful EM, Magellan will
need to rely on a wide range of external systems to sup-
ply tools in learning, mining, visualization, cleaning, IE,
etc. Building an open-world system however raises diffi-
cult problems. In what follows we discuss problems with
data structures and metadata. (We have also encountered
several other problems, such as missing values, data type
mismatch, package version incompatabilities, etc., but will
not discuss them in this paper.)

5.2 Designing Data Structures
At the heart of Magellan is a set of tables. The tuples to

be matched are stored in two tables A and B. The interme-
diate and final results can also be stored in tables. Thus, an
important question is how to implement the tables.

A popular Python package called pandas has been de-
veloped to store and process tables, using a data structure
called “data frame”. Thus, the simplest solution is to im-
plement Magellan’s tables as data frames. A problem is that
data frames cannot store metadata, e.g., a constraint that
an attribute is a key of a table.

A second choice is to define a new Python class called
MTable, say, where each MTable object has multiple fields,
one field points to a data frame holding the tuples, another
field points to the key attributes, and so on.

Yet a third choice is to subclass the data frame class to
define a new Python class called MDataFrame, say, which
have fields such as “keys”, “creation-date”, etc. besides the
inherited data frame holding the tuples.

From the perspective of building open-world systems, as
discussed in Section 5.1, the last two choices are bad because
they make it difficult for external systems to operate on Mag-
ellan’s data. Specifically, MTable is a completely unfamiliar
class to existing Python packages. So commands in these
packages cannot operate on MTable objects directly. We
would need to redefine these commands, a time-consuming
and brittle process.

MDataFrame is somewhat better. Since it is a subclass
of data frame, any existing command (external to Magel-
lan) that knows data frames can operate on MDataFrame
objects. Unfortunately the commands may return inappro-
priate types of objects. For example, a command deleting
a row in an MDataFrame object would return a data frame
object, because being an external command it is not aware
of the MDataFrame class. This can be quite confusing to
users, who want external commands to work smoothly on
Magellan’s objects.

For these reasons, we take the first choice: storing Mag-
ellan’s tables as data frames. Since virtually any existing
Python package that manipulates tables can manipulate data
frames, this maximizes the chance that commands from these
packages can work seamlessly on Magellan’s tables.

In general, we propose that an open-world system K use
the data structures that are most common to other systems
to store its data. This brings two important benefits: it is
easier for other systems to operate on K’s data, and there
will be far more tools available to help K manipulate its own
data. If it is not possible to use common data structures,

15

K should provide procedures that convert between its own
data structures and the ones commonly used by other open-
world systems.

5.3 Managing Metadata
We have discussed storing Magellan’s tables as data frames.

Data frames however cannot hold metadata (e.g., key and
foreign key constraints, date last modified, ownership). Thus
we will store such metadata in a central catalog.

Regardless of where we store the metadata, however, let-
ting external commands directly manipulate Magellan’s data
leads to a problem: the metadata can become inconsistent.
For example, suppose we have created a table A and stored
in the central catalog that “sid” is a key for A. There is
nothing to prevent a user U from invoking an external com-
mand (of a non-Magellan package) on A to remove “sid”.
This command however is not aware of the central catalog
(which is internal to Magellan). So after its execution, the
catalog still claims that “sid” is a key for A, even though
A no longer contains “sid”. As another example, an exter-
nal command may delete a tuple from a table participating
in a key-foreign key relationship, rendering this relationship
invalid, while the catalog still claims that it is valid.

In principle we can rewrite the external commands to be
metadata aware. But given the large number of external
commands that Magellan users may want to use, and the
rapid changes for these commands, rewriting all or most of
them in one shot is impractical. In particular, if a user U
discovers a new package that he or she wants to use, we do
not want to force U to wait until Magellan’s developers have
had a chance to rewrite the commands in the package to
be metadata aware. But allowing U to use the commands
immediately, “as is”, can lead to inconsistent metadata, as
discussed above.

To address this problem, we design each Magellan’s com-
mand c from the scratch to be metadata aware. Specifically,
we write c such that at the start, it checks for all constraints
that it requires to be true, in order for it to function prop-
erly. For example, c may know that in order to operate on
table A, it needs a key attribute. So it looks up the central
catalog to obtain the constraint that “sid” is a key for A.
Command c then checks this constraint to the extent possi-
ble. If it finds this constraint invalid, then it alerts the user
and asks him or her to fix this constraint.

Command c will not proceed until all required constraints
have been verified. During its execution, it will try to man-
age metadata properly. In addition, if it encounters an in-
valid constraint it will alert the user, but will continue its
execution, as this constraint is not critical for its correct ex-
ecution (those constraints have been checked at the start of
the command). For example, if it finds a dangling tuple due
to a violation of a foreign key constraint, it may just alert
the user, ignore the tuple, and then continue.

6. EMPIRICAL EVALUATION
We now empirically evaluate Magellan. It is difficult to

evaluate such a system in large-scale experiments with real-
world data and users. To address this challenge, we evalu-
ated Magellan in two ways. First, we asked 44 UW-Madison
students to apply Magellan to many real-world EM scenarios
on the Web. Second, we provided Magellan to real users at
several organizations (WalmartLabs, Johnson Control, and

Marshield Clinic) and reported on their experience. We now
elaborate on these two sets of experiments.

6.1 Large-Scale Experiments on Web Data
Our largest experiment was with 24 teams of CS students

(a total of 44 students) at UW-Madison in a Fall 2015 data
science class. These students can be considered the equiv-
alents of power users at organizations. They know Python
but are not experts in EM.

We asked each team to find two data-rich Web sites, ex-
tract and convert data from them into two relational tables,
then apply Magellan to match tuples across the tables. The
first four columns of Table 4 show the teams, domains, and
the sizes of the two tables, respectively. Note that two teams
may cover the same domain, e.g., “Movies”, but extract from
different sites. Overall, there are 12 domains, and the tables
have 7,313 tuples on average, with 5-17 attributes.

We asked each team to do the EM scenario of supervised
learning followed by rules, and aim for precision of at least
90% with recall as high as possible. This is a very common
scenario in practice.

The Baseline Performance: The columns under “Ini-
tial Learning-Based Matcher (A)” show the matching accu-
racies achieved by the best learning-based matcher (after
cross validation, see Section 4.4): P = 56 − 100%, R =
37.5 − 100%, F1 = 56 − 99.5%. These results show that
many of these tables are not easy to match, as the best
learning-based matcher selected after cross validation does
not achieve high accuracy. In what follows we will see how
Magellan was able to significantly improve these accuracies.

Using the How-to Guide: The columns under “Final
Learning+Rule Matcher (D)” show the final matching ac-
curacies that the teams obtained: P = 91.3 − 100%, R =
64.7 − 100%, F1 = 78.6 − 100%. All 24 teams achieved
precision exceeding 90%, and 20 teams also achieved re-
call exceeding 90%. (Four teams had recall below 90% be-
cause their data were quite dirty, with many missing val-
ues.) All teams reported being able to follow the how-to
guide. Together with qualitative feedback from the teams,
this suggests that users can follow Magellan’s how-to guide
to achieve high matching accuracy on diverse data sets. We
elaborate on these results below, broken down by blocking
and matching.

Blocking and Debugging Blockers: All teams used 1-
5 blockers (e.g., attribute equivalence, overlap, rule-based),
for an average of 3. On average 3 different types of blockers
were used per team. This suggests that it is relatively easy
to create a blocking pipeline with diverse blocker types.

All teams debugged their blockers, in 1-10 iterations, for
an average of 5. 18 out of 24 teams used our debugger (see
Section 4.2), and reported that it helped in four ways.

(a) Cleaning data: By examining tuple pairs (returned
by the debugger) that are matches accidentally removed by
blocking, 12 teams discovered data that should be cleaned.
For example, one team removed the edition information from
book titles, and another team normalized the date formats
in the input tables.

(b) Finding the correct blocker types and attributes:
12 teams were able to use the debugger for these purposes.
For example, one team found that using attribute equiva-
lence (AE) blocker over “phone” removed many matches,

16

Team Domain Size of
Table A

Size of
Table B

Cand.
Set

 Size

Initial Learning-Based
Matcher (A)

Final Learning-Based
Matcher (B) Num. of

Iterations
 (C)

Final Learning +
Rules Matcher (D) Num. of

Iterations
 (E)

Diff. in F1
between

(D) and (A)
in % P R F1 P R F1 P R F1

1 Vehicles 4786 9003 8009 71.2 71.2 71.2 91.43 94.12 92.75 4 100 100 100 2 30.27
2 Movies 7391 6408 78079 99.28 95.13 97.04 98.21 100 99.1 2 100 100 100 1 2.12

3 Movies 3000 3000 1000000 98.9 99.44 99.5 98.63 98.63 98.63 1 98.63 98.63 98.63 0 -0.87

4 Movies 3000 3000 36000 68.2 69.16 68.6 98 100 98.99 3 98 100 98.99 1 44.3

5 Movies 6225 6392 54028 100 95.23 97.44 100 100 100 3 100 100 100 1 2.63

6 Restaurants 6960 3897 10630 100 37.5 54.55 100 88.89 94.12 3 100 88.89 94.12 1 72.54

7 Electronic Products 4559 5001 823832 73 51 59 73.3 64.71 68.75 2 100 64.71 78.57 1 33.17

8 Music 6907 55923 58692 92 79.31 85.19 90.48 82.61 86.36 2 100 92.16 95.92 2 1.37

9 Restaurants 9947 28787 400000 100 78.5 87.6 94.44 97.14 95.77 4 94.44 97.14 95.77 0 9.33

10 Cosmetic 11026 6445 36026 56 56 56 96.67 87.88 92.06 3 96.43 87.1 91.53 4 64.39

11 E-Books 6482 14110 13652 96.67 96.67 96.67 100 95.65 97.78 4 100 98.33 99.13 1 1.15

12 Beer 4346 3000 4334961 84.5 59.6 65.7 100 60.87 75.68 4 91.3 91.3 91.3 4 15.19

13 Books 3506 3508 2016 93.46 100 96.67 91.6 100 95.65 2 91.6 100 95.65 0 -1.06

14 Books 3967 3701 4029 74.17 82.2 82.5 100 84.85 91.8 3 100 84.85 91.8 5 11.27

15 Anime 4000 4000 138344 95.9 88.9 92.2 100 100 100 2 100 100 100 1 8.46

16 Books 3021 3098 931 74.2 100 85.2 96.34 84.95 90.29 2 94.51 92.47 93.48 1 5.97

17 Movies 3556 6913 504 94.2 99.33 96.6 95.04 94.26 94.65 2 95.04 94.26 94.65 1 -2.02

18 Books 8600 9000 492 91.6 100 84.8 94.8 100 90.2 3 100 92.31 96 1 6.37

19 Restaurants 11840 5223 5278 98.6 93.8 96.1 95.6 94.02 95.57 2 100 94.12 96.97 1 -0.55

20 Books 3000 3000 257183 94.24 72.88 81.71 90.91 83.33 86.96 2 92.31 100 96 1 6.43

21 Literature 3885 3123 1590633 84.4 86.9 85.5 100 95.65 97.83 3 100 95.65 97.83 0 14.42

22 Restaurants 3014 5883 78190 100 93.59 96.55 100 100 100 5 100 100 100 0 3.57

23 E-Books 6501 14110 18381 94.6 92.5 93.4 94.6 97.22 95.89 2 100 100 100 1 2.67

24 Baby Products 10000 5000 11000 78.6 44.8 57.7 96.43 72.97 83.08 5 100 72.97 84.37 2 43.99

Table 4: Large-scale experiments with Magellan on Web data.

because the phone numbers were not updated. So they de-
cided to use “zipcode” instead. Another team started with
AE over “name” then realized that the blocker did not work
well because many names were misspelled. So they decided
to use a rule-based blocker instead.

(c) Tuning blocker parameters: 18 teams used the de-
bugger for this purpose, e.g., to change the overlap size for
“address” in an overlap blocker, or to use a different thresh-
old for a Jaccard measure in a rule-based blocker.

(d) Knowing when to stop: 12 teams explicitly mentioned
in their reports that when the debugger returned no or very
few matches, they concluded that the blocking pipeline had
done well, and stopped tuning this pipeline.

Teams reported spending 4-32 hours on blocking (includ-
ing reading documentations). Overall, 21 out of 24 teams
were able to prune away more than 95% of |A×B|, with an
average reduction of 97.3%, suggesting that they were able
to construct blocking with high pruning rate.

Feedback-wise, teams reported liking (a) the ability to cre-
ate rich and flexible blocking sequences with different types
of blockers, (b) the diverse range of blocker types provided
by Magellan, and (c) the debugger. They complained that
certain types of blockers (e.g., rule-based ones) were still
slow (an issue that we are currently addressing).

Matching and Debugging Matchers: Recall from Sec-
tion 4.5 that after cross validation on labeled data to select
the best learning-based matcher X, user U iteratively de-
bugged X to improve its accuracy. Teams performed 1-5
debugging iterations, for an average of 3 (see Column “Num

of Iterations (C)” in Table 4). The actions they took were:

(a) Feature selection: 21 teams added and deleted fea-
tures, e.g., adding more phone related features, removing
style related features.

(b) Data cleaning: 12 teams cleaned data based on the
debugging result, e.g., normalizing colors using a dictionary,
detecting that the tables have different date formats. 16
teams found and fixed incorrect labels during debugging.

(c) Parameter tuning: 3 teams tuned the parameters of
the learning algorithm, e.g., modifying the maximum depth
of decision tree based on debugging results.

These debugging actions helped improve accuracies signif-
icantly, from 56-100% to 73.3-100% precision, and 37.5-100%
to 61-100% recall (compare columns under “A” with those
under “B” in Table 4).

Adding rules further improves accuracy. 19 teams added
1-5 rules, found in 1-5 iterations (see column “E”). This
improved precision from 73.3-100% to 91.3-100% and re-
call from 61-100% to 64.7-100% (compare columns under
“D” with those under “B”). Overall, Magellan improved the
baseline accuracy in columns “A” significantly, by as much
as 72.5% F1, for an average of 18.8% F1. For 3 teams, how-
ever, accuracy dropped by 0.87-2.02% F1. This is because
the baseline F1s already exceeded 94%, and when teams
tried to add rules to increase F1 further, they overfit the
development set.

Teams reported spending 5-50 hours, for an average of 12
hours (including reading documentation and labeling sam-
ples) on matching. They reported liking debugger support,
ease of creating custom features for matchers, and support

17

for rules to improve learning-based matching. They would
like to have more debugger support, including better order-
ing and visualization of matching mistakes.

6.2 Experience with Organizational Data
We now describe our experience with Magellan at Wal-

martLabs, Marshfield Clinic, and Johnson Control. These
are newer and still ongoing evaluations.

WalmartLabs deploy multiple EM systems for various pur-
poses. As a first project, the EM team tried to debug a sys-
tem that matches product descriptions. Since it is a compli-
cated “blackbox” in production, they tried proxy debugging
(Section 4.5). Specifically, they debugged a random forest
based matcher and used the debugging result to clean the
data, fix labels, and add new features. This significantly im-
proved the system in production: increasing recall by 34%
while reducing precision slightly by 0.65%. This indicates
the promise of proxy debugging. In fact, 3 teams out of
the 24 teams discussed in the previous subsection also used
proxy debugging.

For Marshfield Clinic, we are currently helping to develop
an EM workflow that uses learning and rules to match drug
descriptions. Here labeling drug descriptions is very expen-
sive, requiring domain experts who have limited time. They
are also concerned about skewed data, i.e., too few matches
in the current data. Taken together, this suggests that the
sampling and labeling solution we discussed in Section 4.3 is
well motivated, and we have been using a variant of that so-
lution to help them label data. Yet another problem is that
the Marshfield team is geographically distributed, so they
would really like to have a cloud-based version of Magellan.

Finally, we are currently also working with Johnson Con-
trol to match data related to heating and cooling in build-
ings. The data that we have seen so far is very dirty. So
the JCI team wants to extend Magellan with many more
cleaning capabilities, in terms of Python packages that can
immediately be made to work with Magellan’s data.

6.3 Summary
Our experiments show that (a) current users can success-

fully follow the how-to guide to achieve high matching accu-
racy on diverse data sets, (b) the various tools developed for
Magellan (e.g., debuggers) can be highly effective in helping
the users, (c) practical EM requires a wide range of capabil-
ities, e.g., cleaning, extraction, visualization, underscoring
the importance of placing Magellan in an eco-system that
provides such capabilities, and (d) there are many more EM
challenges (e.g., cloud services) raised by observing Magellan
“in the wild”.

7. DISCUSSION
Our goal in this paper is not to show that we can develop

a single EM management system (EMMS) that unifies all
existing EM approaches. In fact, given the wide variety
of existing EM approaches (that use a wide variety of EM
workflows), we suspect it would be extremely difficult to
build a single unifying EMMS.

Instead, our goal is to show that (a) it is important to
go beyond EM algorithms to develop EM systems, (b) cur-
rent EM systems have major limitations that prevent their
widespread use in practice, (c) we can develop a methodol-
ogy and architecture, as exemplified by Magellan, to build
what we call “EM management systems” that address these

limitations, and (d) doing so also raises many novel research
challenges.

Our hope is that the methodology and architecture of
Magellan, as well as lessons learned building it, can be used
as a “unifying template” to develop other EMMSs. We en-
vision that each EMMS will address a set of related EM
scenarios using a set of Python packages, but that the sys-
tems can seamlessly reuse a large portion of one another’s
code and commands. (It is important to note that we do not
think each EM scenario merits its own EMMS; an EMMS
can address multiple EM scenarios, as we discuss at the end
of this section.)

To make the above discussion more concrete, in what fol-
lows we will discuss how the methodology, architecture, and
lessons of Magellan, which so far has focused on the EM
scenario of matching two tables using learning and rules,
can be applied to three additional EM scenarios: matching
strings, linking a table into a knowledge base, and EM using
iterative blocking.

Matching Strings: This is the problem of finding strings
from a single given set or across two given sets that refer to
the same real-world entity, e.g., “David Smith” and “Dave
M. Smith”. This problem is a special case of EM, but due
to its restrictive setting, it has typically been studied apart
from EM, and numerous string matching solutions have been
developed [28, 21].

Most string matching solutions focus on developing sim-
ilarity measures (e.g., edit distance, Jaccard, TF/IDF, soft
TF/IDF, etc) and scaling up matching a large number of
string pairs. The latter is often studied under the topic
“string similarity joins” or “set similarity joins” [30, 34]. To
scale, many techniques called “filtering” have been devel-
oped, such as length filtering, prefix filtering, etc. For ex-
ample, length filtering states that two strings x and y match
only if their lengths satisfy a constraint. Given this prop-
erty, we can build an index on the length of the strings, then
use this index to quickly find string pairs that can possibly
match.

Today string matching suffers from problems similar to
those of EM, namely there are numerous matching algo-
rithms but very few effective end-to-end string matching
systems. In particular, many software packages exist that
implement string similarity measures (e.g., SimMetrics [5],
SecondString [4], Jellyfish [3], Abydos [1]), but surprisingly
very few open-source packages exist that scale up these mea-
sures (Flamingo [2] is one such package). There is also no
user guidance, e.g., to select a good string similarity measure
and to debug the filtering and matching steps.

To address these problems, we advocate building end-
to-end string matching systems, and we believe that the
methodology/architecture/lessons of Magellan can be ap-
plied here. Specifically,

1. First we consider a few common string matching sce-
narios. One such scenario is to match two large sets of
strings A and B.

2. Next, we develop a how-to guide for this scenario. This
guide proposes that the user matches A and B in two
stages: development and production. In the develop-
ment state the user tries to come up with an accurate
string matching workflow. Similar to the current Mag-
ellan’s workflow (see Figure 9), this workflow consists

18

of cleaning/extracting/transforming, blocking, then match-
ing (where blocking basically implements one or more
filtering strategies).

3. To help the user develop this workflow, we can provide
tools similar to those in Magellan. For example, we
need a tool to sample sets A and B to produce two
smaller sets A′ and B′; we need tools to help debug
the blockers and matchers; and so on.

4. To help the user execute the workflow fast in the pro-
duction stage, we will develop tools that scale up steps
of the workflow, on a single machine or a cluster (using
Hadoop or Spark).

Since the workflow for string matching described above is
relatively similar to those of the current Magellan system,
we can consider extending Magellan to this string matching
scenario.

Linking a Table into a Knowledge Base: We now ex-
amine the problem of linking a table into a knowledge base
(KB). A KB captures information about a particular do-
main. It typically consists of a taxonomy of concepts (that
cover the domain), a set of instances for each concept, re-
lationships among the concepts, and domain integrity con-
straints. Given a table and a KB, we want to find all pairs
x, y) such that x is a tuple in the table and y is an instance
in the KB and they refer to the same real-world entity.

For example, let A(name, phone, address, affiliation) be
a table where each tuple describes a person. Let K be a
KB that contains a set of person instances (e.g., those of
concepts such as professor and student). Then we want
to link each tuple in A to the instance in K (if any) that
describes the same person.

A growing body of work (including some of our own [25])
has examined this EM scenario, as it arises in a growing
number of applications (e.g., search, data integration, ques-
tion answering, query interpretation).

We believe that the current Magellan solution can be ap-
plied to this problem, but it may also need to be extended.
Specifically, we can proceed as follows:

1. Each concept in the KB K is typically described using
a set of attributes (e.g., “phone”, “organization”, etc
for concept professor), so each instance is typically
described using a set of attribute-value pairs. As such,
we can extract all “person” instances from K and store
them in a relational table B.

2. Our linking problem then reduces to matching tuple
pairs between tables A and B, and a Magellan-like sys-
tem can be applied to this problem.

3. If the above approach already produces sufficiently
high EM accuracy (e.g., greater than a desired thresh-
old), then we stop. Otherwise, we need to exploit KB-
specific information to increase the accuracy. Many
solutions to do this have been proposed, and we can
consider implementing those solutions as extensions to
the current Magellan.

For example, in a recent work [25] we have developed
the following solution. Suppose the EM pipeline so far
has predicted that a tuple x matches an instance y.
To verify, classify x into a node C in the taxonomy

(e.g., “Academic Personnel”), then check if y is an
instance of a concept in the subtree rooted at C. If
not, then we can conclude that x does not match y.
We can implement this solution (as well as others) as
extensions to the Magellan’s pipeline considered so far.

Building on the above ideas, we propose to develop a table-
to-KB EM management system. First, we will develop a
how-to guide based on Steps 1-3 described above. This
guide will subsume the how-to guide of the current Mag-
ellan, but significantly extend it. The new EM workflow
will start with the current EM workflow of Magellan (which
consists of cleaning/extracting/transforming, blocking, then
matching), but extend it with steps that exploit KB-specific
information to improve accuracy (as described above). We
will still distinguish the development stage and the produc-
tion stage. In the development stage the user can use all
Magellan tools, but we will also develop tools specifically to
help exploit KB-specific information.

While it is possible to extend the current Magellan to han-
dle linking a table into a KB, we believe it is better to build
this as a separate (though related) table-to-KB EM man-
agement system that addresses just this table-to-KB EM
scenario. First, this system will already be quite complex.
So separating it from the current Magellan makes it simpler
to manage conceptually and implementation-wise.

Second, and more importantly, we suspect that a generic
table-to-KB solution may not work well for all domains. For
example, a solution that works well for social media may
not work well for biomedicine, and vice versa. Thus, we
may need to have a generic table-to-KB system and ways to
help users customize this system to each domain of interest.
This generic table-to-KB system can be implemented as a
set of Python packages (which can rely quite heavily on the
current Magellan packages).

EM Using Iterative Blocking: So far Magellan has
considered EM scenarios that cleanly separate the blocking
and matching steps. However, some EM scenarios, such
as iterative blocking [33], interleave the two. The iterative
blocking approach takes as input a table of tuples A and
outputs a partition of A into groups such that all tuples
within a group match and tuples across groups do not match.
Briefly, this approach works as follows.

1. First, we use multiple blocking heuristics to partition
A into multiple blocks. For example, one heuristic par-
titions A based on “zipcode”; another heuristic parti-
tions A based on “affiliation”. Note that a tuple from
A can end up in multiple blocks.

2. Next, for each block D, we preprocess it, then apply a
CER (i.e., “core entity resolution”) algorithm to par-
tition D into groups of matching tuples. Each such
group forms a “super” tuple.

3. Next, we send the newly created “super” tuples to all
the other blocks. The intuition is that if a block B1

has two tuples s and t, then by comparing them in iso-
lation, we may not be able to decide that they match.
However, if we have just applied the CER algorithm
to a different block B2 and determined that s matches
r, then we can send the super tuple (s, r) to B1 and
this time with the information from r, we may be able
to decide that (s, r) matches t (and thus s matches t).

19

Figure 10: The EM workflow for the scenario of matching using iterative blocking.

4. Then we repeat Steps 2-3 again, until no new super
tuples are created. At this point we can examine the
groups in the blocks to produce the final partition of
A.

Figure 10 shows the high-level workflow of the above EM
approach.

As described, in principle we can extend the current Mag-
ellan solution to incorporate this approach. First, the cur-
rent Magellan assumes blocking will produce a set of candi-
date tuple pairs. We can extend blocking to produce a set
of blocks (each of which is a set of tuples), to handle Step 1
(described above). Second, we can encapsulate Steps 2-3 in
a matcher, which takes as input a set of blocks and outputs
a final partition of table A. As such, the workflow in Fig-
ure 10 reduces to the typical workflow of current Magellan
shown in Figure 9.

In practice, we do not believe extending the current Mag-
ellan is a good idea. The iterative blocking approach is suffi-
ciently different from the current EM approaches considered
in the current Magellan system (which clearly separates out
the blocking and matching steps) that it is best to place it
in a new EM management system.

However, we should still be able to apply the same method-
ology/architecture/lessons in building Magellan to building
this new EMMS. For example, we need to start with a con-
crete how-to guide that gives step-by-step instructions to the
user, then consider how to reuse Magellan’s tools or build
new tools to help the user do these steps.

For example, at the start, how do we know which blocking
heuristics to use and how to debug these heuristics? Another
important decision (in the development stage) is to select
and debug the CER algorithm. The paper [33] describes an
elegant iterative blocking framework. But this framework
assumes a set of blocking heuristics and a CER algorithm
have already been specified. The new EMMS should help
the user make these decisions, which can have a great effect
on the ultimate accuracy of the EM process. And in helping
the user make these decisions, the new EMMS can reuse
many tools provided by the current Magellan. For example,
the Magellan tool to debug a blocker (described in Section
4.2) can also be used here to debug and find out which set
of blocking heuristics to use.

Finally, we note that the iterative blocking algorithm works
in a way that is similar to the way many EM-by-clustering
algorithms work. Thus, when we build a clustering-based
EMMS, we can also consider whether that EMMS can also
naturally cover the iterative blocking algorithm.

How Many EMMSs Do We Need? The above discus-
sion may give the impression that each EM scenario merits
its own EMMS. We do not believe this should be the case.
Instead, if a set of EM scenarios are naturally related, they
all should be addressed in a single EMMS.

For example, the current Magellan can naturally handle
EM scenarios that use supervised learning, rules, and a com-
bination of both. (Note that each of these is actually a
“group” of EM scenarios. For example, there are EM sce-
narios using supervised learning that aim for high precision,
high recall, high F-1, etc.)

As another example, many clustering-based EM scenar-
ios follow sufficiently similar algorithms that they should
be grouped into a single EMMS. And this EMMS may be
able to incorporate the iterative blocking scenario described
earlier as well.

At the moment we do not yet know how many EMMSs we
will ultimately need to cover most common EM scenarios.
But we expect that over time, as we attempt to extend Mag-
ellan or build new EMMSs to cover new EM scenarios, this
situation will become clearer. Further, as discussed earlier,
we believe that the methodology, architecture, and lessons
of Magellan can be applied to build these EMMSs. Finally,
even though this paper has focused on EM, we believe that
this methodology/architecture/lessons may also carry over
to building systems that manage other kinds of problems,
such as schema matching, IE, and data cleaning.

8. RELATED WORK
Numerous EM algorithms have been proposed [16, 22].

But far fewer EM systems have been developed. We dis-
cussed these systems in Section 2.2 (see also [16]). For
matching using supervised learning (Section 4), some of these
systems provide only a set of matchers. None provides sup-
port for sampling, labeling, selecting and debugging blockers
and matchers, as Magellan does.

Some recent works have discussed desirable properties for
EM systems, e.g., being extensible and easy-to-deploy [19],
being flexible and open source [15], and the ability to con-
struct complex EM workflow consisting of distinct phases,
each requiring a specific technique depending on the given
application and data requirements [23]. These works do
not discuss covering the entire EM pipeline, how-to guides,
building on top of data analysis and Big Data stacks, and
open-world systems, as we do in this paper.

Several works have addressed scaling up blocking (e.g.,
[18, 27, 32, 6]), learning blockers [12, 20], and using crowd-
sourcing for blocking [26] (see [17] for a survey). As far as
we know, there has been no work on debugging blocking, as
we do in Magellan.

On sampling and labeling, several works have studied ac-
tive sampling [29, 9, 11]. These methods however are not
directly applicable in our context, where we need a repre-
sentative sample in order to estimate the matching accuracy
(see Step 6 in Figure 3). For this purpose our work is closest
to [26], which uses crowdsourcing to sample and label.

Debugging learning models has received relatively little
attention, even though it is critical in practice, as this paper

20

has demonstrated. Prior works help users build, inspect and
visualize specific ML models (e.g., decision trees [8], Naive
Bayes [10], SVM [14], ensemble model [31]). But they do not
allow users to examine errors and inspect raw data. In this
aspect, the work closest to ours is [7], which addresses iter-
ative building and debugging of supervised learning models.
The system proposed in [7] can potentially be implemented
as a Magellan’s tool for debugging learning-based matchers.

Finally, the notion of “open world” has been discussed in
[24], but in the context of crowd workers’ manipulating data
inside an RDBMS. Here we discuss a related but different
notion of open-world systems that often interact with and
manipulate each other’s data. In this vein, the work [13] is
related in that it discusses the API design of the scikit-learn
package and its design choices to seamlessly tie in with other
packages in Python.

9. CONCLUSIONS & FUTURE WORK
In this paper we have argued that significantly more at-

tention should be paid to building EM systems. We then
described Magellan, a new kind of EM systems, which is
novel in several important aspects: how-to guides, tools to
support the entire EM pipeline, tight integration with the
PyData eco-system, open world vs. closed world systems,
and easy access to an interactive script environment.

We plan to conduct more evaluation of Magellan, to fur-
ther examine the research problems raised in this paper, to
extend Magellan with more capabilities (e.g., crowdsourc-
ing), and to deploy it on the cloud as a service. We will
also explore managing more EM scenarios. In particular,
we plan to extend Magellan to handle string matching, which
uses workflows similar to those of matching using supervised
learning. Other interesting EM scenarios include linking a
table into a knowledge base (e.g., [25]) and matching using
iterative blocking [33]. The former can potentially be incor-
porated into the current Magellan, but the latter will likely
require a new EM management system (as it uses a very
different kind of EM workflows).

Acknowledgment: We thank the reviewers for invaluable
comments. This work is supported by gifts from Walmart-
Labs, Google, Johnson Control, and by NIH BD2K grant
U54 AI117924.

10. REFERENCES
[1] Abydos. https://github.com/chrislit/abydos.

[2] Flamingo. http://flamingo.ics.uci.edu/.

[3] Jellyfish. https://github.com/jamesturk/jellyfish.

[4] SecondString.
https://github.com/TeamCohen/secondstring.

[5] SimMetrics.
https://github.com/Simmetrics/simmetrics.

[6] F. N. Afrati, A. D. Sarma, D. Menestrina,
A. Parameswaran, and J. D. Ullman. Fuzzy joins
using MapReduce. ICDE, 2012.

[7] S. Amershi, M. Chickering, S. M. Drucker, B. Lee,
P. Simard, and J. Suh. Modeltracker: Redesigning
performance analysis tools for machine learning. CHI,
2015.

[8] M. Ankerst, C. Elsen, M. Ester, and H.-P. Kriegel.
Visual classification: An interactive approach to
decision tree construction. KDD, 1999.

[9] A. Arasu, M. Götz, and R. Kaushik. On active
learning of record matching packages. SIGMOD, 2010.

[10] B. Becker, R. Kohavi, and D. Sommerfield.
Visualizing the simple Bayesian classifier. In
Information Visualization in Data Mining and
Knowledge Discovery, 2002.

[11] K. Bellare, S. Iyengar, A. G. Parameswaran, and
V. Rastogi. Active sampling for entity matching.
KDD, 2012.

[12] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive
blocking: Learning to scale up record linkage. ICDM,
2006.

[13] L. Buitinck et al. API design for machine learning
software: experiences from the scikit-learn project.
arXiv preprint arXiv:1309.0238, 2013.

[14] D. Caragea, D. Cook, and V. Honavar. Gaining
insights into support vector machine pattern classifiers
using projection-based tour methods. KDD, 2001.

[15] P. Christen. Febrl: A freely available record linkage
system with a graphical user interface. HDKM, 2008.

[16] P. Christen. Data Matching. Springer, 2012.

[17] P. Christen. A survey of indexing techniques for
scalable record linkage and deduplication. IEEE
TKDE, 24(9):1537–1555, 2012.

[18] X. Chu, I. F. Ilyas, and P. Koutris. Distributed data
deduplication. PVLDB, 9(11):864–875, 2016.

[19] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid,
I. F. Ilyas, M. Ouzzani, and N. Tang. Nadeef: A
commodity data cleaning system. SIGMOD, 2013.

[20] A. Das Sarma, A. Jain, A. Machanavajjhala, and
P. Bohannon. An automatic blocking mechanism for
large-scale de-duplication tasks. CIKM, 2012.

[21] A. Doan, A. Halevy, and Z. Ives. Principles of Data
Integration. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition, 2012.

[22] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE TKDE,
19(1):1–16, 2007.

[23] M. Fortini, M. Scannapieco, L. Tosco, and T. Tuoto.
Towards an open source toolkit for building record
linkage workflows. In In Proc. of the SIGMOD
Workshop on Information Quality in Information
Systems, 2006.

[24] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh,
and R. Xin. CrowdDB: answering queries with
crowdsourcing. SIGMOD, 2011.

[25] A. Gattani et al. Entity extraction, linking,
classification, and tagging for social media: A
Wikipedia-based approach. PVLDB, 6(11):1126–1137,
2013.

[26] C. Gokhale, S. Das, A. Doan, J. F. Naughton,
N. Rampalli, J. Shavlik, and X. Zhu. Corleone:
Hands-off crowdsourcing for entity matching.
SIGMOD, 2014.

[27] L. Kolb, A. Thor, and E. Rahm. Dedoop: efficient
deduplication with Hadoop. PVLDB, 5(12):1878–1881,
2012.

[28] G. Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33(1):31–88, Mar.
2001.

21

[29] S. Sarawagi and A. Bhamidipaty. Interactive
deduplication using active learning. KDD, 2002.

[30] S. Sarawagi and A. Kirpal. Efficient set joins on
similarity predicates. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’04, pages 743–754, New York, NY,
USA, 2004. ACM.

[31] J. Talbot, B. Lee, A. Kapoor, and D. Tan.
Ensemblematrix: Interactive visualization to support
machine learning with multiple classifiers. CHI, 2009.

[32] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using MapReduce. SIGMOD, 2010.

[33] S. E. Whang et al. Entity resolution with iterative
blocking. SIGMOD, 2009.

[34] M. Yu, G. Li, D. Deng, and J. Feng. String similarity
search and join: a survey. Frontiers of Computer
Science, pages 1–19, 2015.

22

