Building Data Integration Systems
via Mass Collaboration

Robert McCann, AnHai Doan, Vanitha Varadarajan, Alexander Kramnik
Department of Computer Science
University of Illinois, Urbana-Champaign, IL 61801, USA
{rlmccann, anhai, varadara, kramnik }@cs.uiuc.edu

ABSTRACT

Building data integration systems today is largely done by
hand, in a very labor-intensive and error-prone process. In
this paper we describe a conceptually new solution to this
problem: that of mass collaboration. The basic idea is to
think about a data integration system as having a finite set
of parameters whose values must be set. To build such a
system the system administrators construct and deploy a
system “shell”, then ask the users to help the system “au-
tomatically converge” to the correct parameter values. This
way the enormous burden of system development is lifted
from the administrators and spread “thinly” over a multi-
tude of users. We describe our current effort in applying
this approach to the problem of schema matching in the
context of data integration. We present experiments with
both real and synthetic users that show the promise of the
approach. Finally we discuss the future work, challenges,
and the potential applications of the approach beyond the
data integration context.

1. INTRODUCTION

The rapid growth of distributed data on the Web and
at enterprises has generated much interest in building data
integration systems. Figure 1 shows a data integration sys-
tem over several sources that list books for sale. Given a
user query that is formulated in the query interface (i.e.,
the mediated schema), the system uses a set of semantic
mappings to translate the query into queries over source
schemas. Those queries are then executed and the combined
results are returned to the user.

Numerous works have been conducted on data integration,
both in the database and Al communities (e.g., [6, 11, 7, 8,
3, 2, 9]). Substantial progress has been made in developing
conceptual and algorithmic frameworks, query optimization,
schema matching, wrapper construction, object matching,
and fielding data integration systems on the Web.

Despite this progress, however, today building data in-
tegration systems is still largely done by hand in an ex-
tremely labor-intensive and error-prone process. The ad-
vent of languages and mediums for creating and exchanging
semi-structured data, such as XML, OWL, and the Semantic
Web, will further accelerate the needs for data integration
systems and exacerbate the above problem. Thus it has
now become critical to develop techniques that enable the

Copyright is held by the author/owner.
International Workshop on the Web and Databases (WebDB).
June 12-13, 2003, San Diego, Cdlifornia

Find books authored by “ |saac Asimov” j

(‘ §
e
E
(e g
3
E
(‘ g
3
E

amazon.com bn.com powell.com
Figure 1: A data integration system in the book
domain.

efficient construction and maintenance of data integration
systems.

In this paper we describe the MOBS (Mass Collaboration
to Build Systems) approach to efficiently building data in-
tegration systems. The basic idea underlying our approach
is to ask the users of a system to “pay” for using it by an-
swering relatively simple questions. Those answers are then
used to further build the system and expand its capabilities.
The following example illustrates our approach:

Example 1: Consider the data integration system in Fig-
ure 1. Today, to build such a system we must create the
source schemas and the mediated schema and then spec-
ify the semantic mappings between these schemas. This is
the bare minimum necessary to build a functioning system
(with the help of a query processing engine such as the one
described in [8]). Notice that any of the above three tasks is
well-known to be difficult and time consuming. For exam-
ple, even with the help of schema matching tools [12] it is
still very labor-intensive to manually verify and correct all
the semantic mappings that the tools suggest.

In the MOBS approach we also start by building the source
schemas and the mediated schema. Next we treat the se-
mantic mappings for the mediated-schema attributes as sys-
tem parameters. We assign initial values to these parameters
using random assignment or a schema matching tool. We
then deploy this system “shell” on the Web and ask users
to use it and provide feedback. We use the user feedback
to readjust the system parameter values until these values
converge.U

In the above example we have focused on treating seman-
tic mappings as system parameters. However, we believe the
approach can also be extended to “learn” other system fea-
tures, such as the wrappers and the source schemas. Note



also from the above example that the mass collaboration
approach would not replace, but rather complement well
existing techniques to automate specific tasks in building
data integration systems (e.g., schema matching and wrap-
per construction). In fact we believe it would amplify the
effects of the current techniques.

Finally, the approach would be applicable to building sys-
tems in a broad variety of settings, including enterprise in-
tranets, scientific domains (e.g., bioinformatics), and the
Web. For example, within an organization, the employees
can collaboratively build and expand a variety of systems
that integrate organizational data. Bioinformatists can col-
laboratively build a data integration system over the hun-
dreds of online bioinformatics sources. Several volunteers
in a particular Web domain (e.g., forest preservation) can
deploy a system that integrate Wed sources in that domain,
by constructing an initial system shell, putting it on the
Web, and asking the community to collectively maintain it.
This way, the system can be constructed, maintained, and
expanded at virtually no cost to any particular entity, but
at great benefits for the entire community.

As described, the mass collaboration approach has the
potential to dramatically reduce the cost of building data
integration systems and spread their deployment in many
domains. But the approach also raises numerous challenges.
In the rest of the paper we address these challenges. Specif-
ically, we make the following contributions:

e We propose mass collaboration, a conceptually novel
approach to the problem of efficiently building data
integration systems.

e We describe a solution that applies this approach to
schema matching, a critical task that arises while con-
structing a data integration system.

o We present synthetic and real-world experiments that
show the promise of our approach.

e We discuss future work, the challenges, and the poten-
tial applications of the approach beyond the context of
data integration.

2. THE MOBSAPPROACH

Our long-term goal is to use mass collaboration to au-
tomate as much as possible the process of building a data
integration system. As a first step in this direction we study
how to automate a major component of that process: find-
ing semantic mappings between the source schemas and the
mediated schema.

In this section we describe the MOBS solution to the above
schema matching problem. As our running example we will
use the simplified BookSeller data integration system in Fig-
ure 2. The system has a mediated schema with five at-
tributes: title, author, price, category, and year, and four
sources with schemas S1 — S (Figure 2).

Our task is to find the semantic mappings between the me-
diated schema and the source schemas Si1 — S4. The MOBS
solution to this problem consists of four major activities: ini-
tialization, soliciting user feedback, computing user weights,
and combining user feedback. We now describe these activi-
ties in detail.

2.1 Initialization

We begin by building a correct but partial data integration
system. We manually specify the correct mappings from
title to each of the source schemas. Suppose these mappings
are title = a1, title = by, title = c1, and title = d;. The
mappings allow us to build a system whose query interface
consists of a single attribute: title. Users can immediately
query this system to find books based on their titles.

We note that building an initial correct and partial sys-
tem is crucial because even at the beginning we must have
a functioning system. The system will have limited capa-
bilities but it can already answer user queries correctly. If
we simply initialize all mappings randomly we will proba-
bly create an initial system which produces incorrect query
results. Users are unlikely to start using such a system.

Once we have the correct partial system we want to lever-
age user feedback to build the rest of the system: that is, to
find the correct mappings for the remaining four mediated-
schema attributes. To do this, we create system parameters,
each of which maps a remaining mediated-schema attribute
to a source-schema attribute. We consider all pairing of
mediated-schema attributes with source-schema ones, and
thus have the following parameters: author = a1, author =
az, . ..,author = as,author = b1, ...,year = dg.

The correct value of a parameter such as author = ai is
“yes” if author and ai are semantically equivalent (e.g., if
a1 is writer), and “no” otherwise.

Finally, we randomly set the initial values of the parame-
ters. Section 4 discusses other initialization methods.

2.2 Soliciting User Feedback

We now deploy the above correct, but partial, system on
the Web and ask users to begin using it and providing feed-
back. Our goal is to use the feedback to make the parameters
“converge” to their correct values. When this happens we
will have found the correct semantic mappings for the rest
of the system.

Currently we solicit user feedback as follows. When the
user submits a query to the system (e.g., “find all books
whose titles contain ‘data integration’ ), we make the user
“jump through a hoop”. That is, the user must answer a
question on the correct value of a parameter. Only after the
user has answered this question do we display the results of
his or her query.

Figure 3 shows a sample question that asks the user whether
the attribute named price of a source (say, attribute ds of
source S4) matches attribute year of the mediated schema.
This question amounts to soliciting the correct value of pa-
rameter year = ds.

The user will answer “yes” or “no” (we are currently
adding a third option, “not sure”), after examining the name
of the attribute, several of its data instances, and the context
information (i.e., the surrounding attributes in this case).

The frequency of “hoop jumping” can be adjusted, any-
where from one “hoop” per query to one “hoop” per several
queries. In a related paper on this topic [5] we discuss other
types of questions to ask the user as well as ways to entice
users to answer questions.

2.3 Computing User Weights

In order to detect malicious or ignorant users we compute
a weight for each user that measures the quality of his or
her feedback. This weight is in the range [0,1], with higher



Mediated Schema

title _ author __o:om_ category | year

? ? 5 ?
Glalala (bib) Glele) Gildididdd,
Schema S; Schemas, Schema S, Schemas,

Figure 2: Using mass collaboration to find the se-
mantic mappings between the attributes of the me-
diated schema and the source schemas.

Tx the Haghlightsd Column a Year
Yewr Price Calegoery
1081 4060 Chddress
1961 400 Chidrem's
L5 A0 Heabals
1648 D500 Chidres's

_.“..Tn”...m_
| —

Figure 3: A sample question that the system asks
the user to answer.

weight indicating higher quality of feedback.

To compute such weights we set aside several sources for
user evaluation. In the BookSeller example, suppose we set
aside the first source, Si. We create all parameters that
are related to this source: title = a1, title = ao,...,title =
as,author = ai,...,year = as. We then manually assign
correct values to these parameters. Next, we solicit user an-
swers on the correct values of these parameters as discussed
in the previous subsection. Since we know the correct val-
ues of these parameters we can evaluate user answers and
compute a user weight.

Consider a user u;. If the number of answers that wu;
has provided on the parameters coming from the evaluation
sources is below a threshold k, then we say that user u; has
not provided sufficient answers in order to be evaluated, and
set weight(u1) = 0. Otherwise we set weight(u1) to be the
faction of wi’s answers that are correct.

To track users we require them to login to use the sys-
tem. Note that a user needs to login only once; subsequent
sessions can be handled automatically by cookies. For any
single user we randomly mix the evaluation questions with
teaching questions (i.e., questions used to get feedback on
unlabeled sources) to ensure that the user does not know
which ones are the evaluation questions.

Once a user weight has been computed we stop evaluating
the user (we are exploring the option of continual evalua-
tion, see further discussion in Section 3.1). We call a user
trustworthy if his/her weight is above a threshold w (cur-
rently set at 0.65) and untrustworthy otherwise. If a user
is untrustworthy we do not solicit additional feedback from
him/her. In [5] we discuss methods to discourage users from
intentionally providing incorrect feedback in an effort to be
deemed untrustworthy and avoid answering questions.

2.4 Combining User Feedback

Before describing how to combine user feedback we discuss
how we distribute user feedback. Recall that we have set
aside source S for evaluation and have manually identified
the semantic mappings for this source. We have also identi-
fied semantic mappings from the first mediated-schema at-
tribute title to all sources. Our job therefore is to solicit
user feedback to find semantic mappings from the remain-
ing mediated-schema attributes author, price, category, and
year to sources Sz — S4.

We do this sequentially by first finding semantic mappings
for author, then for price, and so on. As soon as we have
found the semantic mappings for an attribute, say author,
we immediately add author to the query interface and allow
the user to use it to formulate his/her queries. This way
user feedback can be shown to have an effect as soon as
possible on the query interface, thus enticing users to provide
feedback and making the system useful as early as possible.

To find mappings for a mediated-schema attribute, say
author, we proceed sequentially by finding mappings from
author to source S, then S3, and then Sy.

Consider source S2, which has only two attributes b; and
b2 (Figure 2). Finding mappings from author to Sz reduces
to obtaining the correct values for parameters author = by
and author = ba. To do this, we solicit user answers in a
round-robin fashion, using “hoop jumping” as described in
Section 2.2. The first answer goes to author = b1, the second
goes to author = bz, the third goes back to author = by,
and so on.

Thus a parameter such as author = b; will receive a
steady stream of “yes” and “no” user answers. Note that
these answers are from trustworthy users. We monitor this
stream of answers; as soon as a convergence criterion is sat-
isfied we assign to parameter author = b1 a value based on
the answers it has received so far, and stop soliciting further
answers for this parameter.

Suppose parameter author = b1 has received a total of n
predictions. The current convergence criterion is to stop if
(a) the number of majority answers (either “yes” or “no”)
reaches n * 0.65 and n exceeds 20, or (b) n exceeds 50. In
either case we return the majority answer as the value for
author = bi1. We say parameter author = by has converged
to that value.

We proceed similarly with parameter author = b2. Once
all parameters have converged we say the system has con-
verged and stop soliciting user feedback.

3. EMPIRICAL EVALUATION

We now describe preliminary experiments that used both
synthetic and real user populations to evaluate the MOBS
approach.

3.1 Synthetic Experiments

Experimental Setting: We generated a variety of syn-
thetic user populations. A population of 5000 users taken
uniformly over [0,1] means that we generated 5000 users and
randomly assigned a reliability value from [0,1] to each user.
A reliability value of 0.6 means that on average the user
answers 6 questions correctly out of 10.

Figure 4.a shows the results over 15 populations (see the
figure legend). The populations belong to four classes. Uni-
form [0,1] was described above. Uniform {0.6,0.4} means
that half the users have reliability value 0.6 and the other



% Statements Correct (of 1000)

% Stalements Correct (of 1000)

o ——— 10% (0.8}, 90%
4 —— 10% (0.9}, 30%
—— 10% (1.0}, 90% Uniform [0.0,0.4)

o 20 0 60 80 100 120 140 160
(B) Average Number of Matching Feedbacks Per Trusted User (5000 Users)

Figure 4: Matching accuracy as a function of aver-
age number of user answers, over a broad range of
populations.

half 0.4. Bell [0.3,0.7] means that the reliability values were
generated according to a bell distribution over [0.3,0.7]. Fi-
nally, 10% {0.6}, 90% uniform [0.0,0.4] means 10% of the
users have reliability value 0.6 and the rest are assigned val-
ues uniformly over [0.0,0.4]. The 15 populations thus rep-
resent a broad range of user populations that we expect to
commonly occur in practice.

For each population we simulated its interaction with a
data integration system that has 10 mediated-schema at-
tributes and 12 sources, with 10 attributes per source. The
simulation was carried out using the MOBS mechanism de-
scribed in Section 2. We set aside 2 sources for evaluation.
The system evaluated each user on 10 evaluation questions
and deemed that user trustworthy only if he/she answered
at least 7 questions correctly.

We solicited user feedback to match the schemas of the
remaining 10 sources. Thus we had a total of 10¥10*10 =
1000 parameters whose values were to be set by the users.
For each parameter we used the stopping criterion described
in Section 2. At any timepoint each parameter has an as-
signed value (either the initial random assignment or the
value obtained at convergence time). The matching accu-
racy at that timepoint is then computed as the number of
parameters with correct value divided by the total number
of parameters.

Matching Accuracy: First we want to know how match-
ing accuracy changes over time and how high it can reach.
Figure 4.a plots the matching accuracy as the average num-
ber of user answers increases, over all 15 populations. Each
population is represented with a single line in the figure and
the line ends when the system converges.

We use the term evaluation answers to refer to those an-
swers that are used to evaluate the reliability of a user, and
teaching answers to refer to those that are used to set the
values of the system parameters. Figure 4.a considers on
teaching answers, since the number of evaluation answers is
the same for each user (10 in this case).

At the beginning the parameters were initialized randomly,
hence matching accuracy around 50% (Figure 4.a). As users
provide answers, the accuracy increases linearly and quickly
reaches 100% for the first 9 populations in Figure 4.a, with
only about 4 teaching answers per user.

Thus, for these populations each user has to provide only
14 answers on average (4 teaching and 10 evaluation) in or-
der to correctly match schemas for the entire system. Note
that if a system administrator were to do the schema match-
ing he or she must examine all 1000 parameters. Thus, this
result supports our argument that we can shift the signif-
icant labor (1000 answers) from the administrator to the
mass of users, such that each user on average has to do only
a small amount of work (14 answers in this case).

For the remaining 6 populations, Figure 4.a shows the
matching accuracy in the range 79-99% when all parameters
have converged. We note that these populations are quite
“unreliable”, in the sense that they contain few “good” users
and that the highest reliability values of these users are in
the range [0.6,0.7]. Since we used only 10 answers for eval-
uation and used a 0.65 threshold to filter out bad users, we
admitted few good users and also admitted some bad users.
Thus, for any parameter, when we cut off feedback to it at
50 answers and took the majority vote, there was a signifi-
cant probability that we ended up with many answers from
the bad users, and thus with the wrong parameter value.
This explains the less than 100% accuracy at convergence.

Reaching Matching Accuracy of 100%: The above re-
sult suggests that if we increase the number of evaluation an-
swers and tighten the convergence criterion (say, to consider
cutoff threshold at 100 answers instead of 50), we should
be able to increase the matching accuracy. This was indeed
the case as we further experimented with these populations.
We were able to prove (and confirm experimentally) that
if we continuously (a) solicit both evaluation and teaching
answers and (b) update user weights and parameter values
accordingly, the matching accuracy will converge to 100%
provided there are some trustworthy users in the population.
The convergence speed obviously depends on the population
characteristics. Figure 4.a demonstrates that this speed was
quite fast (around 4 teaching answers per user) for a large
variety of populations.

Number of Answers per Trusted User: Figure 4.a
shows that only a few teaching answers per user (4-8) are re-
quired until the system converges to high matching accuracy.
However, if the system has decided that a user is not trust-
worthy it will not solicit answers from that user again. Thus
the burden of providing answers will fall mostly to trustwor-
thy users. Hence we want to know how many answers on
average such a user must shoulder. Figure 4.b shows that
this number of answers remains quite low: around 10 for
many populations and under 41 for all populations, except
the two outlier populations at 72 and 150. These two pop-
ulations are the “unreliable” populations discussed above.
This result suggests that the burden of feedback for both
trustworthy and untrustworthy users remains relatively low.

Effects of Population Size: We have also experimented
with population size varying from 50 to 100,000 users, over
numerous population topologies. We observed that match-
ing accuracy remains stable across varying sizes. In all cases
the time it took to manage the mass collaboration mecha-



nism was negligible. We further observed that, as expected,
the number of feedback required per user to reach conver-
gence decreases linearly as the population size increases.
This suggests that our approach can scale up to very large
populations in all important performance aspects.

3.2 Experimentswith Real Users

We have also conducted preliminary experiments with real
users and real-world data to evaluate our approach. We built
a small data integration system over four real-world book
sources. The system is similar to the one shown in Figure 2,
with five mediated-schema attributes, four sources, and five
attributes per source schema.

We conducted two experiments. In the first one we set
aside two sources for testing and built an initial partial sys-
tem whose query interface had only two attributes: title and
author. We then asked a set of volunteers to use the system
and provide feedback. 11 people volunteered, about half of
whom had not previously heard about the system.

We simply asked the volunteers to use the system and an-
swer questions to the best of their knowledge. The system
deemed seven users as trustworthy. The other four either did
not finish evaluation, or provided noisy answers. The system
used the trustworthy users’ feedback to find semantic map-
pings for the 3 mediated-schema attributes price, category,
and year. It quickly converged and reached 100% matching
accuracy. The system was able to expand its query interface
to include all five attributes of the mediated schema, thus
showing that it can leverage user feedback to expand its ca-
pabilities. The average numbers of answers per user and per
trustworthy user are 27.45 and 42.71, respectively.

In the second experiment we set aside one source for eval-
uation and asked for user feedback to match the remaining
three sources. We also changed the evaluation and conver-
gence criteria. We asked 5 evaluation questions and admit-
ted users who answered at least 3 correctly. For each param-
eter we asked for 5 teaching answers and took the majority
vote. 8 users volunteered and the system trusted 5. Again
the system quickly converged, with the correct values for all
parameters except one, thus reaching an accuracy of 26/27
= 96%. The average numbers of answers per user and per
trustworthy user are 22.25 and 35.2, respectively.

The real-user experiments therefore provide preliminary
evidence that real users can handle the cognitive load of
the questions and quickly answer most of them correctly.
We are currently designing experiments with much larger
data integration settings and many more users. We are also
looking for experimental domains that are less well known
in order to more thoroughly evaluate the ability of real users
to handle relevant questions.

4. DISCUSSION & FUTURE WORK

We have described a basic mass collaboration framework
for building data integration systems. We now discuss possi-
ble extensions to this framework, as well as additional issues
that arise in employing mass collaboration.

Schema Matching: We consider extending our current
work on schema matching in several ways. It is clear that the
system parameters can be initialized using semi-automatic
schema matching tools [12] and that these initial values can
be combined with user feedback to achieve faster conver-
gence.

Further, we have focused only on finding one-to-one map-
pings, such as “location maps to address”. We are currently
extending our framework to handle more complex mappings,
such as “location maps to the concatenation of city and
state”.

Finally, in the current framework the values of parame-
ters such as author = by and author = by are obtained in-
dependently of each other, from the user answers. In many
settings, we may know that attribute author maps into at
most one source attribute. Thus, if we already establish
that the value of author = b; is “yes”, then we can immedi-
ately conclude that author = bz is “no”, without obtaining
additional user answers. We are extending our framework
to exploit such parameter correlations, in order to minimize
the amount of user feedback.

Other Labor-Intensive Tasks: We believe that the cur-
rent MOBS approach can be extended to handle other data
integration issues besides schema matching. Any problem
that can be recast as a sequence of “yes”/”no” questions
can potentially benefit from this approach. The key will be
to break down the problem in such a way that users can han-
dle the cognitive load of answering each individual question.
We are currently exploring applying the MOBS approach to
the wrapper construction problem.

Mass Collaboration Methodologies: Mass collabora-
tion techniques have been applied to a variety of problems,
such as constructing knowledge bases, tech support web-
sites, and word sense disambiguation (see the related work
section). However, no systematic study of mass collabora-
tion issues has been conducted. We are currently conducting
such a study, which examines the key challenges of mass col-
laboration in the context of data integration and proposes
solutions. Examples of key challenges include how to attract
users, how to entice them to give feedback, what types of
feedback to solicit, and how to combine their feedback. We
provide preliminary discussion of these issues in [5].

Beyond Data Integration: The mass collaboration tech-
niques that we are developing have potential applications
beyond just the data integration context. In a sense, the
techniques provide a “hammer” that we can use to handle
a variety of “nails”.

One such “nail” that we are pursuing is marking up data
on the Semantic Web. The Semantic Web is advocated as
the next-generation World-Wide Web where data is marked
up and software programs can exploit the marked-up data
to better satisfy information needs of users. Virtually all
works on marking up data on the Semantic Web have asked
the owner of a Web page to mark up the page’s data. This
approach however often leads to a catch-22 situation: owners
are not willing to spend a significant amount of efforts to
mark up their pages because they do not see applications
that show them the benefits of marking up; on the other
hand, applications are not developed because there is no
marked-up data.

To break this catch 22, we are exploring a conceptually
opposite solution to marking up data: instead of asking the
page owner (i.e., the producer), we ask the people who visit
the page (i.e., the consumers) to help mark up the data.
Our solution to this problem builds upon the mass collab-
oration techniques that we are currently developing in the
data integration context.



5. RELATED WORK

Our work draws from several related areas, which we dis-
cuss below.

Knowledge Base Construction: Our work was inspired
by several recent works that attempt to leverage the large
volume of Web users to build knowledge bases, tech support
websites, and word sense disambiguation ([14, 13], quiq.com,
openmind.org). The basic idea of these works is to have
users contribute facts and rules in some specified language.
Our work differs from these in several important aspects.
First, in building a knowledge base, potentially any fact or
rule being contributed constitutes a parameter whose va-
lidity must be checked. Thus, the number of parameters
can be very high (potentially in the millions) and check-
ing them poses a serious problem. In contrast, the number
of (system) parameters in our case is comparatively much
smaller and thus potentially much more manageable. Sec-
ond, such knowledge bases must provide some mechanisms
to allow users to immediately leverage the contributed infor-
mation (to gain some instant gratification effect). Providing
such mechanisms in the context of knowledge bases can be
quite difficult, because it requires performing inference over
a large number of possibly inconsistent or varying-quality
facts. Such mechanisms are considerably much simpler in
our case, because feedback on the system parameters can
immediately affect the query results.

Building Data Integration Systems: The manual con-
struction and maintenance of data integration systems is
very labor intensive and error prone. There have been many
works on reducing the labor costs of specific tasks during
the construction process, such as schema matching [12] and
wrapper construction (e.g., [10, 1]), but few works on a sys-
tematic effort to address cost reduction for the whole process,
with the exception of [15]. Our work on mass collaboration
can be seen as providing a systematic solution to this prob-
lem.

Schema Matching: Numerous works have been conducted
on schema matching, a fundamental problem in integrating
data from heterogeneous sources (see [12] for a survey of
recent works). These works employ manually crafted rules
and machine learning techniques, with some limited human
interaction, to discover semantic mappings. In contrast, our
current work leverages the feedback of a multitude of users
to find the mappings. To our knowledge, this is the first
work on schema matching in this direction.

Autonomic Systems: Our work here is also related to
autonomic systems in that data integration systems in the
mass collaboration scheme can also exhibit autonomic prop-
erties such self-healing and self-improving. The key dif-
ference is that autonomic systems have traditionally been
thought of as achieving these properties by observing the ex-
ternal environment and adjusting themselves appropriately.
In contrast, our systems are observed by the external envi-
ronments (i.e., the multitude of users) and then are adjusted
by them accordingly.

6. CONCLUSION

The current cost of ownership of data integration systems
is extremely high due to the need to manually build and
maintain such systems. In this paper we have proposed a

mass collaboration approach to efficiently build data inte-
gration systems. The basic idea is to shift this enormous
cost from the producers of the system to the consumers,
but spreading it “thinly” over a large number of consumers.
We have discussed the challenges of this approach and out-
lined preliminary solutions. We have also described the cur-
rent status of our research in this direction and discussed
the relationship between this work and several other areas.
This research is conducted within the context of the AIDA
(Automatically Integrating Data) project at the University
of Illinois, whose goal is to build autonomic data integration
systems.

7. REFERENCES

[1] N. Ashish and C. Knoblock. Wrapper generation for
semi-structured internet sources. SIGMOD Record,
26(4):8-15, 1997.

[2] R. Avnur and J. Hellerstein. Continuous query
optimization. In Proc. of SIGMOD 00, 2000.

[3] J. Chen, D. DeWitt, F. Tian, and Y. Wang.
Niagaracq: A scalable continuous query system for
internet databases. In Proc. of SIGMOD ’00, 2000.

[4] A. Doan, P. Domingos, and A. Halevy. Reconciling
Schemas of Disparate Data Sources: A Machine
Learning Approach. In Proc. of SIGMOD 01, 2001.

[5] A. Doan, R. McCann Building Data Integration
System: A Mass Collaboration Approach. In Proc. of
the IJCAI-03 Workshop on Information Integration on
the Web, 2003.

[6] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom.
The TSIMMIS project: Integration of heterogeneous
information sources. Journal of Intelligent Inf.
Systems, 8(2), 1997.

[7] L. M. Haas, D. Kossmann, E. L. Wimmers, and
J. Yang. Optimizing queries across diverse data
sources. In Proc. of VLDB 97, 1997.

[8] Z. Ives, D. Florescu, M. Friedman, A. Levy, and
D. Weld. An adaptive query execution system for data
integration. In Proc. of SIGMOD 99, 1999.

[9] C. Knoblock, S. Minton, J. Ambite, N. Ashish, P.
Modi, I. Muslea, A. Philpot, S. Tejada. Modeling Web
sources for information integration. in Proc. of the
Nat. Conf. on AI (AAAI) 798, 1998.

[10] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper
Induction for Information Extraction. In Proc. of the
Int. Joint Conf. on AI (IJCAI) ’97, 1997.

[11] A. Y. Levy, A. Rajaraman, and J. Ordille. Querying
heterogeneous information sources using source
descriptions. In Proc. of VLDB ’96, 1996.

[12] E. Rahm and P. Bernstein. On matching schemas
automatically. VLDB Journal, 10(4), 2001.

[13] M. Richardson, R. Aggrawal, and P. Domingos.
Building the Semantic Web by mass collaboration.
Technical Report UW-TR-03-02-05, Dept. of CSE,
Univ. of Washington, 2003.

[14] M. Richardson and P. Domingos. Building large
knowledge bases by mass collaboration. Technical
Report UW-TR-03-02-04, Dept. of CSE, Univ. of
Washington, 2003.

[15] A. Rosenthal, S. Renner, L. Seligman, and F. Manola.
Data integration needs an industrial revolution. In
Proc. of the Workshop on Foundations of Data
Integration, 2001.



