
The QUIQ Engine: A Hybrid IR–DB System

Navin Kabra Raghu Ramakrishnan Vuk Ercegovac

Veritas Inc. Department of Computer Sciences,
University of Wisconsin–Madison

E-mail:navin.kabra@veritas.com, {raghu, vuk }@cs.wisc.edu

Abstract

For applications that involve rapidly changing textual
data and also require traditional DBMS capabilities, cur-
rent systems are unsatisfactory. In this paper, we describe a
hybrid IR-DB system that serves as the basis for the QUIQ-
Connect product, a collaborative customer support appli-
cation. We present a novel query paradigm and system ar-
chitecture, along with performance results.

1. Introduction

Internet-based customer support has grown ubiquitous
in recent years because it costs less than traditional chan-
nels such as phone support. The QUIQConnect application
enables users toposta question if they cannot find a sat-
isfactory answer in the knowledge-base. Others can post
answers; questions and related answers are automatically
combined into searchableknowledge units.

QUIQConnect content is a combination of structured and
unstructured data. We require a query paradigm that ad-
equately bridges the exact answers of relational database
(DB) systems and the ranked answers of information re-
trieval (IR) systems. Further, updates must be applied im-
mediately in order to meet the application requirements. All
data is stored in a relational DBMS. However, the query and
update performance was not adequate (in either speed or
quality of results), and we developed theQUIQ Query En-
gine (QQE)to address this problem. The main contributions
that arise from our approach are: (1) a novel data model and
query paradigm that combines ideas from DB and IR ap-
proaches, (2) fast updates and queries through the use of a
self-organizing differential index structure to avoid in-place
updates, and (3) an integration architecture that leverages
the DBMS for concurrency and recovery. The rest of this
paper is organized as follows. Section 2 describes the uni-
fied query paradigm. Section 3 describes the QQE archi-
tecture and implementation details. Performance is summa-
rized in Section 4, followed by a discussion of related work

in Section 5.

2. A Hybrid DB-IR Query Paradigm

In the QUIQConnect model, each data object (or tuple)
has aTID and is described by a set of〈 tag-name, tag-type,
tag-value〉 triples (which we often refer to astags). In con-
trast to the relational model, we do not require a fixed set
of tags within a collection. We focus on selection queries
over a single collection, with results ranked in terms of how
well they match the query. In contrast to XML systems, we
concentrate on a simpler structural model that allows us to
focus on textvs. non-text attributes and relevance-ranked
retrieval. In contrast to IR systems, the tags provide some
structure and semantics.

We now describe the types of constraints that are sup-
ported, followed by a description of how we can apply
the constraints to both text and non-text fields. A query
in QUIQConnect can be decomposed into three sets of
constraints—match, filter, and quality constraints. The
query result is essentially the result of all thematchand
filter constraints AND-ed together. Thequality constraints
are used to adjust the relevance of those results.

Intuitively, Match constraints areapproximate con-
straints that specify what the user is looking for. A tuple can
appear in the result of a query only if it satisfies at least one
match constraint. Therelevanceof a tuple is mainly deter-
mined by how many match constraints it matches, and how
well. While relevance is not tied to a particular algorithm,
for concreteness we use the well-known TF-IDF formula.

Filter constraints areexact constraints, and act like a
WHEREclause in a SQL query; only tuples that satisfy all
filter constraints are in the query result. On the other hand,
tuples that satisfy the filter constraints but do not match any
match constraints are not in in the query result.

The preceding discussion is applicable to tokens in gen-
eral and does not explain how QQE evaluates constraints
over non-text attributes such as integers and dates. A typical
approach for handling both types of attributes in the same
system is to manage text data with an IR system and the

1



other data using an independent database engine. However,
this approach has performance limitations since a constraint
from one engine cannot be used to prune results in the other.
Furthermore, it does not support the range of queries that we
aim to support. For example, we cannot express find “inex-
pensive car under 5 years”.

In our hybrid approach, text and non-text data can be
combined in a single index. The basic idea is to map non-
text data to pseudo-keywords that cannot be confused with
actual keywords of text. Now, each distinct value that a non-
text attribute in the database might take is mapped to one or
more of the pseudo keywords. The mapping scheme can
differ based on the data-type of the attribute. In some cases,
the mapping scheme might contain collisions, necessitating
the use of post-processing to remove false positives.

This approach allows us to compute relevance even for
constraints on non-text fields, using a common TF-IDF
framework. Relevance calculation for quality constraints is
a special case of this framework.

3. System Architecture

QQE consists of a DBMS that holds all the base data and
an externalindex serverthat maintains the unified index.
Inserts/Updates are made directly to the DBMS. The index
server monitors these updates to keep its indexes current.
It can also be updated in bulk-load mode. Data retrieval is
done by querying the index server.

The primary data structure in the index server is anin-
verted indexthat maps each token appearing in an attribute
to a TIDLIST. Each entry of the TIDLIST is a TID and a
count that represents the number of times the token appears
in the given attribute of the TID’s tuple. Entries are sorted
in descending TID order, i.e., youngest tuples first, and an
entry does not appear for counts of zero token occurrences.

Our basic idea is todefer applying update operationsto
the persistent store of an index server. Updates are handled
in three steps: (1) Changes to the database are written to
a special JOBS table as a part of the same transaction. (2)
The JOBS table is continually polled by the index server
and changes are incorporated into an in-memory differen-
tial index structure, referred to as thedynamic index. (3)
The persistent on-disk index, referred to as thestatic in-
dex, is periodically refreshed to absorb the dynamic index.
These details must be transparent to data retrieval opera-
tions, and therefore retrieval operations have an additional
step of checking results against thedynamic indexto adjust
for changes that have not yet made it to thestatic index.

This approach allows us to disregard random updates and
optimize persistent index structures as if they were static,
since they are refreshed offline and accessed sequentially.
Since query processing time is dominated by processing
constraints to identify the top results, these index optimiza-

tions dramatically improve performance. Periodic refreshes
can also be combined with analysis/mining of query and
update traces to make the system self-tuning at the stor-
age level, extending the current state of the art (which has
concentrated on the choice of indexes). Furthermore, re-
lated data such as statistics are regularly refreshed as a side-
effect. A final benefit of a self-organizing index is in evolu-
tion flexibility. For example, format changes may be incor-
porated by simply restarting the server process with a new
version of the executable, which can read the old format and
write the new format during a refresh.

Concurrency requires only short term latches protecting
the in-memory data-structures since the disk structures are
never written. For recovery, the JOBS table is effectively
used as aredo log. All jobs that have a timestamp newer
than the timestamp of the static index are fetched and reap-
plied at system start-up time.

4. Performance

In this section, we report on the results of a performance
study of QQE. Details can be found in [8]; we just summa-
rize the results below.

We studied how performance scales with query size. It
scales close to linearly with increasing document size and
number of documents. It scales super-linearly as the num-
ber of query tokens is increased, but this can be offset sig-
nificantly by certain optimizations we implemented.

For studying updates, we measure the throughput for
insert-only, update-only, mixed insert-update, and bulk-load
workloads as the number of jobs increase and as the aver-
age job size increases. For studying the effect of merging
static and dynamic indices on queries, we vary the time in-
terval for merging all partitions versus workloads consisting
of queries, insert-only, update-only, and a mix of inserts and
updates. Details can be found in [8].

Finally, we designed a comparative study against a
DBMS Text Extension (DBMS-TEfor short) of a commer-
cial database. Several issues had to be addressed. First,
QUIQConnect supports data-types whose content is stored
on the file-system and referenced by names stored in re-
lational tables. These data-types were converted to native
data-types supported by DBMS-TE. Second, queries used
for QQE have to be translated to SQL with text exten-
sions. Finally, when making measurements during the ex-
periments, we need to insure that the state of DBMS-TE
corresponded to that of QQE (e.g., whether the inserted tu-
ple is visible to queries).

The query experiments show QQE out-performing
DBMS-TE by 60% to over an order of magnitude. How-
ever,the DBMS-TE performed better for bulk-loads and
converting an unoptimized structure to an optimized struc-
ture. However, QQE out-performed DBMS-TE for work-

2



loads composed of straight inserts, straight updates, and a
mix of inserts and updates.

5. Related Work

This section outlines work related to QQE in terms of
the query paradigm and managing a dynamic corpus. It is
intended to highlight different approaches along these two
dimensions and is not intended to be comprehensive. We
consider three types of systems: (1) DBMSs extended to
handle text, (2) IR systems implemented to handle a dy-
namic corpus, and (3) other systems that defer updates for a
combination of performance and application reasons.

Commercial RDBMSs have been extended to allow key-
word searches over textual attributes but they do not have
a very sophisticated notion of relevance, and simply apply
an external text-search engine on a per-field basis. With
respect to handling a dynamic corpus, RDBMSs typically
provide facilities that allow an administrator to control
when an update is made visible to queries.

Database systems not based on the relational model have
also been extended to incorporate IR style queries. The
HySpirit system described in [6] combines Datalog with IR
using a probabilistic scheme. Additionally, MOA [5] pro-
vides an integrated DBMS and IR query paradigm. It is
unclear how their performance would compare to QQE.

IR systems allow a document to have multiple attributes,
but they only use the attributes to filter results after the regu-
lar “relevance” query has been evaluated. QQE, through the
use of a quality constraint, can additionally re-order results
based on non-text attributes.

In terms of managing a dynamic corpus,dynamic in-
verted indexhave been extensively studied. Since most of
the systemsdefer applying changes, the key differences rel-
ative to QQE are inhow andwhenthe changes are prop-
agated to disk. QQE propagates changes byrewriting the
entire static index whereas many other systems doin-place
propagation. Additionally, QQE applies changes based on
a fixed time interval whereas many other systems are driven
by eventssuch as exceeding a memory threshold. Finally,
the document identifier space in QQE is shared with the
RDBMS, requiring a true update operation but not requir-
ing a remapping before retrieving the tuple.

The publicly available search engine framework Lucene
[4] applies changes based on a memory threshold and uses
rewrite.

The system described in [2] differs by propagating
changes in-place. Similarly, the Spider system [9] propa-
gates updates in-place but does not allow queries over pend-
ing updates. The Gold Mailer system described in [1] prop-
agates changes periodically but it is unclear if rewrite is
used. The study in [11] considers various degrees of writing
in-place versus rewriting.

Finally, much work utilizing deferred updates has been
done in systems that are not specific to text. For example,
the work in [10] discussed differential database file struc-
tures. Data warehouses also need to accommodate changes
to a structure that is highly optimized for queries. The work
in [7] proposes that the changes are similarly deferred and
merged into the main structure using a multi-level merge
algorithm.

6. Conclusion

In conclusion, QQE is designed for applications that re-
quire the flexibility and intuitiveness of text search com-
bined with the structured meta-data. The system is archi-
tected for dynamic environments with a significantly greater
number of queries than change requests, and is optimized
for fast query responses.

Acknowledgments
We thank several people at QUIQ who contributed to

QQE: Andrew Baptist, Matt Hanselman, Jim Kupsch, Ra-
jesh Raman, and Uri Shaft.

References

[1] D. Barbaŕa, C. Clifton, F. Douglis, H. Garcia-Molina,
S. Johnson, B. Kao, S. Mehrotra, J. Tellefsen, and R. Walsh.
The Gold Mailer. InProc. ICDE, 1993.

[2] E. Brown, J. Callan, and W. Croft. Fast Incremental Index-
ing for Full-Text IR. Proc. VLDB, 1994.

[3] T.-C. Chiueh and L. Huang. Efficient Real-Time Index Up-
dates in Text Retrieval Systems. TR-66, SUNY at Stony
Brook, Mar. 1999.

[4] D. Cutting. The Jakarta Lucene Project.http://
jakarta.apache.org/lucene .

[5] A. de Vries and A. Wilschut. On the Integration of IR and
Databases.IFIP 2.6 DS-8 Conf., 1999.

[6] N. Fuhr and T. R̈olleke. HySpirit–A Probabilistic Inference
Engine for Hypermedia Retrieval in Large Databases.Ad-
vances in Database Technology–EDBT, 1998.

[7] H. V. Jagadish, I. S. Mumick, and A. Silberschatz. View
Maintenance Issues for the Chronicle Data Model.Proc.
ACM PODS, 1995.

[8] N. Kabra, R. Ramakrishnan, and V. Ercegovac. The QUIQ
Engine: A Hybrid IR–DB System. TR-1449, Department
of Computer Sciences, University of Wisconsin–Madison,
Nov. 2002.

[9] D. Knaus and P. Scḧauble. The System Architecture and the
Transaction Concept of the SPIDER Information Retrieval
System.Data Engineering Bulletin, 19(1):43–52, 1996.

[10] D. Severance and G. Lohman. Differential Files: Their
Application to the Maintenance of Large Databases.ACM
TODS, 1(3):256–267, Sept. 1976.

[11] A. Tomasic, H. Garcia-Molina, and K. A. Shoens. Incremen-
tal Updates of Inverted Lists for Text Document Retrieval.
Proc. ACM SIGMOD Intl. Conf., 1994.

3


