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ABSTRACT

Several recent papers have focused on OLAP over imprectae da
where each fact can be a region, instead of a point, in a multi-
dimensional space. They have provided a multiple-worldsgios

for such data, and developed efficient ways to answer OLAReagg
gation queries over the imprecise facts. These solutiomgeter,
assume that the imprecise facts can be interprietdependently
of one another, a key assumption that is often violated iotfme
Indeed, imprecise facts in real-world applications arermftorre-
lated, and such correlations can be captured as domairritgteg
constraints (e.g., repairs with the same customer namesadd
els took place in the same city, or a text span can refer tosoper
or a city, but not both).

In this paper we provide a framework for answering OLAP ag-
gregation queries over imprecise data in the presence bf doic
main constraints. We first describe a relatively simple ysterful
constraint language, and formalize what it means to tal®ant
count such constraints in query answering. Next, we prog¢ th
OLAP queries can be answered efficiently given a databasef
fact marginals. We then exploit the regularities in the ¢a@ist
space (captured in a constraint hypergraph) and the facedpa
efficiently constructD«. We present extensive experiments over
real-world and synthetic data to demonstrate the effentige of
our approach.

1. INTRODUCTION

OLAP employs a multi-dimensional data model, where each fac
can be viewed as point in the corresponding multi-dimensional
space. If we relax the assumption that all facts are pointsadow
some facts to beegions we must handle the resulting imprecision
when answering queries. For example, we can denote thatie-par
ular auto repair took place in the state of Wisconsin, wittspeci-
fying a city. Answering queries over such imprecise infotiorais
widely recognized as important and has received increzdieq-
tion. In particular, we have recently developed an efficgmitition
[8, 7], which provides a possible-world interpretation ifmprecise
facts, then computes the result of an aggregation g@eiybe the
expected value of evaluatir@ over all possible worlds.

A key assumption underlying the above solution is that the im
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[FactiD] Loc | Auto | Name | Cost|
D1 Wi F150 | John Smith| 100
D2 WI F150 | John Smith| 250
D3 Madison | Honda Dells 130
D4 Dells Honda| Madison | 130

Table 1: A sample automotive repair database.

precise facts arindependenf8]. This assumption is often violated
in practice, as the following example demonstrates:

ExamMpPLE 1. Consider the automotive repair database in Ta-
ble 1, where each tuple describes a repair. Here, both facisnd
p2 are imprecise, because they do not specify the particutgrici
Wisconsin (e.g., Madison, Dells, or perhaps Milwaukee)revtige
repair took place. Now suppose that we wish to exploitii@ain
knowledge(something that we independently know to be true in the
real world, or a strong belief that we want to impose on thespos
ble worlds considered in answering the query) that all repavith
the same customer name and the same auto model take plaee in th
same city. Then facis andp- are not independent. For instance,
if in a particular world the repair of facp: took place in Madison,
then so did the repair gbo.

As another example, suppose the facts of Table 1 are extracte
from text documents that describe repairs. In particulansider
the text snippetMadison, Honda, broken ex. pipe, Dells & 1-90,
towed 25 miles, $130” A reasonable person-name extractor may
extract “Madison” and “Dells” as person names, and similgra
reasonable location extractor may extract the same “Madisnd
“Dells” as location names. This results in the two fagtsand ps
in Table 1, which reflect different interpretations of “Madin” and
“Dells”. However, we know that each text span can have onlg on
interpretation (e.g., either person name or location, bat both).
Consequently, factss and ps are not independent. In particular,
if we accepips then we must eliminate, from the fact database,
and vice versa.

The above examples show that in OLAP over imprecise data, we
often have extra information about which combinations ofipte-
tions of facts are possible. This extra information eitheftects
the application logic (e.g., repairs with the same custonagnes
and models took place in the same city), or the logic of the fac
derivation process (e.g., if facts are extracted from teghta text
span encodes only a single interpretation). A natural wa+o
terpret this information is asonstraintsover the set of possible
worlds. Then, given a set of such constraints, our probleim é&-
swer OLAP queries ovesnly the subset of the worlds that satisfy
the constraints

This paper proposes an efficient solution to the above pmoble
In what follows, we will first describe our prior framework on
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Figure 1: (a) Querying imprecise data in prior work, (b)-(c) exploiting domain constraints for querying imprecise datain this work.

OLAP over imprecise data [8, 7], then the challenges of mushi
constraints into this framework and our solutions.

Figure 1.aillustrates our prior framework. LiBtbe a database of
imprecise facts. A popular semantics [24, 19] interpietas a set
of possible worlds, such as; — ws as shown in the figure, where
each world is created by selecting a possible completioré&ch
fact. Now consider an aggregation qué)yover D. The answer to
Q, denoted ag)(D), is taken to be the expected answerbbver
all possible worlds#; — ws in this case).

ComputingQ (D) by evaluating@ over all possible worlds is
practically infeasible. Hence, the work [8] proposes arcifit so-
lution to this problem. First, it shows how the set of possilbbrlds
can be compactly encoded using extended databasgEDB for
short) D’, and how to creatd®’ from D using anallocation pol-
icy (see Figure 1.a). Next, it shows that qué)ycan be evaluated
quickly in a single scan oved’, and the answer, denoté D), is
the same a€)(D). This work is followed up in [7] by developing
efficient allocation algorithms to compufe’ from D.

In this paper, we significantly extend the above framewoee (s
Figures 1.b-c). We begin by defining a language to represent d
main constraints. Next, we modify the query-answering sgits:
to exploit such constraints. Consider again the five woulds- ws
that result from the databade of imprecise facts. Given a set of
constraintsC, we retain only thevalid worlds i.e., those that sat-
isfy C' (which arew:,ws, w4 in this case, see Figure 1.b). Then
we define the answer @ over the imprecise databageand the
set of constraintg’, denotedQ (D, C), to be the expected answer
of @ over the valid worlds (Figure 1.b).

We then develop an efficient way to comp@é¢D, C'), without
enumerating all valid worlds. This is the central technatallenge
we address in this paper. Clearly, we cannot answewver EDB
D’, as in prior work, because that would violate our semantfcs o
considering only valid worlds. Instead, we prove that if \vaa con-
struct amarginal databas€or MDB for short) Dx, which assigns
to each fact completion its marginal probability in the dadiorlds,
then we can answep (D, C) efficiently in a single scan over MDB
D= (Figure 1.b, the lower half). This resultis surprising, &ese in
many problem settings with domain constraints [19], evenek-
istence of a MDBDx* does not help compute exact query answers
(and often approximate solutions are proposed instead.[M
show that for the algebraic aggregation operators [16] contyn
used in OLAP queries (e.g., Sum, Count, approximate Averaige
is possible to compute an exact answer using the MDB.

We then turn our attention to the problem of efficiently const-
ing MDB D+, given an EDBD’ and a set of constraing. To solve
this problem, first we create a hypergra@tthat captures the reg-
ularities in the constraint space (see Figure 1.c). Nextexydoit
these regularities, and uge to decomposeD’ into independent
connected componen(s.g.,CC: — CCs, as shown in Figure 1.c).
To ensure efficient decomposition, we store both the EDBand
the constraint hypergrapfi in a RDBMS and execute the decom-

position using SQL queries. We next process each component i
isolation to generate a portion of the MDB datab&se then com-
bine these portions to obtain the firak.

Processing each component is in itself a difficult problewerE
though each componentC; tends to be far smaller than the orig-
inal EDB D', it is still often large enough to make exhaustive pro-
cessing impractical. To address this problem, we employcla-te
nigue calledvariable eliminationin the probabilistic inference lit-
erature [20]. The key idea is to we exploit regularities ithbthe
constraints and fact space, to fully complete certain iripeefacts,
which are “bottleneck” variables in the component. Thisaleethe
component into smaller independent “chunks” that now caedse
ily processed in isolation.

To summarize, this paper makes the following contributions

e We describe a simple yet powerful language to model do-
main constraints, then define the semantics of query answer-
ing in OLAP over imprecise data in the presence of such con-
straints.

¢ Inthe above setting, we prove that a database of fact masgina
can be used to answer OLAP aggregation queries efficiently.

e We develop an algorithm to decompose an imprecise database
into independent components, exploiting regularitieshia t
constraint space, as well as relational optimization tieghes.

e We develop an algorithm that can process each component
efficiently, by exploiting regularities in both the constis
and the fact space. Taken together, our algorithms enable us
to quickly compute the database of fact marginals.

e We present extensive experiments to demonstrate that-our al
gorithms scale up to large data sets and complex constraints

An extended version of this paper with all proofs can be found
in [9]. The rest of the paper is organized as follows. Secf#on
discusses related work. Section 3 provides backgroundrarat i
duces our notation. Sections 4-6 describe our solutionti@ee
presents experimental results, and Section 8 concludes.

2. RELATED WORK

This is the first work we are aware of that addresses the issues
of performing OLAP aggregation over imprecise and uncedaia
with constraints. There is much work that separately ada®sach
of these issues (OLAP aggregation, querying imprecise, dauz
answering queries with constraints), which we will not @i to
summarize here. Overviews of several different topics ilPAGL
aggregation can be found in [10, 27].

Although constraints have been considered in the OLAPrggtti
these constraints either addressed data modeling [21,r28¢@
constraints over query results over precise data [28]. Tdwdkwn
constraints in OLAP has not considered imprecise data.oftth
there has been much work addressing uncertain and impcstise
(e.g., [22, 30, 33, 32, 4, 17, 12, 29]), this work has not askird
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FactlD |Loc Auto Cost Madison Dells
p1 Madison | F150 100 3
p2 Madison [S10 | 150 x/E
p3 Dells F150 | 100 3
p4 wi F150 [175 "\ o
05 wi F150 |50 5
p6 Madison | Truck | 100
(a) (b)
Figure 2: (a) A sample fact table D, (b) a multi-dimensional

view of facts in D

answering OLAP aggregation queries over such data. The very

recent work by [4] presents an approach for efficiently repnging
and querying arbitrary sets of possible worlds; howevesy ttio
not consider aggregation queries.

Our work in [8] is the first work we are aware of to address se-
mantic issues specific to OLAP aggregation queries overanipe
and uncertain data, namely maintaining consistency betwsets
of related queries (e.g, roll-up and drill-down). The rethtvork
sections in [8, 7] provides further details how that workddhis
current work as well) is distinct from prior related work atving
aggregation queries over imprecise data. However, nejéhef]
nor any of the related work described in these consider OL#P a
gregation over imprecise datathe presence of constraints

While there has been considerable work on querying incensis
tent databases [5, 3, 11, 4, 6, 1, 15, 25], there has beeivegfat
little work addressing aggregation queries over such d&am-
pared to this work, we make two significant contributionsrsti
the constraint language we consider is significantly moreegse
than ones considered in most prior work. Typically, theserpr
works only address constraints in the form of functionaledeten-
cies. A notable exception is [15], which considers a languaigh
aggregate constraints. However, this work does not addrgse-
cise data. Second, we consid@LAP aggregation queries, while
prior work in [5, 25] only addressescalaraggregation queries and
do not address the additional consistency requiremenseptren
the OLAP setting [8].

3. PRELIMINARIES

We now review the framework in [8] for OLAP over imprecise
and uncertain data. Later we significantly extend this fraork to
handle domain integrity constraints.

Data Representation: Standard OLAP considers two types of
attributes: dimensions (e.g.ocatior) and measures (e.§.0s).

In prior work [8] we have extended this model to support ingpre
sion in dimension values. Specifically, each dimensionandsrd
OLAP takes value from a base domd#(e.g.,location takes value
from B = {Madi son,Del | s}). In the extended model, each di-
mension takes value from dmerarchical domainH over B.

DEFINITION1 (HIERARCHICAL DOMAINS). A hierarchical
domain H over base domaiB is a power set ofB such that (a)
0 ¢ H, (b) H contains every singleton set (i.e., corresponds to
some element aB), and (c) the values off either subsumes one
another or are disjoint, i.eYhi,he € H, h1 DO ha, hi C he, Or
hi N ha = 0. Non-singleton elements &f are calledimprecise
values.

We then define &act table schem#o be of the form
(A1,..., Ak, M1, ..., My,), where each dimension attributé;
has an associated domailam (A;) that isimprecise and each
measure attributd/; has an associated domainm (M;) that is
numeric. Next, we define

[ FactiD] Loc | Auto | Cost] pcr |
D1 Madison | F150 | 100 1
D2 Madison| S10 | 150 1
D3 Dells | F150| 100 | 1
D4 Madison| F150 | 175 | 0.6
D4 Dells | F150| 175 | 0.4
D5 Madison| F150 | 50 | 0.7
D5 Dells | F150| 50 | 0.3
D6 Madison | F150| 100 | 0.5
D6 Madison| S10 | 100 | 0.5

Table 2: An EDB D’ for the database of factsD in Figure 2.a.

DEFINITION2 (FACT AND FACT TABLE). A fact tableD is
a collection of facts of the fornfas, ..., ax,ma, ..., m,) where
a; € dom(A;) andm; € dom(M;). In particular, if dom@;)
is hierarchical, a; can be any leaf or non-leaf node in damj.
We will use the terms “fact table” and “imprecise databaseitér-
changeably, when there is no ambiguity.

Intuitively, such a fact = (a1, ..., ax, m1,...,my) Maps into a
regionreg(r) in the k-dimensional spacé formed by the dimen-
sion attributesd,, . .., Ax. To formalize this notion, we defined a
cell in S to be a vectoKcy, ..., cx) such that every; is an ele-
ment of the base domain of;. The regionreg(r) is then the set
of cells{{ci1,...,ck) | i € as,i € 1...k}. Each cell inreg(r)
represents a possibb®mpletionof fact r, formed by replacing all
non-leaf node:; with a leaf node from the subtree rootediat

EXAMPLE 2. Figure 2.a shows a fact table with two dimension
attributes: Loc and Auto, and one measure attribute€Cost. The
dimensions take values from their associated hierarctdcahains.
Figure 2.b shows the structure of these domains and thenmegi®
the facts.

Factsp: — ps are precise in that their dimension attributes take
leaf-node values. Therefore they map to individual cell§imr
ure 2.b. Factgps — ps on the other hand are imprecise and map
to the appropriate two-dimensional regions. For exampdet s
is imprecise because dimensianto takes the non-leaf node value
Tr uck. The region ops consists of cell§ Madi son, F150) and
(Madi son, S10) , which represent possible claimsaf.

Possible-World Semantics for Querying: Next, we defined a
possible-world semantics for imprecise facts as follonet.ID be a
database of facts (i.e., a fact table, as defined earlierjligksissed
earlier, completing an imprecise facte D means “assigning?
to a cellc € reg(r), thereby eliminating the imprecision of By
completingall imprecise facts inD, we obtain a databadé®” that
contains only precise facts. We c&lf apossible worldor D, and
the multiple choices for completion (for each fact) cledelgd to a
set of possible worlds fab.

To formalize the above process, in [8] we first defined theamoti
of allocation given a factr, theallocationof r to a cellc € reg(r)
is a non-negative quantity. -, calledallocation weightwhich de-
notes the weight of completingto cell ¢, such that
ZcGreg('r) Pe,r = L

Next, we defined aallocation policyto be a procedure that in-
puts a fact tabléD and outputs a tabl®’ that consists of the allo-
cations ofall facts inD. We now can define

DEFINITION 3 (CLAIM AND EXTENDED DATABASE EDB).
Let D be a fact table. For each fast € D, an allocation pol-
icy creates a set of tuple§(id(r), ¢, pe,r)|c € reg(r),pe,r >
0, > pe,r = 1}, whereid(r) is the id ofr. Observe that each pre-
cise fact has a single allocation of 1 for the cell to which #ps.



We call each tupl€id(r), ¢, pc,») @ claim, and the collections of
all such claims arextended database’, or EDB for short.
Intuitively, each claim for an imprecise factorresponds to a pos-
sible completion ofr. In this work, we use the terms completion
and claim interchangeably. In [8, 7] we introduced severgdadr-
tant allocation policies, and showed how to efficiently exe¢hem
over a fact tableD to generate the database EDE.

Now if we select from the EDBD’ a set of claims that corre-
spond to one claim per fact, then we obtain a possible widfltbr
D. Furthermore, we compute tipeobability of the worldW to be
the product of the allocation weights of all selected claimplés.
(See [8] for a motivation of this procedure.)

ExXAMPLE 3. Table 2 shows a possible EOB for the database
of facts D in Figure 2.a. Here, attributd.oc = W of fact ps
can complete to eithdvhdi son or Del | s, thus creating the two

claims with idp4 in the table. These completions have probabilities

0.6 and 0.4, respectively (see column. of the table). Suppose we
select the very first completion for each of the fagts- ps. Then
we obtain a world#” with probability1-1-1-0.6-0.7-0.5 = 0.21.

Thus, given any database of fadtand an allocation policy, the

DEFINITIONS5 (CONSTRAINTS). A constraintis an implica-
tion of the form®; = ®,, where®,, &, are conjunctions of atoms
(i.e., \; atom;).

ExamMPLE 4. Using the above language, we can write the first

constraint introduced in Example 1, “repairs with the sames-c
tomer names and models took place in the same city”, as fellow

(r.Auto = r'. Auto)

(r.Loc = r'.Loc).

Here r and+’ are two variables that bind to FactIDs in the fact
table D. As another example, we can write the second constraint

in Example 1 ‘Madi son can be either a person name or a city,
but not both, and so is the case wilkl | s” as follows:

(r.Name =r'.Name) A
=

(ps.Loc = Madi son) = (—ewists(ps))
(ps-Loc =Del I s) = (—exists(ps)).

Note that hereps and ps are not variables, but refer to specific

factlDs in the fact tableD.

As yet another example, for the fact table in Figure 2.a we can

write the constraint from Example 1, “if repairgs and ps take

resulting EDBD’ conceptually defines a set of all possible worlds  place in Mad, then repairpg refers to a car of modeF150 and

Wh, ..., Wn, together with probabilities:, . . . , pm, respectively.
We then defined the result of an OLAP quépyover D to be the
expected value af) over the worlddV, . .., W,,. For instance, if
Q is Sum and its answers fov1, ..., W,, arevs, ..., vm, respec-
tively, then its answer foD is Y7 | pi * vs.

In [8] we then demonstrated that the answer computed useng th

above possible-world semantics have several desirableefies
(e.g., consistency and faithfulness). Finally, we showed to

compute such an answer efficiently, via a single scan of thB ED

D’ (thus avoiding the expensive process of enumerating adiiples
worlds). See [8] for more details.

4. CONSTRAINT LANGUAGE

repair p3 does not exist”:
(psa.Loc = Madi son) A (ps.Loc = Madi son) =
(pe.Truck = F150) A (—exists(ps3))

As these examples demonstrate, this constraint languagsais

tively simple, and yet already allows us to write expressive-
straints. Our experience with fact extraction in two realld do-
mains — Web data in thBBLife system of theCimple project [14]
and emails in thévatar project [23] — shows that we can use this
language to capture many domain constraints in those demizin
Section 8 we briefly discuss generalizing this language terag-
pressive types of constraints (e.g., aggregations ovelr & zcts)
as future work. We do not consider detecting inconsistent co

We now describe a relatively simple yet powerful language to straints, and refer the reader to [9] for details.

specify domain constraints over the imprecise data. Sectio6

show how to execute OLAP queries in the presence of such con-

straints.

4.1 Syntax

4.2 Semantics

Let D be a fact table and’ be a set of constraints as defined
earlier. We now describe what it means to answer OLAP queries
over D, given C. Recall from Section 3 that in the case of no

We begin by defining the notion of atom, which we then use later constraint, to answer an OLAP quei};, we

to define constraints:

DEFINITION 4 (ATOMS). Let D be a fact table (see Defini-
tion 2), anatomis of the form[r.A 6 c|, [r.A0r'. A}, exists(r), or
—exists(r) where:

e 7,7’ are either variables that bind to factIDs iR or specific
factIDs themselves, and A is the value of (dimension or
measure) attributed of factr;

e 0 € {=,<,>, <, >}isacomparison operator over the ap-
propriate domain;

e cis a constant fromdom(A); and

o exists(r) (—mexists(r)) is a predicate that holds if fact
exists (cannot exist).

Note that in the above definition, constarit from dom(A), and
hence can be either precise (elghdi son) or imprecise (e.g.,
W ). The operators i can be the domain-specific version of the
comparison operators listed. For example, for dimensigtiaeted
from text “=" may be implemented as a string comparison reaiti
The only requirement placed @his that each atom must evaluate
to logical true or false. We now can define constraints as\idl

1. create an EDB tabl®’, whose tuples are claims, frof,
using an allocation policy,

2. select claims fronD’ (one for each fact) to generate multiple
possible world$¥y, . . ., Wy, then compute a probability;
for each worldi¥/;, and

3. compute the expected answer over all these worlds:
> pi * ans(Q, W;) and return it as the answens(Q)
for Q.

To accommodate constraints we keep the above multiple-world
semantics, but discard those that do not satisfyTo do so, we
start with the following notion:

DEFINITION 6  (VALID WORLD). Let W be a world created
by selecting claims, one for each fact, from an EDB table,&s d
scribed earlier, and leCC' be a set of constraints. Then each con-
straint ¢; € C can be evaluated to TRUE or FALSE &i. In
particular, if ¢; contains variables, then it evaluates to TRUE iff all
possible bindings of the variables to factIDsliri makec; evalu-
ate to TRUE. We saly is valid (wrt C), or W satisfiesC, iff all
constraints inC' evaluates to TRUE ofi/.



ExampPLE 5. Consider a simple example with two faets=
(W, F150) andr: = (W, F150), and the single constraint
“two facts with the same model must have the same location”.
There are 4 possible worlds, since bethandr, have two possi-
ble completion claims{( Madi son, F150) ,(Del | s, F150) }.
The only valid worlds are where the same claim is selectebddtr
r1 andrs. For example, if Madi son, F150) is selected for;
in world W, then( Madi son, F150) must be selected for, for
W to be valid.

Suppose after discarding invalid worlds frai, . . . , W,,, we ob-
tain the valid worldd¥;1, . . ., W;;,. Recall that they have been as-
signed probabilitie;1, . . ., pix, which are now incorrect because
most likely these probabilities sum to less than 1. In thenabs of
any additional information, a common solution for revisthgse
probabilities is to scale them proportionally, so that teayn to 1
[19]. We adopt this solution for our context. We now can define
our query semantics as follows:

DEFINITION 7 (CONSTRAINT-BASED QUERY SEMANTICS.
Given a fact tableD and a set of constraint§, let W1, ..., Wik
be the valid worlds (wr) with revised probabilitie®;1, . . ., pix,
as described above. Then for any OLAP quérywe return the
expected answer over the valid wor@;é?:1 pij xans(Q, W;;) as
the answer foQ over D in the presence af', denotedQ (D, C).

5. QUERY ANSWERING WITH MDB D*

We now describe our solution for answering OLAP queries over
an imprecise databasP, given a set of constraints. We be-
gin by defining the types of queries we consider. While the GBLA
paradigm offers arich array of query operators, the bascyoeon-
sists of selecting a value frodvm (A;) for each dimensiof, and
applying an aggregation operator to a particular meastnibugte.

DEFINITION 8 (BASIC QUERY AND QUERY REGION[8]). For
each dimension, define a query domain, denotedom (A;), to be
some non-empty subsetdifm (A;). A basic query® over a fact
table D with schemgAq, ..., Ay, M1, ..., M,) has the form
Q(as,...,ax; M;, A), where (a) eactu; € gdom(A;) and to-
getheras, . . ., ax describe the k-dimensional region being queried,
denotedreg(Q), (b) M; is a measure of interest, and (@) is an
aggregation function.

In this paper, as in [8], we consider the common aggregation
functions Sum, Count, and Average. All general queries (el
up, slice, drill-down, pivatetc.) can be described in terms of re-
peated applications of basic queries. Hence, we focus anesing
basic queries in the presence of constraints.

ExamMPLE 6. Figure 3.a shows a databade of four facts and
a query@ = “What is the Sum of Sales for Mad?” (shorthand for
Madi son) over D. For query@, a1 is Model with valueALL
(i.e., the one that contains all singleton valuesiinn(A1)), a2 is
Loc, with valueMad, M; is Salesand.A is Sum. Figure 3.b shows
a multi-dimensional view ab. reg(Q) is the dotted region in this
view.

Recall from Definition 7 that answering a (basic) quéryeduces
to evaluating it over all valid worlds. This basic approasllearly
impractical. Hence we seek a more efficient solution. In &t of
this section we first define the notion of a marginal databab&M
D+, then prove that we can answ@refficiently usingDx. Later
in Section 6 we show how to efficiently construgt.

DEFINITION9 (MARGINAL DATABASE MDB Dx). LetD be
an imprecise database arld’ be an EDB obtained fronb via an

allocation policy. LetC' be a set of constraints, and’ be the set
of all valid worlds (i.e., those that are derived frabl and satisfy
C, see Section 4).

Recall that each claimin D’ consists of a precise fagt and an
allocation weightw:. Letm. be the total probability of all worlds
in W where f; is true. Thatisyn: = 3, .\, p(W), wheref; is
true in W andp(W) is the probability ofi¥’. Then we refer ton,
as the marginal probability of, and refer to the paif f;, m:) as
a marginal tuple. We refer to the set of all marginal tuplestzes
marginal database (MDB for shorfpx.

ExamMPLE 7. Continuing with Example 6, Figure 3.c shows an
EDB D’, obtained via an allocation policy, and a sét of just
one constraint, “two facts with the same model must havedhees
location”, over D. From D’ and C' we can compute the MDBx
in Figure 3.d.

It is important to note that each tuple b« has a corresponding
tuple in D’. Furthermore,Dx depends only orD, a particular
allocation policy, and a set of constrairs It does not depend on
Q. Hence, once constructeB can be used to answer all queries.
Specifically, if @ is Sum, then we can computg(Dx) to be
the weighted sum over all cells okg(Q). Formally, Q(Dx*) =
> fereg(q@) @(ft) - me, where(f;, m:) ranges over all tuples in
Dx, andQ( f:) is the value of\/;, the measure of interest ¢f (see
Definition 8).

ExamMPLE 8. The answer for query) in Figure 3.a is 1*0.78
+4*0.78 + 3*0.72 + 2*0.72=7.5

We can computé) (D) for Count and Average (see [8] for details)
in an analogous fashion. Overaf)(Dx) can be computed via a
single scan oveDx. We note that many existing optimizations for
evaluating OLAP queries over a fact table (e.g., mateedliziews
and indexes) could be used to further speed up query progessi
after D+ has been materialized.

We now prove that)(Dx) is the same ag (D, C) in Defini-
tion 7. This result is important because it suggests thatamefa-
cus our effort on constructing MDB«, which we do in Section 6.
For space reasons, we will state and prove the result for Suyn o
though the result and proof for Count and Average are similar

PropPosITION 1. Let C be a set of constraints, an@ (D, C)
be the answer t@) over an imprecise database (Definition 7).
Let Dx be an MDB obtained fronD and C'. Suppos&) is a Sum
query. TherQ(D, C) = Q(Dx).

ProoF From Definition 7, we have

Q(D,0) > pi QW)

i: W, valid

@)

LettheD;,j = 1,..., k be an arbitrary k-partitioning of the facts.
We refer to the contents of the partition for woilid; asD; ;. Then,
from the distributivity of Sum, we obtain

QD,C)= > pi*(ZQ(Dy‘,i))ZZ > (p*Q(D;))

4:W; valid j{c 2:W; valid
@)

where Q(D;,;) is the result forQ on the facts in partitionD; ;
for world ;. LetY;, o be a variable that takes value 1 if fact
r completes to a celt € reg(Q) in the valid worldW;, and 0
otherwise. Let,- be the measure value for fact Then we have

QID,C) = > > pix( D>, vYira)

j{c 4: W, valid reDj ;



Set of Constraints:
IF (r.Model = r'.Model) THEN (r.Loc = r’.Loc)

ID | FactlD | Model | Loc | Sales | p,, ID | FactlD | Model | Loc | Sales | m,, ! | ! @) .
Q = Sum of Sales pl |1l Cam  |[Mad |1 0.7 pl |rl Cam |Mad |1 78 i ®®! i @:
for Mad p2 |11 Cam | Dells | 1 0.3 p2 |11 Cam | Dells | 1 2 1@ _ | I @
d/WID\II »3 |2 Cam  |Mad |4 |06 23 |2 Cam |Mad |4 |78 - @: pL— @
FactID | Model | Loc | Sales _ Mad _ Dells i |2 Cam | Dells |4 |04 P |2 Cam | Dells | 4 2 W W
1 Cam |WI |1 gi r1 p5 |5 |cv M [3 |05 ps |5 |ov |mad [3 [72 ' @ | @
2 Cam |WI |4 g/ O, p6 |13 Civ Dells |3 0.5 p6 |13 Civ | Dells |3 28 ! @ . !®@
. CD\ ! 7 | r4 Civ Mad |2 0.1 p7 | r4 Civ Mad |2 72 1 @ ! ! IC
D21 31 12 :
:j g:z a: z o . % p8 |4 Civ Dells | 2 09 p8 | r4 Civ_ | Dells | 2 28 Bk fR— @
T EDB D’ MDB D* ° )
(a) (b) (c) (d) (e)
Figure 3: An example to illustrate query answering with MDB Dx.
= = .r""‘.@ .r""‘.@ worlds, (i.e.,5", pI¥ * Y;.i,0 = 0.08(1) + 0.7(1) + 0.02(0) + 0.2(0)
@) @) : el e =0.78.
i . | ! | ! | i j=1 This is the sum of thex.... values for the claims in MDBx for
| 1 | 1 | | | | .
| . | . | . | . factr1 wherer, completes to a celt € reg(Q). This can also be
interpreted as the expected contributionrefto the answer t@) is
I I I I 0.78 x sales(r1) = 0.78 x1 = 0.78, which is them..,. for r1 in Dx.
1 I 1 I 1 1 1 1
1 I 1 I 1 1 1 1 .
@ | ® | @ | : o) j=2 6. COMPUTING DATABASE MDB D*
1 1 1 1 . .
i), | B (> [ (Ol L € We have shown that OLAP queries can be answered quickly,
i1 ieo iea given a MDB Dx. We now show how to construct MDB+ from

= i=3 =
Figure 4: Visualization of Proof Example

By pulling v,- out, we obtain

QD,C) = > > vl >, pirYirng) ()

Jiv re€D; ; i: W, valid
= Y v Y, mes)=Q(D%). (5
reD cic€reg(Q)

O

ExamMpPLE 9. Continuing with Example 7, given the single con-
straint in Figure 3, only four out of 16 possible worlds sétithe
constraint. Figure 3.e. shows these four worlds. Here eautted
box denotes the query regioag(Q). Recall that the probabilities
of the valid worlds are computed by normalizing their “oldfqt-
abilities. For example, the “old” probability; of world W is (0.7
*0.6 * 0.5 *0.1) = 0.021 Similarly,p. = 0.189, p3 = 0.006, and
pa = 0.054.

So the reviseg, denotecp?’, is
N = p1 = 0.021 = 0021 _ 508
P1 p1+p2+pP3+pa 0.021+0.189+0.006+-0.054 0.27 : :

Similarly, pY = 0.7, pY =0.02,pY = 0.2.

W.l.0.g., assume we create two partitiohs = {r1,r2} and
Dy = {rs,ra}, thus, i = 4 worlds, and j = 2 partitions for the ex-
ample. To visualize the summations in the proof, considgurEi4.
The summation in Equation 2 of the proof can be thought ofals ev
uating the Sum query separately over each of these 8 “datadet
Equation 2, we process all partitions for each world togetfies.
process these “datasets” column-wise). In Equation 3, we/ no
process the same partition in each possible world together, (
process these datasets row-wise). Now, we describe howpaach
tition is processed (Lines 4 and 5). The value for Q on paniti
D; can be considered the Sum of Balesmeasure for facts which
complete to a celt € reg(Q). For example, consider faet. The
only cellr; completes to insideeg(Q) is (Cam, Mad). Thus,
Y. 4,0 =1 fori= 1,2 (i.e., worldsWW; and W) with normalized
weights0.08 and 0.7 respectively; andy;, ;,o =0 for i = 3,4.
Thus, factr; contributes to the answer f@p in 0.78 of the possible

an EDB D’ and a set of constraintS. Definition 9 immediately
suggests a naive algorithm to compuie:: enumerate all possi-
ble worldsW; (i.e., by selecting one claim per fact froh), re-
tain only those that are valid (with respect@), then compute the
marginalm.,, for each claim tuple: as the probability portion of
valid worlds where clainz is selected for-.

This algorithm is clearly infeasible in practice, due to épo-
nential number of possible worlds (in the sizel®f. Let|D| be the
size of D, and|c| be the maximal number of claims i’ for any
fact. Then, the above has complexidyf|c|'”!).

To address this problem, our solution is to (a) exploit thgure
larities in the constraint space to decompdgeinto independent
connected componeni®) exploit the regularities in the fact space
to process each component in isolation, yielding a portibthe
MDB D=, then (c) combining these portions to obtain the entire
MDB D=x. To further speed up these steps, we employ a RDBMS
whenever possible. The rest of this section elaboratesealibve
steps.

6.1 Decomposing’ into Components

We first introduce the notion of constraint hypergraph, \uhie
use to capture the regularities in the constraint space héfeghow
how to use this hypergraph to decompdseinto connected com-
ponents.

6.1.1 Constraint Hypergraph
We begin by establishing several notions.

DEFINITION 10 (CONFIGURATION). LetS = {ri,...,r;}
be a subset of facts in D. Let claims(r) be the set of pos-
sible claims forr in D’. We refer to an elemerft,...,c;) €
claims(r1)X- - -x claims(r;) asconfigurationC's for {r1, ..., r;}.

DEFINITION 11 (VALID CONFIGURATION). Configuration
Cs = (c1,...,c;) for fact setS = {r1,...,r;} violatesa con-
straint ¢ if there exists a subset 6fs violating the conjunction of
atoms inc. Otherwise, configuratio®'s satisfiesconstraintc.

Cs is avalid configurationif all constraints in constraint sef’
are satisfied; otherwisé,s isinvalid. A configuration for all facts
in D is apossible worldand a valid configuration foD is avalid
possible world



Figure 5: Hypergraph for the example in Figure 3

By this definition, a configuratiod’s may implicitly satisfy a con-
straintc which is not directly applicable t@’'s (e.g.,c has more
than; variables orx mentions factlDs for facts not if).

DEFINITION 12 (CONSTRAINTHYPERGRAPH. We define the
constraint hypergrapty = (V, H) as follows: For each fact €
D, create a corresponding node € V. LetS = {r1,...,m:} €
D be a set of facts such that (a) some configurafion. . ., cx) of
S violate a constraint irC' and (b) there exists no subset®here
a configuration of that subset violates a constraint’in For each
suchsS, introduce an undirected hypered@e., , ..., v, ) € H.

EXAMPLE 10. Consider fact tableD in Figure 3.a, and a set
C of just one constraint “two facts with the same model musehav
the same location”. The resulting hypergragh = (V, H) for
D, shown in Figure 5, has a node i for each of the 4 facts in
D. H has two hyperedge$éri,r2}, {rs,ra}. For example, the
edge{ri,m2} is added toH because the possible configuration
[(Cam Mad) ,(Cam Del | s)] for r; and r, violates the con-
straint. Likewise, the edgérs,r4} is added since configuration
[(C v, Mad),(Ci v, Dells)] for rs and r4 violates the con-
straint.

Observe that a node is added to the constraint graph forfaeath
in D, not each claim tuple in the EDB’. We now describe how to
use the constraint gragh to partition D’ into sets of claim tuples
which can be processed separately to assign the marginals.

DEFINITION 13 (INDEPENDENTDEPENDENTFACTS). Con-
sider factsr, v’ € D, with possible claimslaims(r), claims(r’)
respectively. Le¥V,.. ,» be the set of valid possible worlds where
claim ¢’ is selected for fact’. We definefrac(c, r) as the proba-
bility portion of all valid possible worlds where claimis selected
for r, and frac(c, W,/ ,+) as the probability portion oWV, ,.
where claime is selected for fact.

If frac(c,r) = frac(c,r|We ) for all ¢ € claims(r’) and
¢ € claims(r), we refer tor andr’ asindependentOtherwise;
andr’ are dependent

EXAMPLE 11. Continuing with Example 10, for the given con-
straint in Figure 3 the four valid possible worlds are showrFig-
ure 3.e, with each valid world having the following “revisqaob-
abilities, respectivelyp =0.08,pY = 0.7, pY =0.02,pY =0.2.
(see Example 9).

Consider facts; andr2. The weighted fraction of valid worlds
where claime; = (Cam,Mad) is selected for; is 0.78,

(i.e. frac(ci,r1) = 0.78), since claim (Cam,Mad) is selected for
r1 in worlds w; and we, and pl¥ + p) = 0.08 + 0.7 = 0.78.
Fact r2 has 2 possible claims, (Cam,Mad) and (Cam,Dells), with
(Cam,Dells) selected fat, in worldsws andw,. However, in nei-
ther ws nor wy is claimel selected for,

(i.e., frac(cr, 71|W(cam,Detis),r,) = 0). Since
frac(cr,m1Wicam,petis),ry) 7 frac(ci,r1), r1 andr; are de-
pendent.

In contrast, consider facts; andrs, wherers has two possi-
ble claims,( CGi v, Mad) and(Ci v, Del | s) . Itis easily verified
from Figure 3.e thatfrac(ci, 1) = frac(ci, r1|Wiciv, Mad),rs)
= frac(ci, 71W(civ, peuts),r;) = 0.78, and that a similar result
holds for the other possible claims of fagt Thus, facts; andr;
are independent.

Intuitively, claims in MDB D for set of factsS can have marginals
assigned separately of other factdin- S if each fact inS is inde-
pendent of all facts ith — S. The next theorem gives the necessary
condition (in terms of7) for two factsr, r’ to be dependent.

THEOREM 1. Consider facts, r’ € D. The existence of a path
betweenr, r’ in constraint hypergraplty is a necessary condition
for r, 7’ to be dependent.

The existence of a path in the constraint hypergraph betweén
is not a sufficient condition for, ' to be dependent; see details in

[9].
COROLLARY 1. If there is no path in constraint hypergragh
betweenr, ', thenr, r’ are independent.

6.1.2 Generating Connected Components

Although identifying connected components in a given
disk resident graph is a well-studied problem, e.g., [2313, there
exists no straightforward application of these solutiansur prob-
lem setting, since we consider hypergraphs and the contstrgi
pergraph is not provided as input (we only havé.

The algorithm we propose, call&knerateComponeniakes as
input a given EDBD’ (as a RDBMS table with the schema given
in Definition 3) and constraints sét, and outputs the hyperedges
in G. The algorithm generates the hypergrdpin a “component-
wise” fashion, generating all edges for each connected ooem
G together. Thus, the connected components are identifienigdur
the hypergraph generation process.

GenerateComponent starts by creating a relational dagabas
ble ComplID with schema (factid, cid), which stores the congrd
identifier cid assigned to facfactid. Initially, all facts are given a
special “unassigned” cid. The algorithm continually stedexnode
with unassignedid as a “seed node?,., and performs a breath-
first enumeration o€z from v, until the component containing-
is completely enumerated. The edges in the component asz-gen
ated separately for each constraint= C' and stored in a separate
database tabl€'iEdges (e.g., edges for constraint are stored in
table C1FEdges, edges forez in C2Edges, etc.). The schema for
eachCiEdge table is (fidi,. . .,fidy) for k-constraintc;. At each
step, the algorithm identifies a set of border nodes whichireq
expansion, and these are stored in the table activeSet.sEdge
generated only from nodes in activeSet by executing for eaoh
straintc of the form A = B a SQL query of the form:

SELECT D1.factid, D2.factid, . ., Dk.factid

FROM activeSet AS D1, EDB AS D2,. .., EDB AS Dk

VWHERE [logic for A] AND [ — logic for B] AND [D2.fid < ... < Dk.fid]
EXAMPLE 12. The constraint from Example 11 “all facts with

the same location must have the same model” generates the SQL

query:
SELECT D1.factid, D2.factid

FROM activeSet AS D1, EDB AS D2, EDB AS D3

WHERE D2.loc = D3.loc AND D2.model != D3.model AND D2.fid < D3.fid

After all of the queries generating edges for each congttaixe
been executed, activeSet is set to nodes with unassigded the
edges created by these queries, andcthigfor the corresponding
tuples in ComplD are updated to the current component ids Thi
query is executed until activeSet becomes empty. At thistpall
edges in the component have been generated. The algorithm re
peats this process for a new “seed node”; if none is availdhée
algorithm terminates. The complete pseudocode for Gez@cen-
ponent is listed in Algorithm 1.

THEOREM2 (CORRECTNES$. The GenerateComponent Al-
gorithm correctly identifies all connected components & ¢bn-
straint hypergraph.



Algorithm 1 GenerateComponent Algorithm

1: //initialize ComplD; ComplD stores the component assignime
. CREATE TABLE ComplD(factid, cid) ASSELECT DI STI NCT factid,
-1 FROM EDB

3. CREATE TABLE activeSet(fid);
4: initialize current component idcid to 0;
5: J/ while facts are not assigned to connected components
6: while (0 < SELECT COUNT (*) FROM ComplD C WHERE C.cid ==-1)
do
7:  Illincrement the current connected component id
8.  ccid — ccid + 1;
9:  select fact r not yet assigned to a component (i.e., tupl@inptD s.t. com-
pid.cid =-1)
10: initialize activeSet to r; UPDATE complD SET cid = ccid WHERE fac-
tid = r.factlD
11:  while (activeSet has tuplesip
12: Il generates table with edges for each constiaint C
13: for (each constraint; € C of form A = B) do
14: /I materialize conflict edges from activeset fqr
15: INSERT INTO TABLE CiEdges (fid1,fid2,. . fidk)
16: SELECT D1.factid, D2.factid, . ., Dk.factid
17: FROM activeSet AS D1, EDB AS D2.. .., EDB AS Dk
18: WHERE [logic for A] AND [— logic for B] AND [D1.fid < D2.fid
< ... < Dkfid]
19: /I find the set of active nodes
20: CREATE TABLE activeTable AS
21: SELECT fidl FROM C1Edges,ComplD C WHERE (C.factid = fid1)
AND (C.cid==-1) UNION ...
22: SELECT fidk FROM CkEdges,ComplD C WHERE (C.factid = fidk)
AND (C.cid ==-1)
23: I/ update the component ids for the activeSet
24: UPDATE ComplD SET cid = ccid
25: WHERE ComplD.factid | N (SELECT *from activeTable)
26: update activeSet to activeTable
6.2 Processing Componentsto Create Portions

of MDB D+

Each connected componefit of constraint hypergrapt¥ cor-
responds to a partitio®; of EDB D’ such that claims irD; can
be assigned marginals by only processing other claini;inThis
section describes the process to assign the marginal,- to each
claim in each identified component, thus generating thendan
MDB D= corresponding td; (see Figure 1.c).

The results in Section 6.1.1 suggest the followmBgmponent-
wise Naive AlgorithmFor each connected componéit= (V;, H;)
in G, enumerate every possible configuration for facts in impeec
databaseD corresponding td;. Then, for each claim in MDB
Dx for a fact inV;, assignt.m.,, the weighted portion of valid
configurations where claimis selected for. The complete MDB
D+ is obtained by concatenating the portion output for each-com
ponent.

The complexity of this Component-wise Naive Algorithm is
O(N = |¢|™), whereN is the number of component§;| is the
maximal number of claims i’ for any fact, andn the maximal
number of imprecise facts in any component. Although this-co
pares favorably with the complexity for the brute force aiton,
which wasO(|c/!P!), we will present a more efficient algorithm
than Component-wise Naive in this section.

18:
6.2.1 Reducing the Number of Enumerated Configu—%g

rations

We now present a more efficient algorithm for assigning nmeigi
calledProcessComponenivhich requires enumerating fewer con-
figurations that Component-wise Naive. Given the subgraph f
G; = (V;, H;) and the corresponding partition of EDB as input,
ProcessComponent assigns a marginal. , to each correspond-
ing claimt in Dx. The final Marginal Databas®+ is obtained
by concatenating the outputs of ProcessComponent for@atb+
gether.

Atthe highest level, ProcessComponent proceeds as follears
every claimt in D}, we maintain a running sum of configuration
weights for valid configuration€’y, where claime is selected for
fact r. The nodes irV/; are partitioned into two sets, J. Since
the nodes ifV; correspond to facts in the imprecise datab@seve
refer toV; as nodes or facts interchangeably. We enumerate each
possible configuratiod’'; for facts inJ, and computeonfig\Weight
as the total weight of all valid configurations &f = I U J for
which C; is a sub-configuration foy (i.e., the claims selected for
facts inJ € V; are given byC).

For eachC';, configWeighis computed as follows: For each fact
rr € I, we find the set of claims € claims(rr)|c, for r; such
that (¢, C'y) is a valid configuration for; U J. Let the sum of al-
locations for these claims be/mValid(rr)|c,. configWeights
then given bY(I [, ; pe,r;) * (1], c; sumValid(rr)|c,), and is
added to the running sum for each claim tuple correspondiray t
completion inCy,. The complete pseudocode for ProcessCompo-
nent is listed in Algorithm 2.

PROPOSITION2 (COMPLEXITY). LetN be the number of com-
ponentsc| the maximal number of claims ib’ for any fact, and
m be the maximal number of imprecise facts in any component.
Assume we partition these imprecise facts into two sefs J of
sizemy, my s.t. my is the size of sef, m is the size of sef,
andm = mr + m . Then, the complexity of ProcessComponents
iISO(N x || * mp * |c|™7)

We observe that the complexity for ProcessComponents is an
improvement over Component-Naive, since ProcessCompdasen
guaranteed to have a smaller exponent than Component-[iaive
my < m). For the practical-sized datasets with up to several mil-
lion facts considered in our experiments (Section 7.1)¢tmaplex-
ity of ProcessComponent was not an issue. How far this extend
other practical datasets is an intriguing issue for futuogkw The
reason for this was that the observed value+foy tended to be
small (i.e., less than 20 for datasets we consider). We rae t
Naive Algorithm with complexityO(|c|!P!) is clearly intractable
for practical-sized datasets. We now provide intuitiondelecting
the “best” set/ of imprecise facts in the component.

Algorithm 2 ProcessComponent Algorithm

1: Input: EDB partitionD},, Constraint Hypergraph Compone@
2: Output: Marginals for MDBDx; (corresponds td})
3. I — BestNonAdjecentSet{;)
4: J—Vv,—1
5: create MDB entriesD; for D/,
6: initialize arraysumV alid|] // storesy" Pe,r; Wheree, C; valid
7: for (each valid configuratiod ; of .J) do
8: for (eachfactr; € I)do
9: sumValid[ry] < 0
10: for (eachc € comp(r)) do
11: if (c U C; is valid configuration of »; U J}) then
12: sumValid[r;] < sumValid[r] 4+ pe,r
13: 7 Pe,ry is allocation for completion used iy ; for r y
14:  configWeight — (I1; Pe,ry)* (HTI€I sumValid[r])
15  totalWeight «— totalweight + configW eight
16:  // update weights for each fact ih
17: for (each factr; € J)do

t.me . < t.me  + configWeight
/I update weights for facts ih
for (each fact-; € I)do

21 for (eache € comp(r)) do
22: if (c U C is valid configuration of 7 U J}) then
23: t.me , < pe,r *x configWeight

24: /I normalize the weights ib.m... -
25: for (eacht € M;)do
26: tmer

tme r — TotalWeight

DEFINITION 14 (NON-ADJACENT SET). Consider a connected
componeniG; = (V;i, H;) in G. We refer tol C V; as anon-



adjacent seif there does not exist a pair of nodesv’ € I, such
thatv, v’ share an edge itff;.

A non-adjacent set is equivalent to the notiorstbng indepen-
dent setin a hypergraptG = (V, H), which is defined as a set of
nodes! C V such that no paiv,v’ € I share a hyperedge iH
[18].

THEOREM 3. Consider connected componett = (V;, H;)
with corresponding partitionD; of EDB D’ (i.e., the claims inD’
for facts corresponding to nodes 1n). LetV; = TU J. If Tisa
non-adjacent set ii7;, then ProcessComponent correctly assigns
marginals to claim tuples iD;.

6.2.2 Identifying Non-adjacent Sets

The result in Theorem 3 holds for any possible non-adjaceint s
in V;. We now propose a cost model for comparing the cost of
marginal assignment by using the various possible norcadja
sets inG;.

DEFINITION 15 (CosTMODEL). Let size(v,) be the num-
ber of completions for faat. Leta be a constant capturing the cost
of enumerating a configuration. Likewis@,s a constant for pro-
cessing a single completion for a single fact. Assiine- I U J,
whereT is a non-adjacent set. The cost of processing component
G using setd andJ is given by
Z size 'U[

vrel

cost(Gi, I,J) = a H size(vy))*max{l, (B
vyeJ

The second term is required to be at least 1, to handle theapec
case wherd = 0.

In practicea > [, since enumerating a configuration involves
more work than processing facts separately. For this casapGnent-
Wise Naive Algorithm has the highest possible cost. The low-
est possible cost would be obtained by making the produdteof t
size(r) for v; € I as large as possible.

PROPOSITION3  (OPTIMAL). 1) For a > 3, cost(Gi, I, J)
in our model is optimized whehis assigned the non-adjacent set
with the largest product of sizes (i.é.5.t.]], . size(vr) is max-
imized). 2) The problem BEST-NON- ADJACENT of findinglthe
which minimizes cosf{;,1,J) is an NP-complete problem.

We can trivially reduce the problem of finding the maximal gieed
strong independent set in an undirected hypergraph, whit{Pk
complete [18], to BEST-NON-ADJACENT. The hypergraph given
as input to the weighted strong independent set problenvéngis
input to BEST-NON-ADJACENT , along witlx = |V;|,3 = 1,
where|V;] is the size ofV;. The non-adjacent set returned fbr
is the maximal weight strong independent seGinThus, a poly-
nomial time algorithm cannot exist for BEST-NON-ADJACENT.
[18] presents negative theoretical results on the existefigood
approximation algorithms for the weighted strong indegemndet
problem and the related problem of hypergraph coloring.

We now present an algorithilaxNonAdjacentwhich find a
maximal non-adjacent set in a given hypergraph compo@ent
(Vi, H;), which is an approximation of the maximal non-adjacent
set optimizing our cost model. Our algorithm is semi-exagrn
since we are only required to store in memory at all times a bit
vectorstatus with an entrystatus(v) for each node € V; indi-
cating whethew is in the maximal non-adjacent set or not. Essen-
tially, the MaxNonAdjacent algorithm scans the set of hgpges
H, and greedily maintains the “best” strong independent £&f o
for the edges seen. The pseudocode is listed in Algorithm 3.

Algorithm 3 MaxNonAdjacent Algorithm

1. Input: HypergraptG; = (Vi, H)
. Output: Returns approximate maximal weighted non-adjesetd C V'
. allocate bit-vectostatus with a bit for eachv € V;
. I/ define NON-ADJACENT =0, ADJACENT =1
for (eachv; € V) do
Initialize status(v) to NON-ADJACENT
for (each edge k& H) do
select node € h with highest weight s.t. status(v) = NON-ADJACENT.
update status(v’) = ADJACENT for all other nodes € h
. I «— subset of nodes ifr” with status NON-ADJACENT

. return]

B BooNoarwn

6.3 Combining b« Portions to Obtain Com-
plete D+«

We use GenerateComponent to identify the portio&' dbr each
connected componeidt;=(V;, H;). After generating the compo-
nent edges, ProcessComponent is called to generate MbBI-
ples for facts corresponding to nodeslin Intuitively, identifying
strongly connected components in constraint gr@gik equivalent
to partitioning EDBD’ into sets of claim tuples such that marginals
can be assigned to claims in each set independently of the oth
sets. The following formalizes this intuititon.

THEOREM 4. LetG; = (V;, H;) be a connected component in
constraint graphG, and letD; be the EDB claims for the facts in
D which correspond to nodes ¥ (see Definition 12). Then, the
marginals for claims inD; can be assigned independently of claims
not in D using the ProcessComponent Algorithm.

After ProcessComponent completes, the edfjesiay be discarded.
After processing all components, all MDBx claim tuples have
been generated. During algorithm execution, if Procesgioment
finishes and any MDB claim for a component is assigned a margin
of 0, then the constraint set is inconsistent. We can stopessing
immediately, and marginals of 0 are assigned for all MDBiestr
in the component. When combining the portionsidf together,
we handle an inconsistent set of constraints by insurin/&iB
claims have marginals set to 0, which is correct behavior bfi-D
nition 9.

7. EXPERIMENTAL RESULTS

To empirically evaluate the performance of the proposed-alg
rithms, we conducted experiments using both real and stathe
data. The experiments were carried out on a machine runreng C
tOS 4 with a dual Pentium 2.66 GHz processor, 2GB of RAM, and
a single IDE disk. All algorithms were implemented as Jayaliap
cations that accessed a local instance of IBM DB2 UDB Version
8.1 using JDBC to interface with the database.

Since existing data warehouses cannot directly supporti-mul
dimensional imprecise data, obtaining “real-world” datass dif-
ficult. However, we were able to obtain one such real-wortd skt
from an anonymous automotive manufacturer. The fact tadbe ¢
tains 797,570 facts, of which 557,255 facts were precis40¢B15
were imprecise (i.e., 30% of the total facts are imprecigéjere
were 4 dimensions, and the characteristics of each dimemrs®
listed in Table 3. Two of the dimensionSi-Areaand Brand) have
3 level attributes (includind\LL), while the other two Time and
Location) have 4.

Each column of Table 3 lists the characteristics of eacH kve
tribute for the particular dimension, and ordered from tpdttom
in decreasing granularity. Thus, the bottom attributeéscil-level
attribute for the dimension. The two numbers next to eactbate
name are, respectively, the number of distinct values thibaite
can take and the percentage of facts that take a value franattha
tribute for the particular dimension. For example, for SveArea



dimension, 92% of the facts take a value from leaf-le¥ab-Area
attribute, while 8% take a value from tieea attribute.

| Sr-Area | Brand | Time | Location |
ALL(1)(0%) ALL (1)(0%) ALL (1)(0%) ALL (1)(0%)
Area(30)(8%) Make(14)(16%) | Quarter(5)(3%) | Region(10)(4%)
Sub-Area(694)(92%)| Model(203)(84%) | Month(15)(9%) | State(51)(21%)
Week(59)(88%)| City(900)(75%)

Table 3: Dimensions of real dataset

Of the imprecise facts, approximately 67% were imprecisa in
single dimension (160,530 facts), 33% imprecise in 2 dinoezs
(79,544 facts), 0.01% imprecise in 3 dimensions (241 factsj
none were imprecise in all 4 dimensions. For this dataseimro
precise fact had the attribute valAgL for any dimension.

For several experiments synthetic data was generated trsng
same dimension tables as the real-world data. The procegsrie
erating synthetic data was to create a fact table with a pecim-
ber of precise and imprecise facts by randomly selectingdsion
attribute values from these 4 dimensions. Each tuple way®#sb
in size.

7.1 Algorithm Performance

We first evaluate the scalability of the Marginalization éighm
along two dimensions. The first is the “complexity” of comsti
setC' and the second is the database size. While an obvious metric
exists for the latter, defining an appropriate metric for panmg
the “complexity” of different constraint sets on the sameadat is
more involved. For example, an obvious metric like the nundfe
constraints irC is potentially misleading since the amount of work
required to evaluate a constraindepends on how many facts
potentially applies to. For example, evaluating a singlest@int
“All facts with the same model have the same cost” involveseno
work than the constraint “All facts in the city Madison withet
same model have the same cost,” since the latter only applies
facts with location Madison and only pairs of these facts tniies
considered to evaluate the constraint.

Using this intuition, the metric we define to measure the com-
plexity of a constraint is the number of potentiahdingsthe con-
straint has in the fact table. In other words, the number téqtaal
bindings for constraint of the formA — B is the number of
times the conjunct of atoms iA could potentially hold in the fact
table. The potential bindings for a constraint 6&ts the sum of
potential bindings for each constraint C.

For these experiments, we evaluate the scalability of thegyival-
ization Algorithm with respect to constraint complexity thre fol-
lowing three datasets: 1) the real Automotive dataset, @ydamly
selected subset of 200,000 facts from Automotive (selestmth
that the 60,000 facts (30%) were imprecise), and 3) a syintiigt
generated dataset with 3.2 million total facts (of which 960
(30%) were imprecise). For each imprecise databiasae used
Count-based allocation [8] as an off-line process to créeté=DB
D', which was stored in a relational table in the database. We ra
domly generated 35 constraint sets with varying degreesif c
plexity. Each constraint set was generated as follows: rk},Rive
create a constraint “template! — B by: a) Randomly select-
ing 2 of the 4 dimensiong);, D, and create forA the following
conjunct of atoms: “D1 = r.Dy AND r.Dy = r'.Dy", where r
and r’ are variables, and b) randomly selecting one of theanem
ing dimensionsDs3 to create an atom foB with similar form. 2)
We generate a set of constraints by repeatedly “instamgfathis
template k times (for various k between 20 and 100) as follows
Randomly select values;, v2 from dom(D;1), dom(D2) respec-
tively, and add to the constraint the condition “whére=v; AND

D> = v9.” The result of each such “instantiation” is a constraint,
and there aré constraints in the final constraint set.

All reported running times are “wall-clock” times and arerma
numbers. Although the step to generate edges begins pimugess
a constraint collection cold, the buffer pool is not flushetween
the SQL queries over the EDB table used to generate hypeyedge
in the constraint hypergraph (see Section 6.1.2 for dgtallbus,
subsequent queries would be warm, since EDBtuples would
still be in the buffer. The database was not tuned in any manne
and no indexes were created over any tables. The buffer pa®l w
set to 100 MB for all experiments.

The results for the three datasets are shown in Figures B, wit
the figures displaying the running times versus number o$ipos
ble bindings for each of the 35 randomly generated constsets,
along with the most appropriate “best-fit” curves. Alongtwihe
total time, we also include the decomposition of the runrimes
for the two main algorithm components, GenerateComponeat a
ProcessComponent (see Section 6). Separate best-fit aueves
determined for each algorithm component, and indicatewthie
the running time of GenerateComponent grows linearly, thre r
ning time for ProcessComponent appears exponential. The ma
take-away from these results is that although our Margiagibn
algorithm is theoretically exponential (see complexitylgais in
Section 6), itis indeed practical for real-world databasik mil-
lions of facts. Also, since Marginalization will be perfoechas an
off-line process in most settings, this performance isarable.

We conducted a second set of experiments to explore the scal-
ability of the Marginalization algorithm with respect tocfaable
size. For these experiments, we used the process deschibed a
to randomly generate a constraint set, and ran Marginadizain
the same three datasets. The results are shown in Figureh?, wi
each figure showing for these datasets the total running fime
Marginalization for a randomly selected constraint set. difat
results for other constraint sets since they were similaomithe
graphs, we see the running time increases linearly as tlaseatat
size increases. This indicates the scalability of the Meaigzation
Algorithm with respect to fact table size.

7.2 Component Size

The next set of experiments examines the size and number of
connected components in the constraint hypergraph. Fee tive
periments, we used the same three datasets and 35 randamly ge
erated constraint sets used for experiments in Section THe
results in Table 4 give the most extreme value observed tner t
35 constraint sets, with each row corresponding to a datd$et
Datasetcolumn contains the number of facts in the datadéin
# CC andMin # CC contain respectively the minimum and maxi-
mum number of components observed in the constraint hygeigr
over the 35 constraint setd.argest Compand # Imp contain re-
spectively the total number of facts and the number of impesc
facts in the largest observed component. We note that thedar
observed component also contained the most impreciseftach
three datasets. Finally, Confsgives the number of configurations
enumerated to process this largest component. For eactetiate
largest component required enumerating the most configngat

From Table 4 we see that for the datasets we consider no large
connected components emerge in the constraint graph. The co
plexity analysis of the ProcessComponent step in Sectibstws
the number of configurations enumerated by ProcessComponen
grows exponentially with respect to the number of impretiets
in a component. Since no large connected component emerges,
we see that the number of configurations enumerated for éneen t
largest component remains reasonable despite the negatine
plexity results.
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Figure 6: Scalability with respect to constraint complexity

Dataset| Min#CC | Max# CC | Largest Comp| #Imp | # Confs |
200K 174198 205455 25 facts 7 2304
800K 691689 821733 78 facts 15 110592

3200K | 2829814 | 3199461 120 facts 20 5308416

Table 4: Results for component size experiment

While these results demonstrate no large connected compone
emerges in the constraint hypergraph, they do not provisiglin
into the distribution of component sizes. We do not have ghou
information to conclude whether most of the components &re e
tremely small (i.e, contain 1 or 2 imprecise facts) or if anfigant
number are “modestly” sized (i.e., contain 10 - 20 impreists).
This difference is significant since the number of configorest

ProcessComponent enumerates to process a component grows e

ponentially with the number of imprecise facts it contains.
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The next set of results we present addresses this by regdingn
distribution for imprecise fact count over the componentseiach
dataset we consider. The results for each dataset over ther85
straint sets used in the prior experiments are given in Eg8ra-c.
Each curve in a graph gives the number of components witmthe i
dicated number of imprecise facts as the constraint sewaiies.
E.g., the curve labelled “2 — 5” indicates the number of compo
nents with between 2 and 5 imprecise facts. Constraint setksi

the ProcessComponents step for all connected componettig in
hypergraph remain reasonable as constraint set size sewea

7.3 Regularity Experiments

One way the Marginalization algorithm achieves algorithef:
ficiency is by exploiting constraint-space regularity, eththe next
set of experiments explores.

7.3.1 Constraint Partitioning

The next set of experiments examines how constraint-sgagce r
ularity affects the distribution of connected componenesi For
the constraint language we propose in Section 4.1, the "hefaal
constraintA — B partitions the facts into non-overlapping sets
such that each facts in each hyperedge are drawn from thesstme

For example, consider a constraint “two facts with the saone |
cation must have the same brand.” We can think of this canstra
as first partitioning all facts by thelrocationvalue. Then, each hy-
peredge introduced for this constraint contains only afktots in
the samd.ocationpartition (e.g., facts which may have sahera-
tion, but potentially have different values f8rand). Since hyper-
edges only contain facts within the partition, the resgltbtompo-
nent can be no larger than the partition regardless of theoruf
hyperedges presenEssentially, the distribution of these partition
sizes represents the worst-case distribution of compasizes.

Our next set of experiments investigates the distributiopar-
tition sizes as constraint set size increases, and is simailéhe
component size distribution experiments in Section 7.2 Jame
35 constraint sets were used for these experiments andghksre
are given in Figures 9.a-c. Each curve in a graph gives théoeum
of partitions with the indicated number of imprecise factstlae
constraint set size varies. E.g., the curve labelled “2 -n8fdates
the number of partitions with between 2 and 5 imprecise fadts

was defined in Section 7.1. We omit the curves for the range O partitions are created by grouping together facts whicisfyathe

to 1 imprecise facts since the number of configurations gdedr
by these components is negligible (i.e., less that 5% of oled t
enumerated configurations) for the datasets we considethase
negatively impact the readability of the graph.
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Figure 8: Component size distributions for datasets (a) 20K,
(b) 800K (real Automotive), (c) 3200K

We draw the following two conclusions from these resultsstri
as constraint set size increases, the number of modestly sam-
ponents remains small. Only the number of extremely smafi-co
ponents (with between 2 - 5 imprecise facts each) increases n
ticeably. Thus, the total number of configurations enuneetty

head of the constraint, and the reported sizes are the nwhlmes
precise facts in the partitions. Constraint set size k wéisele in
Section 7.1. We omit the curves for the range 0 to 1 impreeistsf
for reasons similar to the ones given for the component sigelts
(Figure 8).
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Figure 9: Partition size distributions for datasets (a) 20K, (b)
800K (real Automotive), (c) 3200K

By directly comparing between these figures and the correspo
ing results for component size distribution in Figures 8.ae see
the observed component size distributions are quite sirmléhe
partition size distributions. Thus, we conclude that far ttatasets
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and constraint sets we consider, the component distribigiclose

to worst-case. Despite this worst-case behavior, the totalber

of configurations ProcessComponents enumerates remaissnre
able.

7.3.2 Graph Connectivity

The purpose of this experiment is to directly measure thaanhp
of the Non-Adjacent set optimization on running time. Fasth
experiment, we used the Automotive dataset and generatet a ¢
lection of related constraint sets so that we could contreldon-
nectivity of the constraint graph, which we define as the @atage
of possible edges within a constraint hypergraph that atgatyg
present. Intuitively, if the non-adjacent set optimizatiwas not
used, the number of configurations enumerated by Procegs&zom
nent would be the same regardless of the hypergraph comnecti
ity (i.e., all possible configuration for each component ldcave
to be enumerated), thus increasing the running time of Bssce
Component. The results in Figure 10 indicate the Non-Adjace
set optimization significantly impacts running time if thgpler-
graph connectivity is low. For the real-world Automotivetaiset,
the constraint sets we consider resulted in constraintrgyaehs
with very low connectivity (under 10% in many cases).
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Figure 10: Regularity Experiment

7.4 Summary of Experimental Results

Together, the results in Sections 7.2 and 7.3 explain thiasca
bility and efficiency of our approach, as observed in Secti@nl.
The favorable distribution of connected component sizele
served in Section 7.2 is a result of constraint-space reglaad-
ing to many trivially small connected components. Secohd, t
non-adjacent set optimization significantly reduces thalmer of
configurations which ProcessComponents enumerates, gnadn
tice significantly improves the performance of the Margiration
Algorithm. We note that further experimentation on additibdatasets
from other domains is required to determine the generafitiiese
results.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have significantly extended the framework f
OLAP over imprecise data presented in [8], to support doroaim
straints. This extension removes the strong independesterg-
tions required by [8], which are often violated in practice.

There are several interesting directions for further stuglyst,
the constraint language we propose could be generalizeghpost
more expressive types of constraints, similar in spirithe énes
proposed in [15]. For example, the language could be extbtale
support constraints over aggregation query results in pashible
world (e.g., “The sum of all Sales in a world must be $1000”). A
second related direction would be to develdpssexpressive (but
still useful) constraint language that would allow for deyenent
of more efficient marginalization algorithms, with the siergan-
guage having additional regularity in the constraint-spnat the
algorithm can exploit. Finally, it would be fruitful to delap incre-
mental maintenance algorithms for the MOBx, similar in spirit
to the EDB maintenance algorithms proposed in [7]. Incraalen
maintenance of the MDB is challenging since support is mequi
for both updates to the underlying fact table and the set of co
straintsC.
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