Building Data Integration Systems via Mass Collaboration

AnHai Doan

Dept. of Computer Science Univ. of Illinois, Urbana-Champaign

Joint work with Robert McCann, Vanitha Varadarajan, & Alexander Kramnik

WebDB 2003

Architecture of Data Integration System

Find books written by Isaac Asimov & priced under \$15

Current State of Affairs

- Vibrant research & industrial landscape
- Research
 - dated back to the 70-80s, accelerated in recent years
 - focused on
 - conceptual & algorithmic aspects
 - building specialized systems
- Industry
 - more than 50 startups in 2001

Despite much R&D activities, however ...

... DI Systems still Incur Very High Cost of Ownership!

- Most systems are still deployed manually by system admins
 - construct mediated- & source schemas
 - build wrappers
 - find semantic mappings between schemas
 - monitor & adjust to changes at sources
- Manual deployment is extremely labor-intensive
 - now a key bottleneck to widespread deployment
- Emerging technologies (XML, Web services, Semantic Web) will further fuel DI applications & exacerbate the problem

Reducing cost of ownership for DI apps is now crucial!

The MOBS Project

- MOBS = Mass Collaboration to Build Systems
- Key idea: spread burden thinly over a mass of users

- treat a DI system as having a finite set of parameters
- system admins construct and deploy a system "shell"
- users help system "converge" to correct parameter values

Example: Schema Matching

Comparison to Database Tuning

- Database tuning
 - set values of physical-design knobs (e.g., buffer size)
 - using feedback from query execution
 - time, resources consumed, etc.
 - to further improve query execution performance
- Mass collaboration for DI systems
 - set values of logical-design knobs (e.g., "a = b")
 - using feedback from users
 - to improve system correctness and further expand system

Potential High Impact

If succeeds

- dramatically reduce cost & time
- launch numerous DI systems on Web & enterprises
 - everyday domains: books, movies, cars, travel, etc.
 - "niche" domains: e.g., fire fighting
 - scientific domains: e.g., bioinformatics
 - within/across enterprises
- applicable to other data management tasks
 - building P2P systems, info extraction from text, Semantic Web, ...

• Our current work

- start by exploring a simple setting:

mass collaboration to find 1-1 semantic mappings

- use the setting to understand key challenges
- develop, deploy, & evaluate general solutions

1. Build a Partial Correct System

Mediated Schema

2. Solicit User Feedback

Detect & Remove Bad Users

- Insert questions whose answers we already know
- Evaluate user trustworthiness on those questions
- Ignore users with low trustworthy value

3. Combine User Feedback

SEARCH FOR BOOKS Enter Title: Mrs. Dalloway Enter Author: Submit Query	SEARCH FOR BOOKS Enter Title: Mrs. Dalloway Enter Author: Enter Year: Submit Query
SEARCH FOR BOOKS Enter Title: Mrs. Dalloway Enter Author: Enter Year: Enter Year: Enter Price:	SEARCH FOR BOOKS Enter Title: Mrs. Dalloway Enter Author: Enter Year: Enter Price:
Submit Query	Enter Category: All 12 Submit Query

Empirical Evaluation

Simulation

- 5000 users, 10 sources, 10 mediated-schema attributes
- system admin must do work that amounts to 1000 questions
- with mass collaboration: each user answers on average 14 questions

→ burden can be spread thinly over a mass of users

- Real data + real user experiments in book domain
 - varying settings with 8 11 people
 - some people intentionally provided wrong answers
 - system quickly converge to correct values
 - → real users can handle cognitive load of questions in this domain and quickly answer them

Key Challenges

- How to entice users to answer questions?
 - build a partial system, ask user to "pay" when using it
 - channel "payments" from other systems, provide incentives
- What types of questions to ask?
 - cognitively simple, can be answered quickly
- Can DI tasks be broken down into series of such questions?
 - it appears that many tasks can
- How to detect malicious/ignorant users
 - evaluate on questions with known answers
- How to combine user answers
 - use learning/statistical techniques

Related Work

• Mass collaboration

- product review websites [amazon.com, epinions.com, etc.]
- proposed to build knowledge bases [Richardson&Domingos03], tech support websites [Ramakrishnan, quiq.com], user trust on Semantic Web [Richardson et. al. 03]
- first to propose mass collab. for building systems
- Building data integration systems
 - many works on reducing cost of specific tasks
 - few on reducing cost of whole process [Rosenthal et. al. 01]
- Autonomic systems
 - mass collab. gives DI systems autonomic properties

• Database tuning, information extraction, Semantic Web

Conclusion

- Manual deployment is extremely labor-intensive
 - a key bottleneck to widespread deployment of DI systems
- We proposed the MOBS solution
 - lift the enormous burden of system deployment from admins
 - spread it thinly over a mass of users
 - developed & evaluated solutions for a simple DI setting
 - exploring key challenges and proposed solutions
- Future work
 - explore complex schema matching, other DI tasks
 - develop, deploy, and evaluate general solutions
 - examine applicability to other data management tasks

See paper and "anhai on google" for more info.