
Mass Collaboration: A Case Study

Raghu Ramakrishnan
University of Wisconsin-Madison, raghu@cs.wisc.edu

Andrew Baptist
ADP, abaptist@cs.wisc.edu

Vuk Ercegovac
University of Wisconsin-Madison, vuk@cs.wisc.edu

Matt Hanselman
ADP, mjhans@cs.wisc.edu

Navin Kabra
Veritas, navin.kabra@veritas.com

Amit Marathe
AT&T Research, marathe@research.att.com

Uri Shaft
Oracle Corporation, uri.shaft@us.oracle.com

Abstract

We present an overview of a novel customer support sys-
tem developed at QUIQ between 1999 and 2003. The appli-
cation was perhaps the first systematic use of mass collabo-
ration, which builds on the observation that large communi-
ties of users can be effectively leveraged to help each other,
and to advance the interests of the community as a whole.
In recent years, mass collaboration has been proposed for
uses such as information integration and even program de-
bugging, and shows much promise. In this paper, we outline
the main ideas and technical challenges, and describe the
QUIQ architecture. Technically, the main achievements in-
clude a novel DB-IR engine; a scalable notification engine
for a rich class of user-specified alerts; a powerful access
control mechanism with support for roles, dynamic groups,
and field-level access control; and techniques for editing
navigation hierarchies in dynamic sites.

1. Introduction

1.1. Mass Collaboration for Customer Support

Customer-support plays a key role in retaining and ex-
panding a company’s customer base, and companies typ-
ically offer many channels of support, including phone
and online support. Online support, especially self-service
through a knowledge-base, is by far the least expensive
channel, provided that the customer can find a satisfactory
answer easily. If a question escalates to a phone call, and
then to a “ticket” in a request-tracking system, the cost of
resolving the issue escalates accordingly (and rapidly). For
many settings, unfortunately, it is impractical to maintain

a comprehensive and current knowledge-base, for a variety
of reasons—sometimes, an issue involves several products,
some from other vendors, in unexpected combinations; or
the product line may be evolving quickly, with many ver-
sions, each with their own quirks. Obviously, such scenar-
ios also make it difficult to train support personnel.

The established base of customers who use the product,
not surprisingly, is often the best place to look for knowl-
edgeable experts. And perhaps surprisingly, there are typi-
cally a large number of customers who are willing to help
other customers out by answering a question. The idea be-
hind the QUIQ customer-support application, used by a
number of companies in the high-tech sector, is to tap into
this community of customers as a source of support. The
simplest approach is to simply use a message-board, and
to let customers discuss issues with other customers. How-
ever, message-boards are designed for casual threads of dis-
cussion, not for goal-directed interactions. They have poor
search capabilities, no mechanism for role-based control of
information flow, making it difficult to seamlessly integrate
multiple levels of data and service based on the level of sup-
port that different groups of customers have contracted for.
The QUIQ system was designed to address these limita-
tions, while retaining a simple message-board type inter-
face to encourage casual interactions, and has the following
features:

• User-Centric Organization: The user interface was
designed to help users find answers to their questions
by either browsing hierarchically organized web pages
or posting their question. When posting a question, a
user is presented with a set of answers, and proceeds
to post only if there is no satisfactory answer. Thus,
assuming that the search capability can retrieve appro-
priate answers if they exist, the same issue is not ad-

dressed over and over, as in a message board; rather,
an existing dialog might be deepened and commented
upon further. What a user sees at any point is gov-
erned by a number of factors, including their customer-
support level and the corresponding access to various
internal knowledge-bases, and the user groups they be-
long to. However, the user never has to keep these nu-
ances in mind, and can simply ask a question; the sys-
tem takes the user’s privileges into account and returns
the best answers that the user is authorized to see.

• Routing Services: Once a question is asked, several
routing mechanisms exist to ensure that a satisfac-
tory answer is returned. First, users can specify so-
phisticated saved searches, and receive notifications
by email when relevant answers are posted. Second,
posted questions enter a workflow, and are escalated
to the attention of paid support-personnel (perhaps by
logging them into another CRM application, such as
Siebel) if they are not answered (by the community
at large) within the window of time appropriate to
the customer’s support level. Observe that posted mes-
sages should be seen in real time. (A user who posts a
question will be annoyed if it is not immediately visi-
ble! Indeed, it must be searchable in real-time, since
we want timely answers from other viewers, within
short contractually-specified timeframes.) Posted an-
swers also go through a customizable workflow, to en-
sure desired levels of quality. For example, answers
posted by a typical customer are visible immediately,
while those posted by ’experts’ (either distinguished
customers invited to this status, or paid support per-
sonnel) might require a round of editing and approval.

• Intelligent Search: In terms of both presentation and
internal structure, all posted messages are organized in
question-centric units to facilitate search. These units
consist of a question and all answers posted in re-
sponse, together with a thread of discussion per an-
swer. When searching, this unit is the analog of a ’doc-
ument’, and the unit of retrieval. Matches are given dif-
ferent importance based on whether the search terms
appear in the question part, an answer, or in a sub-
sidiary discussion. In addition to messages posted by
users, each question-unit has additional ’hidden’ text
and metadata, which is also used when searching for
matches to a customer’s question. In addition to infor-
mation such as the poster’s identity and the time of
posting, information about the poster’s authority, the
quality of an answer, the popularity of a question, and
a profile of related searches are maintained. (See Sec-
tion 5.) Typical user searches are translated into com-
plex selection queries with twenty to thirty constraints,
including about a half-dozen keyword constraints. Re-

sults are ranked, and must reflect recent updates in near
real-time.

• Data Mining and Business Intelligence: User activ-
ity in the form of postings and searches is a rich source
of information about individuals and postings, in terms
of their influence and value in the community. Mining
this content can yield detailed user and content pro-
files, which are valuable for search and content routing,
as noted earlier. The QUIQ system includes an auto-
matically updated warehouse that integrates informa-
tion from the database as well as the saved searches en-
gine and web browser logs, which are carefully instru-
mented to provide detailed information such as con-
text and duration for each click. Continually refresh-
ing the database indexes to reflect these constantly up-
dated profiles is essential for searches to fully bene-
fit from this information, and is achieved as part of the
novel hybrid DB-IR engine. Further, the warehouse is
the basis for extensive reporting capabilities, and sup-
ports functionality such as identifying active partici-
pants who are candidates for recognition and incen-
tives.

The rest of this paper is organized as follows. We de-
scribe the overall Architecture in Section 2. We discuss the
role- and group-based authorization capability in Section
3. We outline the Token Index in Section 4, and the saved
searches engine in Section 5. A novel aspect of the QUIQ
system is its extensive use of a new hierarchy data type; we
describe this in Section 6.

2. System Architecture

Lower Network

RDBMS
Token Servers Mirrored

File Server

Notification

 Engine

Load Balancers

 and Firewalls

Higher Network

Application/Web

 Servers

Data Service

 Tier

QuiqServer

 Tier

 Data

Warehouse

Administration

 and Monitors

Figure 1. QUIQ System Architecture.

The QUIQ architecture is divided into two tiers, as
shown in Figure 1:

Data Service Tier: This tier is responsible for storage and
retrieval of the data. This includes both the knowl-

edgebase (containing information about users and their
questions/answers) and the data warehouse.

QUIQServer Tier: An application server that acts as a
bridge between the end-user and Data Service Tier.

2.1. The Data Service Tier

The components of this tier are as follows:

Relational Database Management System (RDBMS):
We use a commercial database system to han-
dle the ACID transaction properties required by the
whole system. The database is also used for com-
munication between components when we need to
guarantee ACID transaction properties on the commu-
nication. We also use the database to log jobs to be
performed by the token index and the SSE.

Token Index: This component [13, 14] handles queries
that involve some information retrieval. It han-
dles queries of the kind “Find all tuple-ids in a
given table whose fields contain a specific list of to-
kens.” The token index can handle boolean combina-
tions of constraints or the form “token T exists in field
F”. The index is updated through a job table in the
database. It ensures a very short delay (seconds) be-
tween the time an update is posted in the job table and
the time it is indexed and can be fetched as a query re-
sult.

File System: The file system is used for fast storage, up-
date and retrieval for large documents. It is much
more efficient than database Large Objects (LOBs).
We maintain ACID transaction properties over the file
system using a technique that is almost identical IBM’s
method [1]. (We implemented this part of the system
independently about three years before that publica-
tion.)

Saved Search Engine (SSE): Notification requests, or
saved searaches, are maintained in the database
and can be managed by the user through simple ap-
plication work-flows. The SSE builds an index
on all these notification requests. It polls all ta-
bles in the database on a regular schedule (using
timestamps) and combines the results into notifica-
tion emails.

Data Warehouse: This is another commercial relational
database system used to support data mining and re-
porting. The data is gathered by the administration ma-
chines from all sources (RDBMS, file system, logs
from the application servers).

Connection Software: We embedded the software for
connecting all the Data Service Tier components in the

QUIQServer application tier software. The most im-
portant part of the QUIQServer software is the Query
Optimizer. Since some of the indexes in the system re-
side in the Token Index machines, and some data (doc-
uments) resides outside the database, we need a
query language and query optimizer to bind these re-
sources together.

2.2. The QUIQServer Tier

This tier is responsible for managing a request from the
user, such as a search or posting of a question. The two
main components are the Application Server and the Saved
Search Engine (SSE). The block diagram in Figure 1 shows
these components as belonging to both the Data Service
Tier and QUIQServer. The lowest layer of the software run-
ning in the Application Server and the SSE deals with ac-
cess to the Data Service tier, and is essentially the call in-
terface that knows how to interact with a relational database
and a token index. The architecture of the SSE is discussed
in Section 5. The rest of this section covers the Applica-
tion Server, which contains three layers: Data Access, Busi-
ness Logic and Presentation.

Data Access: This layer manages the data schema for
a QUIQ application. The schemas consist of tables (and
indexes) using some common data types such as number,
string and timestamp. The QUIQ application also uses the
more complex data types Hierarchy and Document. In all
cases, the data access layer translates common operations
into the languages understood by the database, the token
index and the file server. These operations include inserts,
deletes, updates, queries, and schema modification. For
queries, this layer is responsible for optimization when we
need to access more than just the relational database. The
schemas can specify indexes in both the relational database
and the token index. Query optimization takes both types of
indexes into consideration, and is discussed further in Sec-
tion 2.3.

Business Logic: This layer is responsible for workflows
of the application. We maintain a persistent user state be-
tween user requests. This state includes the most recent op-
erations and the user’s credentials. This layer is responsible
for translating a user request into operations that are given
to the Data Access layer. For example, posting a question
involves decoding the HTTP messages from the user, un-
derstanding which part of the workflow the user is in, and
generating the appropriate queries and updates for the Data
Access Layer.

Presentation Layer: This layer is responsible for cre-
ating a response to the user after the Business Layer con-
cluded its job and issued a “commit” operation. The data ac-
cumulated by the Business Layer is transformed into a doc-

ument that is returned to the user. This is usually an HTML
web page. Some workflow results are plain text or XML.

2.3. Query Types and Optimization

Results to almost all queries initiated by users of a
QUIQServer application are displayed to the user and not
consumed by another application. This means that results
are browsed in small quantities, and must be returned within
a few seconds at most. We display the results in “windows”,
beginning with the top n results. When the user requests
more, we display the next n results and so on. (The user can
also go back to previous result windows.) We sort query re-
sults on a unique key, and get the next window of results by
re-issuing the query with an additional constraint that the
sort columns must be higher than the sort value of the pre-
vious window’s last result.

QUIQServer supports three types of queries: pure
database query, pure token index query and hybrid queries.

Pure Database Queries: These queries are processed by
the relational database. Obviously, we are restricted to rela-
tional operators (i.e., standard SQL). To get the proper per-
formance for result windows, we have to build the appropri-
ate indexes and perform top n optimization, but most of the
optimization can be left to the database system.

Pure Token index Queries: These types of queries se-
lect tuples from a single table using constraints that can all
be evaluated by the token index. The results are returned
in order of relevance (determined by our IR algorithm) and
tuple-id (for uniqueness). Optimizations for result windows
are built into the token index. The token index returns only
relevance values and tuple-ids, so we need to go to the rela-
tional database to fetch the documents in the result window,
based on the tuple-ids. Note that the token index can handle
relational constraints on numbers, strings and even times-
tamps. Therefore, this query class is very useful.

Hybrid Queries: These queries require use of both the
token index and the relational database. The query opti-
mizer creates a query plan which is a tree of operators.
There are only two types of leaf operators: relational query,
and pure token index query. The connecting operators can
perform sorting, joins, filtering, etc. In this case, most of the
optimization is done by the QUIQServer software. In addi-
tion, we support sort orders that do not include the token in-
dex relevance calculation. A QUIQServer application will
often return results sorted by some timestamp, or other re-
lational column.

2.4. Deployment

The QUIQ architecture is designed for very high fault
tolerance, with extensive use of parallelism to maintain high
availability and scalability. A single deployment consists

of multiple application server machines, multiple token in-
dexes and a mirrored file server. In addition, the QUIQ ar-
chitecture includes monitoring machines that check on all
the other components (and each other) and notify the admin-
istrators of any problems. These monitors can also restart
failing components automatically. The QUIQ architecture
is designed as a hosted solution, which allows a continuum
of sharing of computational resources amongst customers.

3. Access Control

There are two levels of access control in the QUIQ sys-
tem. The first level is authentication, and this is handled
through a password mechanism. When a user logs in, the
system loads and caches the capabilities for the user. These
capabilities, described below, determine what the user can
view and do (e.g., in terms of various system workflows),
and are enforced in two steps: (1) Every action in the sys-
tem involves issuing a query (if only for authorization pur-
poses), and the current user’s capabilities are automati-
cally expanded into additional query constraints. (2) The
QUIQServer query evaluation enforces these constraints.

3.1. Example

Consider the scenario where the QUIQ Application is
used in the context of a photo editing application. Questions
are organized by a hierarchy of issues. For example, Al-
ice frequently reads and posts questions related to Installa-
tion issues. Bob on the other-hand is an expert in the Edge-
detector plug-in which is found under the generic Plug-in
category. We would like to specify that Alice is an enthu-
siastic user whose contributions are valued and is restricted
to post no more than five questions to the installation cat-
egory. Bob is an expert so can contribute ten questions. In
addition, questions may be marked as requiring expert as-
sistance thus routing them to users such as Bob.

Access control in the QUIQ architecture allows such
rules to be easily specified by using a Role based system.
A dynamic set of roles is supported and for each role, a dy-
namic set of users may be associated. From the example
above, we have two roles: expert and enthusiast. Each role
can be used to determine whether a question can be read
and how many postings are allowed. This illustrates how
roles can be parameterized. Additionally, membership in a
role can also be parameterized. For example, Bob’s role as
an expert is restricted to the plug-in/edge-detector category
while Alice’s enthusiasm is similarly restricted to installa-
tion. The following sections describe how this example can
be enforced.

3.2. Access Control Structures

Two tables are used to describe access control in a QUIQ
application:

Capability: A set of roles and for each role, the parame-
terization of each capability supported by the system. A ca-
pability parameterization can be used to restrict access to
data or determine how an action is evaluated. The key for
Capability is <Role>; its schema is as follows:

<Role, cap1, cap2, ... capN>

Membership: An association between users and roles de-
fined in the Capability table. Each association can be param-
eterized to restrict the portion of the database over which a
rule is applicable on a per user basis. The key for Member-
ship is <UserId, Role>; its schema is as follows:

<UserId, Role, Param1, Param2, ... ParamN>

From the example above, the following tables would be
used:

Role Private? Limit
Expert true 10

Enthusiast false 5

Table 1. Example of Capability Table

UserId Role Category
Alice Enthusiast Installation
Bob Expert Plug-in/Edge Detector

Table 2. Example of Membership Table

The set of all capabilities in the system is cached across
all the servers at initialization time. In addition the set
of memberships that a user has is loaded when the user
first logs in and stored in the session. The computation of
whether the user has permission to perform an operation is
calculated at run time from the two in memory caches us-
ing the combination functions defined above. The caching
at the user level is periodically refreshed (every 15 minutes)
in order to handle any changes that may occur to the users
permission while accessing the system.

3.3. Access Control for Queries

In the case of queries, the capabilities associated with the
user who submits the query are used to rewrite the query
such that only the accessible records are returned. From

the example, if Alice requests questions from either the In-
stallation, Plug-in, or Edge-detector categories, the result-
ing questions will only contain public questions. The same
is true for Bob except for the Edge-detector category where
private questions will also be visible.

The query example illustrates row-based access control.
If access control over a record’s field value is required, the
same data structures are used in a post-processing step that
follows the retrieval of records from the data servers and
preceeds the presentation to the user.

3.4. Access Control for Actions

For actions such as posting questions, the same access
control data-structures are used. The limit of five postings
for Alice in the Installation category may be more than
other categories, allowing her posting to succeed. Similarly,
Bob’s posting to Plug-in may not succeed depending on his
current posting count for that category whereas for Edge-
detector, the posting may succeed.

Because a user can be a member of several roles and they
can have conflicting capabilites, there is a need to resolve
these conflicts. For the simple boolean capability, there are
2 options for resolution, either the permission is granted if
ANY of the roles has the capability, or the permission is
granted only if ALL the roles have the capability. Typically
the ANY combination would be used to grant additional
permissions while the ALL combination could be used to
restrict permissions. For more complex types any function
can be applied to return a single value based on a set of in-
put capbilities and memberships.

4. Token Index

The QUIQ architecture bridges relational queries and
IR search: (1) Relational and keyword predicates can be
used to filter records, and (2) a scoring function that deter-
mines relevance can be computed based on both relational
and free-text attributes. Such a query paradigm is supported
by the QUIQServer query evaluation component, making
use of the Token Index. The QUIQServer is responsible for
building the query to send to the Token Index, merging
the results with other data servers, and incorporating trans-
parency feedback from the Token Index in order to better
explain to the end user the reason for returning each result.
The following sections discuss in greater detail the func-
tionality supported, the implementation approaches taken,
and the query paradigm.

4.1. Token Index Functionality

The Token Index is an inverted index that maps tokens
from a given collection to posting lists consisting of a set

of record identifiers (RID’s) and a count. The count repre-
sents the number of occurences of a token within a token-
field. A token-field may correspond directly to a collection
field or may be the result of some function. For example, a
token-field defined as the union of all text fields in a collec-
tion is maintained in the Token Index to facilitate queries
over any record fields containing free-text. Any data type
that can produce tokens can utilize the Token Index.

The operations supported by the Token Index are:

• Query: retrieve a set of RIDs computed through the
evaluation of a query using the query paradigm de-
scribed in section 4.3. The result may be sorted by
score and a data structure aiding transparency can be
optionally returned. The set can be retrieved in batches
in order to increase responsiveness.

• Modification: updates, inserts, and deletes are sup-
ported at the record level.

• Bulkload: an algorithm optimized for loading large
collections of data rather than freshness.

4.2. Token Index Implementation

The Token Index consists of two types of processes:
servers maintain the inverted index and answer queries sub-
mitted by the QUIQServer while readers distribute to all
servers the necessary updates in order to synchronize them
with the current database state. Our basic idea is to de-
fer applying update operations to the servers’ persistent
store. Updates are handled in three steps: (1) Changes to
the database are reflected in a special table. (2) The changes
are continually polled by the reader process and incorpo-
rated into a differential index structure. (3) The main in-
dex is periodically refreshed to absorb the differential in-
dex. These details must be transparent to data retrieval oper-
ations, and therefore retrieval operations have an additional
step of checking results against the differential index to ad-
just for changes that have not yet made it to the main in-
dex.

The differential approach to managing updates is imple-
mented through two types of indexes:

Static index is persistent and is organized exclusively for
efficient retrieval. Its posting lists are tightly packed
and possibly compressed on disk.

Dynamic index is transient and in-memory, and is orga-
nized for efficiently accomodating updates.

4.2.1. Operations: The format for insert and update op-
erations is assumed to be record oriented; multiple token-
fields with multiple tokens are provided per RID. Deletes
only specify the RID. Queries are assumed to be an expres-
sion tree whose leaf-level nodes fetch a posting list given a

token. The operations use the two-level index structure as
follows:

Insert: If no entry is found for a token in the dynamic in-
dex, a new posting list is created containing the RID. If
a posting list exists with the given RID, the count is in-
cremented.

Update: A posting list for a token may contain entries for a
RID in either the static or dynamic index. If a RID does
not exist in the dynamic index, the operation proceedes
as an insert and takes precedence for reads over the
static entry. The complicated case arises when the dy-
namic index contains entries for the RID. In this case
the most recent token-field state must be preserved in
order to compute the appropriate token inserts as well
as counter increments and decrements.

Delete: A bit-vector where the ith position determines
whether a RID is deleted or not.

Read: The posting lists found in the static and dynamic in-
dexes are merged. The merge operation for reads first
removes those static index RIDs that are

given precedence by updates in the dynamic index.
Then, RID counts in both are added and the final result
is masked by the delete bit-vector.

4.2.2. Merge: The approach used to defer changes is
based on the assumption that the number of changes
will be small relative to the number of queries. Period-
ically, the static and dynamic indices are merged into a
new static index which replaces the existing static index.
Two techniques are used in order to reduce down-time dur-
ing merge: (1) the index is partitioned by token into N

partitions and (2) the merge is written to a copy which re-
places the existing version when merge is complete. The
first technique allows the merge of the entire index to pro-
ceed incrementally. The second technique increases fresh-
ness by allowing reads and updates to proceed concurrently
with merge.

In practice, the number of partitions used is 100 to 200

and cycling through all partitions for merge is spaced out
over a 24 hour period. Continual rewriting effectively par-
titions the index by time of updates: old changes are in the
static index and the new changes are in the dynaic index.
Additional benefits are gained by piggy-backing extra deci-
sions and updates while rewriting the entire index: (1) statis-
tics from analysis/mining of query and update traces can be
used for system self-tuning at the storage level (2) format-
ting updates required by new software versions are easily
phased in.

4.2.3. Incorporating the Results of Data Mining: The
Merge scheme described above provides a convenient in-
sertion point for the results of data mining, which, in prin-
ciple, continuously update each row describing a question

or user with improved profile information. The updates are
never propagated to the database itself. Rather, correspond-
ing changes are made to the token index, and these changes
are piggy-backed onto the merge step. Thus, we side-step
the problem of declustering the DBMS’s index structures
due to a large number of updates on indexed fields.

4.2.4. Concurrency Control: Handling concurrent reads
and update operations requires only the use of short-term
latches since the static index on disk is not modified by up-
dates. Merges however require extra care for correctness
and efficiency. In order to allow reads and updates to pro-
ceed during a merge on partition Pi, the dynamic index for
a partition is frozen by exclusively locking Pi. The times-
tamp T of the most recently applied job is recorded for re-
covery purposes and a new dynamic index is created that ac-
cepts updates. After releaseing the lock, the merge proceeds
to create a new static index timestamped with T . Pi is exclu-
sively locked while the current static index is replaced with
the new static index which concludes the merge for Pi. Dur-
ing merge, readers must consider the static index as well as
the frozen and current dynamic index. Down-time is min-
imized due to the short period that the partition is exclu-
sively locked as well as the ability for updates and reads to
proceed concurrently with the merge process.

4.2.5. Recovery: The Token Index is recoverable through
the use of a redo log maintained as a table in a comercial
database. The QUIQServer submits update jobs to the To-
ken Index by inserting timestamped jobs into the redo ta-
ble. The reader process uses the timestamp to insure that
all servers obtain all jobs in the most same order. The de-
lay in practice between the QUIQServer subitting a job and
the server obtaining the job is 30 seconds. On start-up or
during a crash recovery, the servers obtain their minimum
Ti amongst all partitions, and the reader uses the minimum
amongst all servers to determine the point in the redo ta-
ble from where to begin reading jobs.

4.3. Token Index Query Paradigm

The query paradigm supported by the Token Index al-
lows the combination of database-style exact queries along
with IR-style approximate queries. Both types of queries
can be applied to either free-text or relational data types
through the appropriate value tokenization. A query is a tree
of exact and approximate constraints where constraints are
combined using AND and OR boolean connectives. Ad-
ditionally, constraints may be weighted in order to boost
scores depending on which token-fields they range over.
The output is a list of scored RIDs.

Evaluating a query proceeds by obtaining token posting
lists for the leaf constraints and annotating all constraints
with a computed score and a flag indicating whether the re-

sult is approximate or exact. The scoring function used is
the commonly used TF/IDF scoring function used in IR sys-
tems [22]. We are not constrained to a particular scoring
function however. Marking constraints as exact or approx-
imate determines whether a RID is included, how to com-
bine scores, and how to annotate the parent node. Exact con-
straints are similar to the SQL WHERE clause in that RID’s
are filtered. Approximate constraints add RID’s and score
the results. Scores originating from either exact or approxi-
ate nodes are summed together to produce the score for the
parent contraint.

In addition to the scored result set, the Token Index
can provide useful feedback that can be used increase the
transparency of the results by explaining to the user why
the results returned match their query. Several pieces of
information are available: (1) the query plan is annotated
with scores, (2) matched token inverse document frequency
(IDF), and (3) each records matching tokens allong with
their term frequency (TF). The feedback information is used
to highlight words in the matching results, construct sum-
maries from large text fields, and suggest queries to find re-
sults similar to a given record. In order to not overwhelm the
user, the decision for which words to highlight and summa-
rize is driven by the scores avaialable in the feedback.

More details about the Token Index query paradigm, im-
plementation, and performance can be found in [14].

5. Saved Searches Engine

The Saved Searches Engine (SSE) manages all subscrip-
tions within the system. A subscription is a query over the
underlying tables that triggers a notification whenever a tu-
ple satisfying the query enters the database (due to either
an insert or an update). Subscriptions have also been called
continuous queries and alert profiles elsewhere in the lit-
erature. They can be thought of as having three main as-
pects: query, periodicity, and lifetime. The query is the con-
dition to be satisfied by a new (or updated) tuple to trig-
ger this subscription. The periodicity determines how often
the subscription is triggered within a time window. It can
range from instant (notification generated immediately) to
daily or weekly. For subscriptions with non-instant period-
icity, multiple alerts are coalesced into a single notification.
The lifetime component governs how long the subscription
is retained by the SSE. This parameter is used to purge sub-
scriptions that are unlikely to be triggered, or are not re-
quired, in the future.

5.1. Query Language

The query component is a necessary and suffi-
cient condition to trigger the subscription. It is a logical
expression involving constants, field names and arith-

metic/comparison/logical operators that evaluates to true
or false on every tuple. Conceptually, the SSE evalu-
ates all queries for every new tuple and triggers those
subscriptions for which the evaluation returns true.

It should be pointed out that joins are not permitted in
the query. Thus all field names in the query refer to fields of
a single table.

5.2. Indexing

The SSE design requirements call for managing millions
of subscriptions at an update volume of several thousand
tuples per day. Therefore, it is infeasible to evaluate ev-
ery query for each new tuple. Rather, given a new tuple we
should be able to quickly find all the matching queries (i.e.
queries which evaluate to true on this tuple). To achieve this
goal we build an index on the queries. This is the oppo-
site of a conventional index which, given a query, enables
fast retrieval of all matching tuples.

The index can be thought of as a map from atomic con-
straints to a bitmap whose length equals the number of
queries in the system (an atomic constraint is an expres-
sion of the form “FIELDNAME = LITERAL”). The bitmap
corresponding to atomic constraint c will have a 1 in posi-
tion i if and only if query i directly or indirectly contains
c. Therefore any new query the server encounters is bro-
ken down to extract a list of atomic constraints and this map
(from atomic constraints to bitmaps) is updated according
to the above rule.

The index also maintains for each query a triplet (min,
exact, max) of integers (min ≤ exact ≤ max) with the fol-
lowing semantics:

min at least these many atomic constraints in the query
have to be satisfied by a matching tuple.

exact if these many atomic constraints are satisfied by a tu-
ple then that tuple matches the query.

max at most these many atomic constraints in the query
can be satisfied by a matching tuple.

As an example, consider the query “x=1 AND (y=2 OR
z=3)” where x,y,z are field names. The atomic constraints
of this query are “x=1”, “y=2” and “z=3”. And it is easy to
argue from the structure of the query that (2, 2, 3) is a triplet
for this query.

It is important to observe that the definition does not call
for the best possible values of min, exact and max: it is valid
to underestimate min and overestimate exact and max. So
(0, ∞, ∞) is another triplet for the example query above
(in fact it is a triplet for all queries). When calculating these
triplets in the server we do want to obtain optimum values
(since the efficiency of the index is thereby improved) but
we don’t have to expend an inordinate amount of time in the
calculation: a little sloppiness is tolerable.

The calculation of the triplet for a query is done re-
cursively according to the following theorem (the proof of
which is omitted due to space constraints).

Theorem 1 Let A and B be logical queries with triplets (p,
q, r) and (s, t, u) respectively. If A and B have no atomic
constraints in common then

triplet(atomic constraint) = (1, 1, 1)
triplet(other comparisons) = (0, ∞, ∞)
triplet(A AND B) = (p+s, max(q+u,t+r), r+u)
triplet(A OR B) = (min(p,s), q+t-1, r+u)
triplet(NOT A) = (0, ∞, ∞)

To obtain a list of queries corresponding to a tuple from
these index structures the tuple is converted into a list of
atomic constraints: if the tuple has values v1, v2, . . . , vn in
fields f1, f2, . . . , fn the list is “fi = vi” i = 1, 2, . . . , n.

The index map is probed for each atomic constraint in the
list and the corresponding bitmaps (n of them) are added to-
gether. The result is a non-negative integer for each query in
the system. Let (min, exact, max) be the triplet for the query
and let c be the non-negative integer obtained by the bitmap
addition for this query. Categorization of all queries into ex-
act, possible and non-matches (with respect to the given tu-
ple) is done as follows:

c < min ⇒ NO match
min ≤ c < exact ⇒ POSSIBLE match
exact ≤ c ⇒ EXACT match

Exact-match queries don’t require further processing.
Possible-match queries have to be post-processed against
the tuple to check whether they really match. Queries which
are an AND combination of distinct atomic constraints
(pure AND queries) never require any post-processing. The
same applies to pure OR queries. We can also say that
queries in conjunctive normal form, in which each disjunc-
tion is a OR of mutually exclusive atomic constraints (e.g.
“(x = 1 OR x = 2) AND (y = 3 OR y = 4) AND z = 5” will be
exact matches as well (provided we special-case the triplet
calculation of such queries). Other queries may not always
be exact matches: it depends on the optimality of the triplet
calculation and the values in the incoming tuple.

5.3. Architecture

The SSE consists of the server and mailer processes
which communicate over the network. The server period-
ically polls the main database to retrieve new subscriptions
and new tuples which may match existing subscriptions. It
then sends a list of matching (subscription, tuple) pairs to
the mailer which performs the task of dynamically gener-
ating the notification email and forwarding it to the mail
server.

Splitting the functionality into two processes (rather than
having a single monolithic process) allows the server and
mailer to run on different machines in case of high load. In
addition to enabling the administrator to configure the sys-
tem according to the demands of her site, it also makes for
a clean seperation between the subscription (which queries
have been matched by the latest tuples) and the notification
(how to inform the subscription owner of relevant modifica-
tions).

The following subsections give an overview of the vari-
ous components within these two processes.

5.3.1. RefreshThread and TupleCache: The Re-
freshThread polls the database on a regular basis for
new/updated tuples. All the content tables have a field
which stores the timestamp at which the tuple was last
modified. There is also an index on this field for all con-
tent tables. Therefore, the RefreshThread can do its task
very efficiently.

The modified tuples discovered by the RefreshThread
are placed in the TupleCache, which is an in-memory store
of all recently inserted/updated content tuples. Internally,
we use a slotted page structure commonly found in many
databases. To avoid expensive system calls for allocating
or deallocating memory, the server itself manages a global
pool of pages which are requested and returned by the Tu-
pleCache.

Inside the TupleCache, tuples are organized on the basis
of their content table. That is, tuples from the same content
table are stored together. This makes it possible to quickly
retrieve (from other parts of the server) all tuples in a partic-
ular content table which have been modified within a time
window.

5.3.2. QueryThread and QueryIndex: The QueryIndex
is the inverse index described in the previous section. It is
maintained by the QueryThread which periodically scans
the database table for modified subscriptions and makes cor-
responding changes to the QueryIndex. The QueryThread
also maintains one result file per periodicity (instant, hourly,
daily and weekly subscriptions). It uses the TupleCache to
obtain a list of all content tuples which have been modified
since the last iteration. For each tuple in this list, it looks
up the QueryIndex to determine all the satisfying subscrip-
tions for that tuple and writes every matching (subscription,
tuple) pair to the appropriate result file. At the end of a pe-
riod, the result file is sent to the mailer for further process-
ing.

5.3.3. ResultThreads and MailThreads: Once the
QueryThread has sent a result file to the mailer, it
is picked up by a ResultThread. There are 4 Result-
Threads, one each for instant/hourly/daily/weekly periods.
They parse the result file and generate the notifica-
tion email which should be sent to the subscription owner.

These emails are placed on a queue from where they are for-
warded to a mail server by the MailThreads.

5.4. Miscellaneous Issues

5.4.1. Correctness: Any subscription system must satisfy
three correctness properties: (1) No subscription should be
triggered spuriously (no false positives), (2) every change
to content tuples should trigger all matching subscriptions
(no false negatives), and (3) no subscription should be trig-
gered more than once for the same change (no duplicates).

The property of no duplicates is ensured by maintain-
ing some state on disk. Part of this state is a timestamp upto
which the QueryThread has processed subscriptions and tu-
ples. In the event of a crash, the QueryThread starts pro-
cessing from this timestamp forward so that tuples are not
processed twice. As an additional precaution, the Result-
Thread maintains persistently for each subscription, the up-
date time of the latest tuple to trigger the subscription. If
this thread gets a (subscription, tuple) pair in which the up-
date time of the tuple is less than the time stored with the
subscription, the notification is not generated.

The elimination of false positives is a consequence of
Theorem 1 and the way we determine satisfying tuples af-
ter index lookup (by post-processing partial matches).

To avoid false negatives we have to consider the fact that
tuples are inserted into the content tables by different web
servers, which may not agree on the current time. To ac-
count for this clock skew, the RefreshThread and Query-
Thread scan for tuples older than the maximum clock skew
(rather than for tuples older than the current time). This en-
sures that no tuples are missed in the processing.

5.4.2. Robustness and Recovery: To recover quickly
from crashes the QueryThread keeps most of the in-
dex on disk. This allows it to have a fast startup by
eliminating the need to read and index all the subscrip-
tions each time. To rectify possible corruption of the
on-disk files due to crashes the QueryThread logs the
changes to be made to the disk index before actually mak-
ing them. This write-ahead log allows it to recover a clean
version of the index in case of corruption. The Query-
Thread also keeps a write-ahead log for the four result
files.

5.4.3. Scalability: The system needs to scale to lots of
subscriptions. Assuming 1 million users and an average of
10 subscriptions per user, the number of subscriptions blows
up to 10 million. Even with a conservative estimate of 100
bytes per subscription the amount of data to be indexed is 1
GB.

Handling this much information in a single index struc-
ture means manipulating individual bitmaps in excess of
1 MB. We therefore split the index into sub-indexes, each

containing upto a few thousand subscriptions. All content
tuples now have to be looked up against each sub-index.
When a new subscription is encountered, an effort is made
to place it in the sub-index which contains subscriptions
with which it shares a lot of atomic constraints. In our sys-
tem, this is easy to do because subscriptions are not arbi-
trary but drawn from a limited number of pre-defined tem-
plates. With this optimization, index splitting is not as much
of a performace hit as it would otherwise be.

6. Hierarchy Data Type

In this section, we use the term hive (as in “a hive of
activity”) to denote a website created using the QUIQ ap-
plication, representing a live, active community that is be-
ing continually browsed and posted to. The hierarchy data-
types are used to store the navigational structure of the hive,
and one of the challenges is to be able to support changes to
this structure with minimal impact on the functioning of the
hive.

Using a hierarchical structure to organize large quanti-
ties of data is a commonly used technique found in diverse
contexts such as the internet, file systems, and libraries for
examples. The QUIQ architecture supports such an organi-
zation through the Hierarchy data type. A hierarchy is de-
fined to be a set of nodes or categories organized as a sin-
gle, rooted tree. A hierarchy instance refers to a single hi-
erarchy. Mutiple instances can be defined within a hive and
a collection utilizes them by defining possibly several at-
tributes that refer to the instances.

The QUIQ application uses a single hierarchy to orga-
nize its collection of questions and its collection of related
answers according to a classification of problems. Another
hierarchy is used to classify users according to their role in
the hive. Finally a combination of the question and role hi-
erarchy is used to determine a user’s role with regard to cer-
tain categories of questions. As a concrete example, con-
sider a group of installation related questions specific to
product xyz, version 1.2.3. User Joe may be an expert for
versions 1.2 and higher but a novice for earlier versions in
which case other users are given immediate feedback re-
garding the quality of answers given by Joe in various ques-
tion categories.

When a collection declares a field to use a hierarchy data
type, it obtains the following functionality:

• Multiple Associations: a record in the collection may
be associated with multiple hierarchy nodes from the
same instance.

• Navigation Idioms: interfaces are automatically gen-
erated to support hierarchical navigation through a
web page per hierarchical level (i.e. Yahoo [11]) and
through pull-down menus.

• Queries: are supported for matching a node and de-
scending from a node. In addition, all queries are in-
tegrated with the query paradigm discussed in Section
4.3.

• Modifications: nodes can be renamed, added, deleted,
and moved within the hierarchy. In addition, records
may be deleted or moved to other nodes.

The next section describes how the hierarchy data type
is stored in order to support the functionality required from
queries and restructuring which are discussed in the subse-
quent sections.

6.1. Storage

The Hierarchy data type is stored in two locations in a
hive’s database: (1) a separate table is used to store all in-
stance definitions and (2) each record with a declared hier-
archy field is set with a hierarchy value. In addition, hier-
archy values are tokenized and managed by the Token In-
dex for use in query processing. This section focuses on the
database storage of the hierarchy data type.

6.1.1. Hierarchy Definition All definitions per hive of
Hierarchy data type instances are stored in their own table
where each record represents a hierarchy node. The schema
is as follows:

< instanceId, parentId, nodeId, prop1, ..., propN >

InstanceId differentiates hierarchy instances where nodeId’s
are unique per instance. The parentId refers to a unique
record of an instance that represents the parent node for a
node. A parentId of −1 represents the root node of an in-
stance. The N properties are used for exaple, to name a
node, or more generally to to flexibly annotating a node.

On startup, the QUIQServer reads all hierarchy defini-
tions into an in-memory data structure that provides more
efficient access. Writes are permitted only through the mod-
ifications which are described in Section 6.3.

6.1.2. Hierarchy Values The atomic value for a Hierar-
chy data type value is a single node. A Hierarchy value may
be composed of multiple nodes from the same hierarchy in-
stance. A value can be associated with any record whose
collection schema declares its use of a Hierarchy instance.
For such records, a variable length character (varchar) field
is used to store the value. The representation of a hierar-
chy value is a delimited set of atomic node values where
each atomic node value is represented by a path and the
nodeId of the value’s node. The path is a delimited string
of nodeId’s. Since multiple values may share a common an-
cestry, compression is achieved by factoring out the greatest
common path prefix amongst a record’s atomic values.

6.2. Query Processing

The Hierarchy data type supports several useful queries:

1. Containment (⊆): returns all records whose hier-
archy value contains an atomic value (excluding the
path) equal to the given node.

2. Subtree (≤): returns all records whose hierarchy
value contains an atomic value equal to the given node
or has a path that contains the given node’s path.

3. Proximity (∼): returns records and scores them by
how close they are with respect to the given node. The
scoring function and a definition of close are flexible.

The Token Index is used to evaluate the above queries.
In addition, we gain the flexibility to include the Hierarchy
data type in the query paradigm discussed in Section 4.3. As
a result, queries over the hierarchy data type have the flex-
ibility to be issued as exact match queries or weighted rel-
ative to the importance of matches from the other fields.
In addition, query type 3 uses the per-constraint weight-
ing functionality to define scores based on the proximity
of records relative to their postition within the hierarchy.
The following paragraphs describe what is stored in the To-
ken Index for a Hierarchy value and how the Token Index is
used for the above queries.

Tokenization As mentioned in Section 4.3, the Token In-
dex can be used by any data type that provides a to-
kenization method for its values. For a given atomic
value, the tokenization method uses two token-fields:
value and path. The value field contains the nodeId of
the atomic value whereas the path contains a token for
each node in the atomic value’s path.

Containment queries are evaluated by probing the Token
Index using the value token-field. Only those records
that contain a value at the specified node will have to-
kenized such a value token.

Subtree queries are evaluated by probing the path token-
field. Records in the tree rooted at the subtree will in-
clude subtree root nodeId in the path field so will be
returned.

Proximity queries to a given node are implemented by is-
suing a containment queries on the node, its parent,
and its siblings. Such queries allow results from hier-
archy nodes other than the query node, but weight such
results lower according to the distance from the query
node. Thus, a higly scored result from a sibling node
would have to have a very relevant result in some other
field to compensate the lower weight attributed to its
distance in the hierarchy. The QUIQ architecture does
not limit the implementation of hierarchy distance to
the above example, however.

In the event that a Token Index is not operational, the
QUIQServer is able to process hierarchical constraints us-
ing exclusively the database values associated with each
record.

6.3. Hierarchy Modifications

Changes to a Hierarchy definition are referred to as mod-
ification events. There are two types of modifcations of in-
terest:

• Definition: modify property fields of existing hierar-
chy node records. These are lightweight operations due
to the storage separation of a hierarchy definition and
its values associated with records.

• Structure: add or delete hierarchy node records or
change the parent of a hierarchy node. Additionally,
support re-assigning records from one node to another
node. Except for the addition of nodes at the leaf level
of the hierarchy, the inclusion of ancestry information
in the Token Index and database requires propagating
the hierarchy modification to all affected record val-
ues.

It is assumed that a single user modifies a Hierarchy.
Since a Hierarchy modification can effect many parts of an
application, the modifications are made to a copy of the Hi-
erarchy. A read-only preview mode is provided so that ap-
plication functionality can be evaluated given the proposed
modifications. When the user is satisified with the modifi-
cations, they commit the changes by scheduling some time
in the future for the approproate updates to take place.

Applying hierarchy modifications requires that the sys-
tem is quiesced. Both definition and structural modifica-
tions require this measure since it is assumed that multi-
ple QUIQServers may be accessing the database and we re-
quire that all use the same hierarchy definition. Since all
QUIQServers cache an in-memory version of hierarchy def-
initions, when all QUIQServers are restarted, we are guar-
anteed they will come up with the same view of the hierar-
chy definitions.

When the system is quiesced, the following steps are run
prior to bring the QUIQServers back up:

Definition modifications: The new version of the hi-
erarchy definition replaces the current version and all
QUIQServers are brought up.

Structural modifications: These may require downtime
proportional to the number of records affected by the mod-
ification. The reason is due to redundantly storing a node’s
ancestry information in the Token Index and the database.
However, we expect that structural modifications are rela-
tively rare compared to the number of queries utilizing an-
cestry information (subtree queries).

The steps taken during a structural modification are best
described using an example. Consider inserting a node B in
the path A,C to form the new path A,B,C. First, an adminis-
trator modifies C’s parent to be a new node named B whose
parent is A in the preview version of the hierarchy defini-
tion. After the change is commited and the time comes to
apply the change, the hive is quiesced to external opera-
tions. The modification requires that the new path is inserted
in all records of the current subtree under AB. Correspond-
ing changes are required to the Token Index. In order to effi-
ciently find the required records, the Token Index is used to
evaluate the subtree query and retrieve all results. Then, the
appropriate changes are propagated to all retrieved records
in the Token Index and database. As with definition modi-
fications, the preview version takes the place of the current
version and the QUIQServers are restarted.

7. Data Warehouse

The data warehouse is used for data mining and report
generation, and has a standard design. Keeping the report
data separate from the online data is important to prevent
expensive reporting queries from causing the online trans-
action database from slowing down. The data in the data
warehouse is also in a denormalized format that facilitates
analysis, and additional aggregation tables are included in
order to reduce the number of group by queries and allow
different reporting tools to easily access the data. The data
warehouse is typically used in conjunction with a report-
ing engine.

The tables in the warehouse are populated through an
hourly data pull process. Every hour, updated records are
transferred from the transactional database tables to the
warehouse. Typically, only a small number of records are
pulled every hour as the modifed data is easily identified
by the update time. In addition to the transactional tables,
data from the webserver log, which is instrumented to pro-
vide context about each user-click, is also consolidated into
a warehouse table. Along with the basic reporting tables in
the warehouse, there is a metadata table which stores the
mappings between the transactional tables and the basic re-
porting tables, and the timestamp in the transactional table
of when the data was last pulled. This is used to determine
which data to pull. After all the basic reporting tables are
built, the queries to build the aggregate queries are run.

8. Related Work

The concept of mass collaboration is being harnessed
to solve complex problems other than customer support.
For example, the Cooperative Bug Isolation Project at UC
Berkeley [15, 16] tries to find bugs in software by aggregat-

ing traces from many users. Similarly, mass collaboration is
being proposed for data integration as in [18].

The multi-tiered architecture is similar to standard multi-
tiered applications that are backed by a database. In the case
of the QUIQ architecture, a custom application server is
used in order to combine and manage the heterogenous data
services needed by the QUIQ application. The discussion in
[21] provides more details and examples of multi-tiered ar-
chitectures.

The functionality offered by the permissioning sys-
tem is flexible fine-grained access control (record attribute
value)for higher layers of QUIQ application code. The
finest granularity supported by commercial database sys-
tems is row-level access control [9]. Fine grained ac-
cess control is also supported by the SeaView system [17]
but its implementation details and performance character-
istics are unknown. The implementation of QUIQ permis-
sions is through query modification. Given a query and user
context, the query is modified according to the user’s ca-
pabilities to provide a data-driven form of access control:
a combination of data values and capability values de-
termine what subset of data can be manipulated by the
user. Query modification as a means for implement-
ing access control was first proposed in [24]. Content
management systems such as [10] also enforce access con-
trol through an application server layer.

The Token Index is central to the integration of text and
tables in the QUIQ system. Commercial RDBMSs have
been extended to allow keyword searches over textual at-
tributes of the tuples in the database. Similarly, some text
indexing engines allow some non-text attributes to be as-
sociated with them. However, non-text attributes in either
case simply filter the results whereas the Token Index inte-
grates them into computing relevance scores.

With regard to implementation, deferring updates has
been extensively studied in both the context of text and non-
text attribute indexing. The points of comparison include:

Propagation Style: Is the index modified by re-writing a
portion of the index or by reserving free-space in order
to apply the update in-place?

Granularity of Propagation: What is the unit that writ-
ten: a posting list entry, a posting list, a group of post-
ing lists, etc.?

Propagation Frequency: When is a change propagated?

The Token Index propagation style is re-write, its granu-
larity is a partition which is a collection of posting lists, and
the propagation frequency is periodic such that the whole
index is rewritten in 24 hours. In contrast, the approach
taken in [3] uses a posting list as its granularity and its prop-
agation frequency is determined by the amount of available
memory. The publicly available search engine framework
Lucene in [6, 5] uses a granularity and propagtion frequency

that is based on available memory. When memory fills, it is
flushed into a new file which is a propagation unit. After a
number of these accumulate, they are merged into a single
propagation unit, thus resulting in propagation units whose
sizes are geometrically related. In contrast, the Token In-
dex mainains a constant number of propagation units over
time but is less flexible if memory is exceeded. The text re-
trieval system presented in [4] similarly propagates period-
ically and uses a fixed-space propagation unit.

In contrast to the Token Index and above systems’ use
of re-write, the system described in [2] uses a mixed ap-
proach due to its use of relying on variable sized alloca-
tion units. If an update to a posting list can fit in an exist-
ing, allocated unit, the change is propagated in-place. Oth-
erwise, the entire posting list is re-written to a new, possibly
larger sized unit. The study in [25] considers various alter-
natives for how to propagate updates. The results highlight
the tradeoff between in-place and rewrite strategies with re-
spect to update versus query performance. In-place results
in greater fragmentation which hurts queries but results in
less work for udaptes. Rewrite on the other hand causes less
fragmentation at the cost of reading and writing more data.

All of the systems above assume a single field and as-
sume that a field field identifier is transient. In contrast, the
Token Index must keep track of multiple fields per record
and it must maintain the correspondance between its field
values and record identifiers present in the external DBMS.
This functionality is similar to that required by commercial
RDBMSs.

In the context of indexing non-text fields, several index-
ing schemes have been developed in order to find the right
balance between update and query throughput. The work
in [23] argues for leaving a small area on disk for defer-
ring changes so that the larger, existing dataset can be bet-
ter organized on disk. A technique for answering queries
over the union of the structures is also proposed. Data ware-
houses also need to accomodate changes to a structure that
is highly optimized for queries. The work in [12] proposes
that the changes are similarly deferred and merged into the
main stcuture using a multi-level merge algorithm that de-
pends on either hashing or sorting. Another multi-level ap-
proach is proposed in [20, 19] where the components of the
merge and merge algorithm are carefully designed in order
to maximize sequential disk usage.

The SSE’s functionality is closest to continuous query
systems. An online survey of the research pertaining to this
field can be found at [7]. In addition, the SQL Server com-
mercial RDBMS [8] supports similar functionality in its No-
tification Server component.

9. Conclusion

We presented an overview of the QUIQ mass collabo-
ration architecture, which was designed and developed in
1999 and 2000, and first deployed in the Ask Jeeves An-
swerPoint service in 2000. QUIQ was acquired by Kanisa
in 2003, but the application continues to be in use (e.g., the
Compaq service community). The architecture reflects the
challenges in buidling an application that requires tight in-
tegration of text and database systems, and this is a direction
that database vendors are currently working hard to pro-
vide improved support. Recent developments such as Mi-
crosoft’s Notification Server extension to SQL Server are
also steps in the right direction; the lack of such a capabil-
ity in 1999 led us to develop the SSE. It was disappointing
that SQL’s authorization mechanisms were so inadequate
that we had to develop, in essence, a stand-alone role-based,
fine-grained access control mechanism in our application.
With an increasing emphasis on privacy and secure access,
this is another area to extend support within standard SQL
systems. Finally, we believe that the paradigm of mass col-
laboration will find increasing use, and the QUIQ applica-
tion made a compelling case for it in an intensely measured
and analyzed domain, corporate customer support.

10. Acknowledgments

A number of people made major contributions to the de-
sign and development of the QUIQ system, including Luke
Blanshard, Prasad Deshpande, Harvey Goodman, Jim Kup-
sch, Doug Leavitt, Beth Martinson, Paul Parter, Kartik Ra-
makrishnan, Rajesh Raman, Amit Shukla, Josh Solomon,
and Markus Zirn.

References

[1] S. Bhattacharya, C. Mohan, K. W. Brannon, I. Narang, H.-I.
Hsiao, and M. Subramanian. Coordinating backup/recovery
and data consistency between database and file systems. In
Proceedings of the 2002 ACM SIGMOD international con-
ference on Management of data, pages 500–511. ACM Press,
2002.

[2] E. Brown, J. Callan, and W. Croft. Fast incremental indexing
for full-text information retrieval. In Proceedings of the 20th
International Conference on Very Large Databases (VLDB),
pages 192 – 202, Santiago, Chille, September 1994.

[3] T.-C. Chiueh and L. Huang. Efficient real-time index up-
dates in text retrieval systems.

[4] C. Clarke, G. Cormack, and F. Burkowski. Fast inverted in-
dexes with on-line update, 1994.

[5] D. Cutting. jakarta.apache.org/lucene.
[6] D. Cutting and J. Pedersen. Optimizations for dynamic in-

verted index maintenance. In Proceedings of the 13th Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 405–411, 1990.

[7] http://www.cs.brown.edu/research/aurora/related.html.
[8] http://www.microsoft.com/sql/default.asp.
[9] http://www.oracle.com/solutions/security/Privacy9i.pdf.

[10] http://www.vignette.com.
[11] http://www.yahoo.com.
[12] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan,

and R. Kanneganti. Incremental organization for data record-
ing and warehousing. In The VLDB Journal, pages 16–25,
1997.

[13] N. Kabra, R. Ramakrishnan, and V. Ercegovac. The quiq en-
gine: A hybrid ir-db system. In ICDE, 2002.

[14] N. Kabra, R. Ramakrishnan, and V. Ercegovac. The quiq
engine: A hybrid ir-db system. Technical Report TR-1449,
University of Wisconsin-Madison, 2002.

[15] B. Liblit. http://www.cs.berkeley.edu/ liblit/sampler.
[16] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.

Public deployment of cooperative bug isolation. In 2nd Inter-
national Conference on Software Engineering (ICSE) Work-
shop on Remote Analysis and Measurement of Software Sys-
tems, 2004.

[17] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and
W. R. Shockley. The seaview security model. IEEE Trans.
Softw. Eng., 16(6):593–607, 1990.

[18] R. McCann, A. Doan, V. Varadaran, A. Kramnik, and
C. Zhai:. Building data integration systems: A mass collab-
oration approach. In WebDB, 2003.

[19] P. Muth, P. E. O’Neil, A. Pick, and G. Weikum. The LHAM
log-structured history data access method. VLDB Journal:
Very Large Data Bases, 8(3–4):199–221, 2000.

[20] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-
structured merge-tree (lsm-tree), 1996.

[21] R. Ramakrishnan and J. Gehrke. Database Management Sys-
tems. WCB McGraw-Hill, 2004.

[22] G. Salton and C. Buckley. Term-weighting approaches in au-
tomatic text retrieval. In Information Processing and Man-
agement, volume 24, pages 513–523, 1988.

[23] D. Severance and G. Lohman. Differential files: Their appli-
cation to the maintenance of large databases. ACM TODS,
1(3):256–267, September 1976.

[24] M. Stonebraker and E. Wong. Access control in a relational
data base management system by query modification. In
Proceedings of the 1974 annual conference, pages 180–186.
ACM Press, 1974.

[25] A. Tomasic and H. Garcia-Molina. Performance of inverted
indices in distributed text document retrieval systems. In
PDIS, pages 8–17, 1993.

