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ABSTRACT
A data-integration system provides access to a multitude
of data sources through a single mediated schema. A key
bottleneck in building such systems has been the labori-
ous manual construction of semantic mappings between the
source schemas and the mediated schema. We describe LSD,
a system that employs and extends current machine-learning
techniques to semi-automatically �nd such mappings. LSD
�rst asks the user to provide the semantic mappings for
a small set of data sources, then uses these mappings to-
gether with the sources to train a set of learners. Each
learner exploits a di�erent type of information either in the
source schemas or in their data. Once the learners have been
trained, LSD �nds semantic mappings for a new data source
by applying the learners, then combining their predictions
using a meta-learner. To further improve matching accu-
racy, we extend machine learning techniques so that LSD
can incorporate domain constraints as an additional source
of knowledge, and develop a novel learner that utilizes the
structural information in XML documents. Our approach
thus is distinguished in that it incorporates multiple types
of knowledge. Importantly, its architecture is extensible to
additional learners that may exploit new kinds of informa-
tion. We describe a set of experiments on several real-world
domains, and show that LSD proposes semantic mappings
with a high degree of accuracy.

1. INTRODUCTION
The increasing need of enterprises to uniformly access

multiple sources of data and the rapid growth of structured
data available on the WWW have spurred considerable in-
terest in building data-integration systems (e.g., [8, 9, 24, 15,
11, 13]). Such a system provides users with a uniform inter-
face to a multitude of data sources, thus freeing them from
the details of the schemas of the sources and the particular
mode of interaction with each source. The system provides
this interface by enabling users to pose queries against a me-
diated schema, which is a virtual schema that captures the
domain's salient aspects.
To answer queries, the data-integration system uses a set

of semantic mappings between the mediated schema and
the local schemas of the data sources. The system uses the
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Figure 1: A data-integration system in the real-estate do-
main.

mappings to reformulate a user query into a set of queries on
the data sources. Wrapper programs, attached to each data
source, handle the data formatting transformations between
the local data model and the data model in the integration
system. Figure 1 illustrates a data-integration system that
helps users �nd houses on the real-estate market.
A key bottleneck in building data-integration systems is

the acquisition of semantic mappings. Today these map-
pings are provided manually by the builders of the system,
resulting in a laborious and error-prone process. The emer-
gence of XML as a standard syntax for sharing data among
sources further fuels data sharing applications, and hence
underscores the need to develop methods for acquiring se-
mantic mappings. Clearly, while the task of �nding seman-
tic mappings cannot be fully automated, the development
of tools for assisting the process is crucial to truly achieve
large-scale data integration.
In this paper we describe the LSD (Learning Source De-

scriptions) system that uses and extends machine learn-
ing techniques to semi-automatically create semantic map-
pings. Throughout the discussion, we shall assume that the
sources present their data in XML, and that the mediated-
and source schemas are represented with DTDs. Then, the
schema-matching problem is to �nd correspondences among
the elements of the mediated schema and the source DTDs.
The key idea underlying our approach is that after a small

set of data sources have been manually mapped to the medi-
ated schema, LSD should be able to glean signi�cant infor-
mation from these mappings to successfully propose map-
pings for subsequent data sources.

Example 1. Consider the data-integration system in Fig-
ure 1. To apply LSD, �rst we select a source, say realestate.com.
Next, we manually specify the mappings between the schema
of this source and the mediated schema. In particular, sup-
pose the mappings specify that source-schema elements listed-
price, phone, and commentsmatch mediated-schema elements
PRICE, AGENT-PHONE, and DESCRIPTION, respectively
(see the dotted arrows in Figure 2.a).
Once we have speci�ed the mappings, there are many dif-

ferent types of information that LSD can glean from the
source schema and data to train a set of learners. A learner
can exploit the names of schema elements: knowing that



listed-price
 $250,000
 $110,000
   ...

      phone
(305) 729 0831
(617) 253 1429
  ...

   comments
Fantastic house
Great location
  ...

realestate.com

 PRICE    AGENT-PHONE     DESCRIPTION

Mediated schema

  <listed-price> $ 110,000</listed-price>
  <phone> (617) 253 1429</phone>
  <comments> Great location </comments>

  <listed-price> $ 250,000</listed-price>
  <phone> (305) 729 0831</phone>
  <comments> Fantastic house </comments>

If “phone” occurs in 
the name => 

AGENT-PHONE

If “fantastic” & “great” 
occur frequently in 
data instances => 

DESCRIPTION

Learned hypotheses

(a)

    price
 $550,000
 $320,000
   ...

 contact-phone
(278) 345 7215
(617) 335 2315
  ...

   extra-info
Beautiful yard
Great beach
  ...

greathomes.com

(b)

Figure 2: Once LSD has trained a set of learners on source realestate.com in (a), it can apply the learners to �nd semantic
mappings for source greathomes.com in (b).

phone matches AGENT-PHONE, it could hypothesize that if
an element name contains the word \phone", then that el-
ement is likely to be AGENT-PHONE. The learner can also
look at example phone numbers in the source data, and learn
the format of phone numbers. It could also learn from word
frequencies: it could discover that words such as \fantastic"
and \great" appear frequently in house descriptions. Hence,
it may hypothesize that if these words appear frequently in
the data instances of an element, then that element is likely
to be DESCRIPTION. As yet another example, the learner
could also learn from the characteristics of value distribu-
tions: it can look at the average value of an element, and
learn that if that value is in the thousands, then the element
is more likely to be price than the number of bathrooms.
Once the learners have been trained, we apply LSD to

�nd semantic mappings for new data sources. Consider
source greathomes.com. First, LSD extracts data from this
source to populate a table where each column consists of
data instances for a single element of the source schema
(Figure 2.b). Next, LSD applies the learners to each col-
umn. A learner examines the name and the data instances
of the column, and applies its learned hypothesis to predict
the matching mediated-schema element. For example, when
applied to column extra-info, a word-frequency learner will
recognize that the data instances in the column are house
descriptions. Based on these predictions, LSD will be able
to predict that extra-info matches DESCRIPTION.2

As described, machine learning provides an attractive plat-
form for �nding semantic mappings. However, applying it to
our domain raises several challenges. First, we must decide
which learners to employ in the training phase. A plethora
of learning algorithms have been described in the literature,
each of which has strengths in learning di�erent types of
patterns. A key distinguishing factor of LSD is that we
take a multi-strategy learning approach [17]: we employ a
multitude of learners, called base learners, then combine the
learners' predictions using a meta-learner. The meta-learner
uses the training data to learn for each base learner a set of
weights that indicate the relative importance of that learner.
The weights can be di�erent for each mediated-schema el-
ement, reecting that di�erent learners may be most ap-
propriate in di�erent cases. An important feature of multi-
strategy learning is that our system is extensible since we can
add new learners that have speci�c strengths in particular
domains, as these learners become available.
The second challenge is to exploit integrity constraints

that appear frequently in database schemas and to incor-
porate user feedback on the proposed mappings in order to
improve accuracy. We extended multi-strategy learning to
incorporate these. As an example of exploiting integrity con-
straints, suppose we are given a constraint stating that the

value of the mediated-schema element HOUSE-ID is a key
for a real-estate entry. In this case, LSD would know not to
match num-bedrooms to HOUSE-ID because the data values
of num-bedrooms contain duplicates, and thus it cannot be
a key. As an example of incorporating user feedback, LSD
can bene�t from feedback such as \ad-id does not match
HOUSE-ID" to constrain the mappings it proposes.
The third challenge arose from the hierarchical nature of

XML �les and DTDs. In many cases, a decision on how to
match an XML element depends crucially on its structure:
the number and types of elements it contains, the positions
of these elements, the distribution of text within these ele-
ments, and so on. However, the problem of considering hi-
erarchical structure has received relatively little attention in
the machine learning literature. We develop a novel learner,
called the XML learner, that handles hierarchical structure
and further improves the accuracy of our mappings.
In the rest of the paper we describe the LSD system and

the experiments we conducted to validate it. Speci�cally,
the paper makes the following contributions:

� We describe the use of multi-strategy learning for �nd-
ing semantic mappings. The LSD system, embodying this
approach, is able to learn from both schema- and data-
related features. The system is easily extensible to addi-
tional learners, and requires little initial e�ort from the
user { as the user gets to know the domain better, new
learners can be added as needed.

� We extend machine learning techniques to incorporate in-
tegrity constraints and user feedback, in order to improve
the accuracy of the mappings.

� We develop the XML learner, a novel learning algorithm
that classi�es structured elements.

� We describe a set of experiments on several data integra-
tion domains to validate the e�ectiveness of LSD. The
results show that with the current set of learners, LSD
already obtains predictive accuracy of 71-92% across all
domains. The experiments show the utility of adding new
learners and how the system pro�ts from learning from
schema- and data-related features, and user feedback.

The paper is organized as follows. The next section de�nes
the schema-matching problem. Sections 3{5 describe the
LSD sytem. Section 6 presents our experiments. Section 7
discusses the limitations of the current system. Section 8
reviews related work. Section 9 discusses future work and
concludes.

2. PROBLEM DEFINITION
The goal of schema matching is to produce semantic map-

pings that enable transforming data instances from one schema



<house-listing>
   <location>Seattle, WA</location>
   <price> $70,000</price>
   <contact><name>Kate Richardson</name>
                   <phone>(206) 523 4719</phone>
   </contact>
</house-listing>

<!ELEMENT   LISTING   (ADDRESS, LISTED-PRICE, CONTACT-INFO)>
<!ELEMENT   ADDRESS          (#PCDATA)>
<!ELEMENT   LISTED-PRICE   (#PCDATA)>
<!ELEMENT   CONTACT-INFO  (FNAME, LNAME, AGENT-PHONE)>
<!ELEMENT   FNAME              (#PCDATA)>
<!ELEMENT   LNAME              (#PCDATA)>
<!ELEMENT   AGENT-PHONE  (#PCDATA)>

(a) An XML house listing in a source S

<!ELEMENT   house-listing   (location?, price,contact)>
<!ELEMENT   location   (#PCDATA)>
<!ELEMENT   price       (#PCDATA)>
<!ELEMENT   contact  (name, phone)>
<!ELEMENT   name   (#PCDATA)>
<!ELEMENT   phone  (#PCDATA)>

(b)  The schema of source S (c) The mediated schema

Figure 3: Examples of XML listing, source schema (DTD), and mediated schema.

to instances of the other. In many common cases, the map-
pings are one-to-one (1-1) between elements in the two schemas
(e.g., \location is mapped to address"), while in others, the
mappings may be more complex (e.g., \num-baths maps to
half-baths+ full-baths"). In general, a mapping may be spec-
i�ed as a query that transforms instances of one schema into
instances of the other [18, 22]. The focus of our work is
to compute 1-1 mappings between the elements of the two
schemas. Computing more complex mappings is the subject
of ongoing research.
It is important to emphasize that the input to the schema

matching problem is already structured data. In many data-
integration applications, it is necessary to precede schema
matching by a data extraction phase. In this phase, unstruc-
tured data (e.g., text, HTML) is mapped to some structured
form (e.g., tuples, XML). Data extraction has been the focus
of intensive research on wrappers, information extraction,
and segmentation (e.g., [14, 7]), often also bene�ting from
machine learning techniques.

2.1 Schema Matching for XML DTDs
XML [26] is increasingly being used as a protocol for

the dissemination and exchange of information from data
sources. Hence, we decided to consider the problem of dis-
covering semantic mappings in the context of XML data.
Recall that in addition to encoding relational data, XML can
encode object-oriented, hierarchical, and semi-structured data.
An XML document consists of pairs of matching open- and
close-tags, enclosing elements. Each element may also en-
close additional sub-elements or uniquely valued attributes.
A document contains a unique root element, in which all
others are nested. Figure 3.a shows a house listing stored as
an XML document. In general, an XML element may also
have a set of attributes. For the purpose of this paper we
treat its attributes and sub-elements in the same fashion.
We consider XML documents with associated DTDs (doc-

ument type descriptors). A DTD is a BNF-style grammar
that de�nes legal elements and relationships between the el-
ements. We assume that the mediated schema is a DTD
over which users pose queries, and that each data source is
associated with a source DTD. Data may be supplied by the
source directly in this DTD, or processed through a wrapper
that converts the data from a less structured format. Fig-
ures 3.b-c show sample source- and mediated-DTDs in the
real-estate domain. Throughout the paper, we shall use this
font to denote source-schema elements, and THIS FONT for
mediated-schema elements.
Given a mediated DTD and a source DTD, the schema-

matching problem is to �nd semantic mappings between the
two DTDs. In this paper we start by considering the re-
stricted case of �nding one-to-one (1-1) mappings between
tag names of the source DTD and those of the mediated
DTD. For example, in Figures 3.b-c, tag location matches

ADDRESS, and contactmatches CONTACT-INFO. Intuitively,
two tags (i.e., schema elements) match if they refer to seman-
tically equivalent concepts. The notion of semantic equiv-
alence is subjective and heavily dependent on the partic-
ular domain and context for which data integration is per-
formed. However, as long as this notion is interpreted by the
user consistently across all data sources in the domain, the
equivalence relations LSD learns from the training sources
provided by the user should still apply to subsequent, unseen
sources.

2.2 Schema Matching as Classification
Our approach rephrases the problem of �nding 1-1 map-

pings as a classi�cation problem: given the mediated-DTD
tag names as distinct labels c1; : : : ; cn, we attempt to as-
sign to each source-schema tag a matching label. (If no
label matches the source-schema tag, then the unique label
OTHER is assigned.)
Classi�cation proceeds by training a learner L on a set

of training examples f(x1; ci1); : : : ; (xm; cim)g, where each
xj is an object and cij is the observed label of that object.
During the training phase, the learner inspects the training
examples and builds an internal classi�cation model (e.g.,
the hypotheses in Figure 2.a) on how to classify objects.
In the matching phase, given an object x the learner L

uses its internal classi�cation model to predict label for x.
In this paper we assume the prediction is of the form
hs(c1jx; L); s(c2jx; L); : : : ; s(cnjx; L)i, where

Pn

j=1 s(cj jx; L) =

1, and s(cj jx; L) is learner L's con�dence score that xmatches
label cj . The higher a con�dence score, the more certain
the learner is in its prediction. (In machine learning, some
learners output a hard prediction, which is a single label.
However, most such learners can be easily modi�ed to pro-
duce con�dence-score predictions.)
For example, consider the name matcher which assigns

label to an XML element based on its name (see Section 3.3
for more details). Given an XML element, such as \hphonei
(235) 143 2726h/phonei", the name matcher inspects the
name, which is \phone", and may issue a prediction such as
hADDRESS:0.1,DESCRIPTION:0.2, AGENT-PHONE:0.7i.

3. THE LSD APPROACH
We now describe LSD in detail. The system consists of

four major components: base learners, meta-learner, predic-
tion converter, and constraint handler. It operates in two
phases: training and matching (Figure 4). In the training
phase LSD �rst asks the user to manually specify the map-
pings for several sources. Second, it extracts some data from
each source. Third, it creates training examples for the base
learners from the extracted data. Di�erent base learners
will require di�erent sets of training examples. Fourth, it
trains each base learner on the training examples. Finally,
it trains the meta-learner. The output of the training phase



L1 L2 Lk

if ... then ...

ML
Constraint Handler

Mappings

Feedback

Domain 
Constraints

(a) Training (b) Matching

Mediated schema

Source schemas

Extracted Data

Training data
for base learners

Figure 4: The two phases of LSD.

is the internal classi�cation models of the base-learner and
the meta-learner.
In the matching phase the trained learners are used to

match new source schemas. Matching a target source pro-
ceeds in three steps. First, LSD extracts some data from the
source, and creates for each source-schema element a col-
umn of XML elements that belong to it. Second, it applies
the base learners to the XML elements in the column, then
combines the learners' predictions using the meta-learner
and the prediction converter. Finally, the constraint han-
dler takes the predictions, together with the available do-
main constraints, and outputs 1-1 mappings for the target
schema. The user can either accept the mappings, or pro-
vide some feedback and ask the constraint handler to come
up with a new set of mappings.
This section describes the two phases, the base learners,

the meta-learner, and the prediction converter. The next
section (Section 4) describes the constraint handler. Then
Section 5 describes the XML learner, a novel base learner
we developed to handle nested DTD elements.

3.1 The Training Phase

1. Manually Specify Mappings for Several Sources:

Given several sources as input, LSD begins by asking the
user to specify 1-1 mappings for these sources, so that it can
use the sources to create training data for the learners.
Suppose that LSD is given the two sources realestate.com

and homeseekers.com, whose schemas are shown in Figure 5.a,
together with the mediated schema. (These schemas are
simpli�ed versions of the ones we actually used in the ex-
periments.) Then the user simply has to specify the map-
pings shown in Figure 5.b, which says that location matches
ADDRESS, comments matches DESCRIPTION, and so on.
The speci�cation should be a relatively easy task, because

it involves labeling only the schemas, not the data instances
of the sources. It is done only once, at the beginning of
the training phase; thus the work should be amortized over
the subsequent tens or hundreds of sources in the matching
phase. Furthermore, once a new source has been matched by
LSD and the matchings have been con�rmed/re�ned by the
user, it can serve as an additional training source, making
LSD unique in that it can directly and seamlessly reuse past
matchings to continuously improve its performance.

2. Extract Source Data: Next, LSD extracts data from
the sources (20-300 house listings in our experiments). In
our example, LSD extracts a total of four house listings as

shown in Figure 5.c. Here, for brevity we show an XML
element such as \hlocationi Miami, FL h/locationi" as \lo-
cation: Miami, FL". Each house listing has 3 XML elements.
Thus we have a total of 12 extracted XML elements.

3. Create Training Data for each Base Learner: LSD
then uses the extracted XML elements, together with the 1-1
mappings provided by the user, to create the training data
for each base learner. Given a base learner L, from each
XML element e we extract all features that L can learn
from, then pair the features with the correct label of e (as
inferred from the 1-1 mappings) to form a training example.
To illustrate, we shall assume that LSD uses only two base

learners: the name matcher and the Naive Bayes learner
(both are described in detail in Section 3.3). The name
matcher matches an XML element based on its tag name.
Therefore, for each of the 12 extracted XML elements (Fig-
ure 5.c), its tag name and its true label form a training
example. Consider the �rst XML element, \location: Mi-
ami, FL". Its tag name is \location". Its true label is AD-
DRESS, because the user has manually speci�ed that \lo-
cation" matches ADDRESS. Thus, the training example de-
rived from this XML element is (\location",ADDRESS). Fig-
ure 5.d lists the 12 training examples for the name matcher.
Some training examples are duplicates, but that is �ne be-
cause most learners, including the name matcher, can cope
with duplicates in the training data.
The Naive Bayes learner matches an XML element based

on its data content. Therefore, for each extracted XML el-
ement, its data content and its true label form a training
example. For instance, the training example derived from
the XML element \location: Miami, FL" will be (\Miami,
FL", ADDRESS). Figure 5.e lists the 12 training examples
for the Naive Bayes learner.

4. Train the Base Learners: Next, LSD trains each base
learner on the training examples created for that learner.
Each learner will examine its training examples to construct
an internal classi�cation model that helps it match new ex-
amples. These models are part of the output of the training
phase, as shown at the bottom of Figure 4.a.

5. Train the Meta-Learner: Finally, LSD trains the
meta-learner. This learner uses a technique called stack-
ing [25, 23] to combine the predictions of the base learners.
Training the meta-learner proceeds as follows [23]. First the
meta-learner asks the base learners to predict the labels of
the training examples. The meta-learner knows the correct
labels of the training examples. Therefore it is able to judge
how well each base learner performs with respect to each
label. Based on this judgement, it then assigns to each com-
bination of label ci and base learner Lj a weight W ci

Lj
that

indicates how much it trusts learner Lj 's predictions regard-
ing ci. Stacking uses a technique called cross-validation to
ensure that the weights learned for the base learners do not
over�t the training sources, but instead generalize correctly
to new ones.
We now describe computing the learner weights in de-

tail. Section 3.2 will describe how the meta-learner uses the
weights to combine the base learners' predictions.

(a) Apply Base Learners to Training Data: For each
base learner L, let T (L) be the set of training examples cre-
ated for L in Step 3. The meta-learner applies L to predict
labels for the examples in T (L). The end result will be a



location: Miami, FL
comments: Nice area
contact: (305) 729 0831
location: Boston, MA
comments: Close to river
contact: (617) 253 1429
house-addr: Seattle, WA
detailed-desc: Fantastic ...
phone: (206) 753 2605
house-addr: Portland, OR
detailed-desc: Great yard
phone: (515) 273 4312

T(NaiveBayes)
(“Miami, FL”, ADDRESS)
(“Nice area”, DESCRIPTION)
 ...
(“(515) 273 4312”, AGENT-PHONE)

T(NameMatcher)
(“location”, ADDRESS)
(“comments”, DESCRIPTION)
 ...
(“phone”, AGENT-PHONE)

CV(NaiveBayes)
<ADDRESS:0.8, DESCRIPTION:0.2, AGENT-PHONE:0.0 >
<ADDRESS:0.3, DESCRIPTION:0.3, AGENT-PHONE:0.4>
  ...
<ADDRESS:0.2, DESCRIPTION:0.2, AGENT-PHONE:0.6>

CV(NameMatcher)
<ADDRESS:0.6, DESCRIPTION:0.2, AGENT-PHONE:0.2>
<ADDRESS:0.2, DESCRIPTION:0.5, AGENT-PHONE:0.3>
  ...
<ADDRESS:0.1, DESCRIPTION:0.3, AGENT-PHONE:0.6>

re
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m
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ee
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rs
.c

om

Cross validate
by Naive Bayes

Cross validate
by name matcher

Mediated schema: ADDRESS, DESCRIPTION,  AGENT-PHONE

realestate.com: location, comments, contact                  
homeseekers.com: house-addr,  detailed-desc,  phone        

1-1 Mappings Provided by the User
location <=> ADDRESS, comments <=> DESCRIPTION, contact <=> AGENT-PHONE

house-addr <=> ADDRESS, detailed-desc <=> DESCRIPTION, phone <=> AGENT-PHONE

(a) (b)

(c)

(d)  

(e)

(f)

(g)

T(ML,ADDRESS)
   (0.6, 0.8, 1)
   (0.2, 0.3, 0)
     ...
   (0.1, 0.2, 0)

(h)

  
Learner Weights

   WNameMatcher   =  0.3

   WNaiveBayes      =  0.8  

ADDRESS

ADDRESS

(i)

Figure 5: An example of creating training data for the base learners and the meta-learner.

set CV (L) that consists of exactly one prediction for each
example in T (L).
A naive approach to create CV (L) is to have learner L

trained on the entire set T (L), then applied to each example
in T (L). However, this approach biases learner L because
when applied to any example t, it has already been trained
on t. Cross validation is a technique commonly employed
in machine learning to prevent such bias. To apply cross
validation, the examples in T (L) are randomly divided into
d equal parts T1; T2; : : : ; Td (we use d = 5 in our experi-
ments). Next, for each part Ti, i 2 [1; d], L is trained on the
remaining (d� 1) parts, then applied to the examples in Ti.
Figure 5.f shows the set CV for the name matcher. Here,

the �rst line is the prediction made by the name matcher
for the �rst training example in T (NameMatcher), which
is (\location",ADDRESS) in Figure 5.d. The second line is
the prediction for the second training example, and so on.
Figure 5.g shows the set CV for the Naive Bayes learner.

(b) Gather Predictions for each Label: Next, the
meta-learner uses the CV sets to create for each label ci a
set T (ML; ci) that summarizes the performance of the base
learners with respect to ci. For each extracted XML ele-
ment x, the set T (ML; ci) contains exactly one tuple of the
form hs(cijx; L1); s(cijx; L2); : : : ; s(cijx; Lk); l(ci; x)i, where
s(cijx; Lj) is the con�dence score that x matches label ci, as
predicted by learner Lj . This score is obtained by looking
up the prediction that corresponds to x in CV (Lj). The
function l(ci; x) is 1 if x indeed matches ci, and 0 otherwise.
For example, consider label ADDRESS. Take the �rst ex-

tracted XML element in Figure 5.c: \location: Miami, FL".
The name matcher predicts that it matches ADDRESS with
score 0.6 (see the �rst tuple of Figure 5.f). The Naive
Bayes learner predicts that it matches ADDRESS with score
0.8 (see the �rst tuple of Figure 5.g). And its true label
is indeed ADDRESS. Therefore, the tuple that corresponds
to this XML element is (0:6; 0:8; 1). We proceed similarly
with the remaining 11 XML elements. The resulting set
T (ML;ADDRESS) is shown in Figure 5.h.

(c) Perform Regression to Compute Learner Weights:
Finally, for each label ci, the meta-learner computes the
learner weights W ci

Lj
, j 2 [1; k], by performing least-squares

linear regression on the data set T (ML; ci) created in Step (b).
This regression �nds the learner weights that minimize the

squared error
P

j

�
l(ci; xj)�

P
t s(cijxj ; Lt) �W

ci
Lt

�
2

, where

xj ranges over the entire set of extracted XML elements.
The regression process has the e�ect that if a base learner
tends to output a high probability that an instance matches
ci when it does and a low probability when it does not, it
will be assigned a high weight, and vice-versa.
To continue with our example, suppose applying linear re-

gression to the set T (ML;ADDRESS) yieldsWADDRESS
NameMatcher =

0:3 and WADDRESS
NaiveBayes = 0:8 (Figure 5.i). This means that

based on the performance of the base learners on the train-
ing sources, the meta-learner will trust Naive Bayes much
more than the name matcher in predicting label ADDRESS.

3.2 The Matching Phase
Once the learners have been trained, LSD is ready to pre-

dict semantic mappings for new sources. Figure 6 illustrates
the matching process on source greathomes.com. We now
describe the three steps of this process in detail.

1. Extract & Collect Data: First, LSD extracts from
greathomes.com a set of house listings (three listings in Fig-
ure 6.a). Next, for each source-DTD tag, LSD collects all
the instances of elements with that tag from the listings.
Figures 6.b and 6.c show the instances for tags area and
extra-info, respectively.

2. Match each Source-DTD Tag: To match a source-
DTD tag, such as area, LSD begins by matching each data
instance of the tag. Consider the �rst data instance: \area:
Orlando, FL" (Figure 6.b). To match this instance, LSD ap-
plies the base learners, then combine their predictions using
the meta-learner.
The name matcher will take the instance name, which is

\area", and issue the prediction:
hADDRESS:0.5, DESCRIPTION:0.3, AGENT-PHONE:0.2i

The Naive Bayes learner will take the instance content, which
is \Orlando, FL", and issue another prediction:
hADDRESS:0.7, DESCRIPTION:0.3, AGENT-PHONE:0.0i

The meta-learner then combines the two predictions into a
single prediction. For each label, the meta-learner computes
a combined score which is the sum of the scores that the base
learners give to that label, weighted by the learner weights.
For example, assuming learner weights WADDRESS

NameMatcher = 0:3
and WADDRESS

NaiveBayes = 0:8, the combined score regarding the
above instance matching label ADDRESS will be 0:3 � 0:5 +
0:8 � 0:7 = 0:71. Once combined scores have been computed
for all three labels, the meta-learner normalizes the scores,
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Figure 6: Matching the schema of source greathomes.com.

and issues the following prediction for the above instance:
hADDRESS:0.7, DESCRIPTION:0.2, AGENT-PHONE:0.1i

We proceed similarly for the remaining two instances of
area (note that in all cases the input to the name matcher
is \area"), and obtain the following two predictions:
hADDRESS:0.5, DESCRIPTION:0.2, AGENT-PHONE:0.3i
hADDRESS:0.9, DESCRIPTION:0.09, AGENT-PHONE: 0.01i

The prediction converter then combines the three predic-
tions of the three data instances into a single prediction for
area. Currently, the prediction converter simply computes
the average score of each label from the given predictions.
So in this case it returns
hADDRESS:0.7, DESCRIPTION:0.163, AGENT-PHONE:0.137.i

3. Apply the Constraint Handler: After the predic-
tion converter has computed predictions for all source-DTD
tags, the constraint handler takes these predictions, together
with the domain constraints, and outputs the 1-1 mappings.
If there are no domain constraints, each source-DTD tag is
assigned the label associated with the highest score, as pre-
dicted by the prediction converter for that tag. Section 4
describes the constraint handler, together with domain con-
straints and user feedback.

3.3 The Base Learners
LSD uses the following base learners (Section 5 describes

the XML base learner).

The Name Matcher matches an XML element using its
tag name (expanded with synonyms and all tag names lead-
ing to this element from the root element). It uses Whirl,
the nearest-neighbor classi�cation model developed by Co-
hen and Hirsh [4]. The name matcher stores all training
examples of the form (tag-name,label) that it has seen so
far. Then given an XML element t, it computes the label
for t based on the labels of all examples in its store that are
within a Æ distance from t. The similarity distance between
any two examples is the TF/IDF distance (commonly em-
ployed in information retrieval) between the tag names of
the examples. See [4] for more details.
This learner works well on speci�c and descriptive names,

such as price or house location. It is not good at names that
do not share synonyms (e.g., comments and DESCRIPTION),
that are partial (e.g., oÆce to indicate oÆce phone), or vac-
uous (e.g., item, listing).

The Content Matcher also uses Whirl. However, this
learner matches an XML element using its data content, in-
stead of its tag name as with the name matcher. Therefore,
here each example is a pair (data-content,label), and the
TF/IDF distance between any two examples is the distance

between their data contents.
This learner works well on long textual elements, such as

house description, or elements with very distinct and de-
scriptive values, such as color (red, blue, green, etc.). It
is not good at short, numeric elements such as number of
bathrooms and number of bedrooms.

The Naive Bayes Learner is one of the most popular and
e�ective text classi�ers [5]. This learner treats each input
instance as a bag of tokens, which is generated by parsing
and stemming the words and symbols in the instance. Let
d = fw1; : : : ; wkg be an input instance, where the wj are
tokens. Then the Naive Bayes learner assigns d to the class
ci that maximizes P (cijd). This is equivalent to �nding ci
that maximizes P (djci)P (ci). P (ci) is approximated as the
portion of training instances with label ci. Assuming that
the tokens wj appear in d independently of each other given
ci, we can compute P (djci) as P (w1jci)P (w2jci) � � �P (wkjci),
where P (wj jci) is estimated as n(wj ; ci)=n(ci). n(ci) is the
total number of token positions of all training instances with
label ci, and n(wj ; ci) is the number of times token wj ap-
pears in all training instances with label ci. Even though the
independence assumption is typically not valid, the Naive
Bayes learner still performs surprisingly well in many do-
mains (for an explanation, see [5]).
The Naive Bayes learner works best when there are tokens

that are strongly indicative of the correct label, by virtue
of their frequencies (e.g., \beautiful" and \great" in house
descriptions). It also works well when there are only weakly
suggestive tokens, but many of them. It does not work well
for short or numeric �elds, such as color and zip code.

The County-Name Recognizer searches a database
(extracted from the Web) to verify if an XML element is a
county name. LSD uses this module in conjunction with the
base learners when working on the real-estate domain. This
module illustrates how recognizers with a narrow and spe-
ci�c area of expertise can be incorporated into our system.

4. EXPLOITING DOMAIN CONSTRAINTS
The consideration of domain constraints can improve the

accuracy of our predictions. We begin by describing domain
constraints, then the process of exploiting these constraints
using the constraint handler.

4.1 Domain Constraints
Domain constraints impose semantic regularities on the

schemas and data of the sources in the domain. They are
speci�ed only once, at the beginning, as a part of creat-
ing the mediated schema, and independently of any actual
source schema. Thus, exploiting domain constraints does



Constraint
Types

Examples
Can Be Verified

With
Frequency At most one source element matches HOUSE.    Exactly one source element matches PRICE. Schema of target source

Nesting
If a matches AGENT-INFO & b matches AGENT-NAME, then b is nested in a.
If a matches AGENT-INFO & b matches PRICE, then b cannot be nested in a.

”

Contiguity
If a matches BATHS & b matches BEDS, then a & b are siblings in the schema-tree, and the elements
between them (if any) can only match OTHER.

”

Exclusivity There are no a and b such that a matches COURSE-CREDIT & b matches SECTION-CREDIT. ”

H
ar

d

Column
If a matches HOUSE-ID, then a is a key.
If a, b,  and c match CITY, FIRM-NAME, and FIRM-ADDRESS, resp., then a & b functionally determine c.

Schema + data from
target source

Binary Number of elements that match DESCRIPTION is not more than 3. ”

So
ft

Numeric
If a matches AGENT-NAME & b matches AGENT-PHONE, then we prefer a & b to be as close to each other
as possible, all other things being equal.

Schema of target source

Table 1: Types of domain constraints. Variables a, b and c refer to source-schema elements.

not require any subsequent work from the user. Of course,
as the user gets to know the domain better, constraints can
be added or modi�ed as needed.
Table 1 shows examples of domain constraints currently

used in our approach and their characteristics. Notice that
the constraints refer to labels (i.e., mediated-schema ele-
ments) and generic source-schema elements (e.g., a,b,c,), and
that they are grouped into di�erent types. The idea is that
for any source S in the domain, given a candidate map-
ping m that speci�es which source-schema element matches
which label, we can use the DTD and the extracted data of
source S to compute cost(m;T ), a cost value that quanti�es
the extent to which m violates the constraints of type T .
Next, the cost of m can be computed based on the costs of
violating di�erent constraint types. Finally, the constraint
handler returns the candidate mapping with the least cost.
We distinguish two types of constraints:

Hard Constraints are those that the user think abso-
lutely cannot be violated. Let Thard = ft1; : : : ; tug be the
set of hard constraints. Then we de�ne cost(m;Thard) to be
0 if m satis�es t1 ^ t2 ^ � � � ^ tu, and 1 otherwise.
Table 1 shows examples of �ve types of hard constraints.

The �rst four types, from frequency to exclusivity , impose
regularities that the source schema must conform to. The
last type, column, imposes regularities that both the source
schema and data must conform to.
We can specify arbitrary hard constraints that involve

only the schemas, because given any candidate mapping,
they can always be checked. Constraints involving data ele-
ments cannot always be checked because we have access only
to the source data. (Even when all the data in the source
at a given time conforms to a constraint, that still does not
mean the constraint holds on the source.) In many cases,
however, the few data instances we extract from the source
will be enough to �nd a violation of such a constraint.

Soft Constraints are those for which we try to minimize
the extent to which they are violated. They can be used
to express heuristics about the domain. We distinguish two
types of soft constraints: binary constraints, whose cost of
violation is 1, and numeric constraints, that can have vary-
ing cost of violation. Table 1 shows examples of binary and
numeric soft constraints.

4.2 The Constraint Handler
The constraint handler takes the domain constraints, to-

gether with the predictions produced by the prediction con-
verter, and outputs the 1-1 mappings. Conceptually, it
searches through the space of possible candidate mappings,
to �nd the one with the lowest cost, where cost is de�ned

based on the likelihood of the mapping and the degree to
which the mapping satis�es the domain constraints. LSD
uses the A* algorithm to search this space [10]. Our A* im-
plementation uses a domain-independent heuristic (see Sec-
tion 6.3) to direct the search and �nd the best candidate
mapping.
Speci�cally, let e1; : : : ; eq be the DTD tags of the source

schema, and c1; : : : ; cn be the class labels. We denote a can-
didate mapping m by he1 : ci1; e2 : ci2; : : : ; eq : ciqi where
tag ej is mapped to label cij . Then the cost of m is de-
�ned as cost(m) =

Pv
i=1 �i � cost(m;Ti)� � � log prob(m),

where cost(m;Ti) represents the degree to which m satis-
�es domain constraints of type Ti, and �1; : : : ; �v; � are
the scaling coeÆcients that represent the trade-o�s among
the cost components. The term prob(m) denotes the prob-
ability of candidate mapping m, and is approximated asQq

j=1 s(cij jej ; PC), where s(cij jej ; PC) is the con�dence score
that source-DTD element ej matches label cij , returned by
the prediction converter PC. The formula for prob(m) as-
sumes that the label assignments of source-schema tags are
independent of each other. This assumption is clearly not
true, because in many cases the label of a schema tag does
depend on the labels of its parents/children. However, we
make this assumption to reduce the cost of our search pro-
cedure.
The de�nition of cost(m) implies that we prefer the candi-

date mapping with the highest probability, all other things
being equal.

4.3 User Feedback
User feedback can further improve matching accuracy, and

is necessary in order to match ambiguous schema elements.
Our framework enables easy and seamless integration of such
feedback into the matching process. If the user is not happy
with the current mappings, he or she can specify constraints,
then ask the constraint handler to output new mappings,
taking these constraints into account. The constraint han-
dler simply treats the new constraints as additional domain
constraints, but uses them only in matching the current
source. The user can greatly aid the system by manually
matching a few hard-to-match schema elements, as we show
empirically in Section 6.3.

5. LEARNING WITH NESTED ELEMENTS
As we built LSD, we realized that none of our learners

can handle the hierarchical structure of XML data very well.
For example, the Naive Bayes learner frequently confused in-
stances of classes HOUSE, CONTACT-INFO, OFFICE-INFO,
and AGENT-INFO. This is because the learner \attens" out
all structures in each input instance and uses as tokens only



<contact>
   <name> Gail Murphy </name>
  <firm> MAX Realtors </firm>
</contact>
<description> 
     Victorian house with a view. Name your price!
     To see it, contact Gail Murphy at MAX Realtors.
</description>
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Figure 7: (a)-(c) The working of the Naive Bayes learner on the XML element contact in (a); and (d)-(f) the working of the
XML learner on the same element.

XML Classifier - Testing Phase
Input:     an XML element E        Output:  a predicted label for E
1. Create T, a tree representation of E. Each node in T represents a 
    sub-element in E.
2. Use LSD (with other base learners) to predict for each non-leaf & non-root
    node in T a label; replace each node with its label.
3. Generate the bag of text-, node-, & edge-tokens: B = {t1, t2, ..., tk}.
4. Return label c that maximizes P(c) * P(t1|c) * P(t2|c) * ... * P(tk|c).

XML Classifier - Training Phase
Input:    a set of XML elements S = {E1, E2, ..., En};
               the correct label for each Ei and each sub-element in Ei.
Output: the set of all text-, node-, & edge-tokens: V = {t1, t2, ..., tm};
               probability estimates for tokens P(ti|c) & classes P(c)
1. For each Ej:   (a) Create Tj, its tree representation.
                           (b) Replace Tj’s root with the generic root tR; replace 
                                 each non-root & non-leaf node with its label.
                           (c) Create the bag of text-, node-, & edge-tokens Bj for Tj.
2. Compute V, P(c) & P(ti|c) as with the Naive Bayes learner (see Section 3.3).

Table 2: The XML learner algorithm.

the words in the instance. Since the above classes share
many words, it cannot distinguish them very well. As an-
other example, Naive Bayes has diÆculty classifying the two
XML elements in Figure 7.a. The content matcher faces the
same problems.
To address this problem we developed a novel learner that

exploits the hierarchical structure of XML data. Our XML
learner is similar to the Naive Bayes learner in that it also
represents each input instance as a bag of tokens, assumes
the tokens are independent of each other given the class,
then multiplies the token probabilities to obtain the class
probabilities. However, it di�ers from Naive Bayes in one
crucial aspect: it considers not only text tokens, but also
structure tokens that take into account the structure of the
input instance.
We explain the XML learner by contrasting it to Naive

Bayes on a simple example (see Table 2 for pseudo code).
Consider the XML element contact in Figure 7.a. When ap-
plied to this element, the Naive Bayes learner can be thought
of as working in three stages. First, it (conceptually) cre-
ates the tree representation of the element, as shown in Fig-
ure 7.b. Here the tree has only two levels, with a generic
root d and the words being the leaves. Second, it generates
the bag of text tokens shown in Figure 7.c. Finally, it mul-
tiplies the token probabilities to �nd the best label for the
element (as discussed in Section 3.3).
In contrast, the XML learner �rst creates the tree in Fig-

ure 7.d, which takes into account the element's nested struc-
ture. Next, it uses LSD (with the other base learners) to �nd

the best matching labels for all non-leaf and non-root nodes
in the tree, and replaces each node with its label. Figure 7.e
shows the modi�ed tree. Then the XML classi�er generates
the set of tokens shown in Figure 7.f. There are two types
of tokens: node tokens and edge tokens. Each non-root node
with label l in the tree forms a node token tl. Each node
with label l1 and its child node with label l2 form an edge
token tl1!l2 . Finally, the classi�er multiplies the probabili-
ties of the tokens to �nd the best label, in a way similar to
that of the Naive Bayes learner.

Node and Edge Tokens: Besides the text tokens (i.e.,
leaf node tokens), the XML learner also deals with struc-
tural tokens in form of non-leaf node tokens and edge tokens.
It considers non-leaf node tokens because they can help
to distinguish between classes. For example, instances of
CONTACT-INFO typically contain the token nodes AGENT-
NAME and OFFICE-NAME, whereas instances of DESCRIP-
TION do not. So the presence of the above two node tokens
helps the learner easily tell apart the two XML instances in
Figure 7.a. It considers edge tokens because they can serve
as good class discriminators where node tokens fail. For
example, the node token AGENT-NAME cannot help dis-
tinguish between HOUSE and AGENT-INFO, because it ap-
pears frequently in the instances of both classes. However,
the edge token d!AGENT-NAME tends to appear only in
instances of AGENT-INFO, thus serving as a good discrim-
inator. As yet another example, the presence of the edge
WATERFRONT!\yes" strongly suggests that the house be-
longs to the class with a water view. The presence of the
node \yes" alone is not suÆcient, because it can also appear
under other nodes (e.g., FIREPLACE!"yes").

6. EMPIRICAL EVALUATION
We have evaluated LSD on several real-world domains.

Our goals were to evaluate the matching accuracy of LSD,
and the contribution of di�erent system components.

Domains and Data Sources: We report the evaluation
of LSD on four domains, whose characteristics are shown in
Table 3. Both Real Estate I and Real Estate II integrate
sources that list houses for sale, but the mediated schema
of Real Estate II is much larger than that of Real Estate I
(66 vs. 20 distinct tags). Time Schedule integrates course
o�erings across universities, and Faculty Listing integrates
faculty pro�les across CS departments in the U.S.
We began by creating a mediated DTD for each domain.

Then we chose �ve sources on the WWW.We tried to choose



Mediated Schema Source Schemas
Domains

Tags
Non-leaf

Tags
Depth

Sources Downloaded
Listings Tags

Non-leaf
Tags

Depth
Matchable

Tags

Real Estate
I

20 4 3 5 502 – 3002 19 – 21 1 – 4 1 – 3
84 – 100

%

Time
Schedule

23 6 4 5 704 – 3925 15 – 19 3 – 5 1 – 4
95 – 100

%

Faculty
Listings

14 4 3 5 32 – 73 13 – 14 4 3 100 %

Real Estate
II

66 13 4 5 502 – 3002 33 – 48 11 – 13 4 100 %

Table 3: Domains and data sources for our experiments.

sources that had more complex structure. Next, since sources
on the WWW are not yet accompanied by DTDs, we cre-
ated a DTD for each source. In doing so, we were careful
to mirror the structure of the data in the source, and to
use the terms from the source. Then we downloaded data
listings from each source. Where possible, we downloaded
the entire data set; otherwise, we downloaded a representa-
tive data sample by querying the source with random input
values. Finally, we converted each data listing into an XML
document that conforms to the source schema.
In preparing the data, we performed only trivial data

cleaning operations such as removing \unknown", \unk",
and splitting \$70000" into \$" and \70000". Our assump-
tion is that the learners LSD employs should be robust enough
to deal with dirty data.
Table 3 shows the characteristics of the mediated DTDs,

the sources, and source DTDs. The table shows the number
of tags (leaf and non-leaf) and maximum depth of the DTD
tree for the mediated DTDs. For the source DTDs the table
shows the range of values for each of these parameters. The
rightmost column shows the percentage of source-DTD tags
that have a 1-1 matching with the mediated DTD.

Domain Constraints: Next we speci�ed integrity con-
straints for each domain. Currently we speci�ed only hard
constraints. For each mediated-schema tag, we speci�ed all
non-trivial column and frequency constraints that we can
�nd. For each pair of mediated-schema tags, we speci�ed
all applicable nesting constraint. Finally, we speci�ed all
contiguity and exclusivity constraints that we think should
apply to the vast majority of sources. See Table 1 for exam-
ples of hard constraints of di�erent types. In general, most
constraints we used are frequency, nesting, or column con-
straints. We speci�ed very few contiguity and exclusivity
constraints.

Experiments: For each domain we performed three sets
of experiments. First, we measured LSD's accuracy and in-
vestigated how sensitive it is to the amount of data avail-
able from each source. Second, we conducted lesion stud-
ies to measure the contribution of each base learner and
the constraint handler to the overall performance. We also
measured the relative contributions of learning from schema
elements versus learning from data elements. Third, we
measured the amount of user feedback necessary for LSD
to achieve perfect matching.

Experimental Methodology: To generate the data
points shown in the next three sections, we ran each exper-
iment three times, each time taking a new sample of data
from each source. In each experiment on a domain we car-
ried out all ten runs in each of which we chose three sources
for training and used the remaining two sources for test-
ing. We trained LSD on the training sources, then applied

it to match the schemas of the testing sources. The match-
ing accuracy of a source is then de�ned as the percentage
of matchable source-schema tags that are matched correctly
by LSD. The average matching accuracy of a source is its
accuracy averaged over all settings in which the source is
tested. The average matching accuracy of a domain is the
accuracy averaged over all �ve sources in the domain.

6.1 Matching Accuracy
Figure 8.a shows the average matching accuracy for di�er-

ent domains and LSD con�gurations. For each domain, the
four bars (from left to right) represent the average accuracy
produced respectively by the best single base learner (ex-
cluding the XML learner), the meta-learner using the base
learners, the domain constraint handler on top of the meta-
learner, and all the previous components together with the
XML learner (i.e., the complete LSD system).
The results show that LSD achieves high accuracy across

all four domains, ranging from 71 to 92%. In contrast, the
best matching results of the base learners (achieved by either
the Naive Bayes or the Name Matcher, depending on the
domain) are only 42 - 72%.
As expected, adding the meta-learner improves accuracy

substantially, by 5 - 22%. Adding the domain-constraint
handler further improves accuracy by 7 - 13%. Adding the
XML learner improves accuracy by 0.8 - 6.0%. In all of
our experiments, the XML learner outperformed the Naive
Bayes learner by 3-10%, con�rming that the XML learner is
able to exploit the hierarchical structure in the data. The
results also show that the gains with the XML learner de-
pend on the amount of structure in the domain. For the
�rst three domains, the gains are only 0.8 - 2.8%. In these
domains, sources have relatively few tags with structure (4 -
6 non-leaf tags), most of which have been correctly matched
by the other base learners. In contrast, sources in the last
domain (Real Estate II) have many non-leaf tags (13), giv-
ing the XML learner more room for showing improvements
(6%).
In Section 7 we identify the reasons that prevents LSD

from correctly matching the remaining 10 - 30% of the tags.

Performance Sensitivity: Figures 8.b-c show the vari-
ation of the average domain accuracy as a function of the
number of data listings available from each source, for the
Real Estate I and Time Schedule domains, respectively. The
results show that on these domains the performance of LSD
stabilizes fairly quickly: it climbs steeply in the range 5 - 20,
minimally from 20 to 200, and levels o� after 200. Experi-
ments with other domains show the same phenomenon. LSD
thus appears to be robust, and can work well with relatively
little data. One of the reasons this observation is important
is that we can reduce the running time of LSD if we run it
on fewer examples.

6.2 Lesion Studies
Figure 9.a shows the contribution of each base learner and

the constraint handler to the overall performance. For each
domain, the �rst four bars (from left to right) represent the
average accuracy produced by LSD when one of the compo-
nents is removed. (The contribution of the XML learner is
already shown in Figure 8.a). The �fth bar represents the
accuracy of the complete LSD system, for comparison pur-
pose. The results show that each component contributes to
the overall performance, and there appears to be no clearly
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Figure 8: (a) Average matching accuracy; experiments were run with 300 data listings from each source; for sources from
which fewer than 300 listings were extracted, all listings were used. (b)-(c) The average domain accuracy as a function of the
amount of data available per source.
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Figure 9: The average matching accuracy of LSD versions
(a) with each component being left out versus that of the
complete LSD system, (b) with only schema information or
data instances versus that of the LSD version with both.

dominant component.
Given that most previous work exploited only schema in-

formation in the process of schema reconciliation, we wanted
to test the relative contribution of learning from schema and
learning from data information. In Figure 9.b, the �rst bar
of each domain shows the average accuracy of the LSD ver-
sion that consists of the Name Matcher and the constraint
handler (with only schema-related constraints). The sec-
ond bar shows the average accuracy of the LSD version that
consists of the Naive Bayes learner, the content matcher, the
XML learner, and the constraint handler (with only data-
related constraints). The third bar reproduces the accuracy
of the complete system, for comparison purpose. The re-
sults show that with the current system, both schemas and
data instances make important contributions to the overall
performance.

6.3 Incorporating User Feedback
We performed experiments on the Time Schedule and

Real Estate II domains to measure the e�ectiveness of LSD
in incorporating user feedback. For each domain we carried
out three runs. In each run we randomly chose three sources
for training and one source for testing. Then we trained LSD
using the training sources. Finally we applied LSD and pro-
vided feedback to it, in order to achieve the perfect matching
on the testing source.
The interaction works as follows. First, we associate with

each tag in the testing source a score that measures the ex-
tent to which it participates in likely domain constraints.

Currently the score of a tag is approximated with the num-
ber of distinct tags that can be nested within that tag, based
on the heuristic that the greater the structure below a tag,
the greater the probability that the tag is involved in one
or more constraints. Next, we order the tags in the testing
source in decreasing order of their scores1. Then we enter the
following loop until every tag has been matched correctly:
(1) we apply LSD to the testing source, (2) LSD shows the
predicted labels of the tags, in the above mentioned order,
(3) when we see an incorrect label, we provide LSD with the
correct one, then ask LSD to redo the matching process (i.e.,
rerun the constraint handler), taking the correct labels into
consideration.
The number of correct labels we needed to provide to LSD

before it achieved perfect matching, averaged over the three
runs, was 3 for Time Schedule and 6.3 for Real Estate II.
The average number of tags in the test source schemas for
the two domains is 17 and 38.6, respectively. These numbers
suggest that LSD can eÆciently incorporate user feedback.
In particular, it needs only a few equality constraints judi-
ciously provided by the user in order to achieve perfect or
near-perfect matching.

7. DISCUSSION
We now address the limitations of the current LSD sys-

tem. The �rst issue to address is whether we can increase
the accuracy of LSD beyond the current range of 71 - 92%.
There are several reasons that prevent LSD from correctly
matching the remaining 10 - 30% of the tags. First, some
tags (e.g., suburb) cannot be matched because none of the
training sources has matching tags that would provide train-
ing data. This problem can be handled by adding domain-
speci�c recognizers or importing data from sources outside
the domain.
Second, some tags simply require di�erent types of learn-

ers. For example, course codes are short alpha-numeric
strings that consist of department code followed by course
number. As such, a format learner would presumably match
it better than any of LSD's current base learners.
Finally, some tags cannot be matched because they are

simply ambiguous. For example, given the following text in
the source \course-code: CSE142 section: 2 credits: 3", it
is not clear if \credits" refers to the course- or the section
credits. Here, the challenge is to provide the user with a

1This is the same order used by our A* implementation to
re�ne states, that is, to direct its search through the space
of matching combinations.



possible partial mapping. If our mediated DTD contains a
label hierarchy, in which each label (e.g., credit) refers to
a concept more general than those of its descendent labels
(e.g., course-credit and section-credit) then we can match a
tag with the most speci�c unambiguous label in the hierar-
chy (in this case, credit), and leave it to the user to choose
the appropriate child label.

EÆciency: The training phase of LSD can be done o�ine,
so training time is not an issue. In the matching phase, LSD
spends most of its time in the constraint handler (typically
in the range of seconds to 5 minutes, but sometimes up to
20 minutes in our experiments), though we should note that
we did not spend any time on optimizing the code. Since we
would like the process of prediction and incorporating user
feedback to be interactive, we need to ensure that the con-
straint handler's performance does not become a bottleneck.
The most obvious solution is to incorporate some constraints
within some early phases to substantially reduce the search
space. There are many fairly simple constraints that can
be pre-processed, such as constraints on an element being
textual or numeric. Another solution is to consider more ef-
�cient search techniques, and to tailor them to our context.

Overlapping of Schemas: In our experiments source
schemas overlap substantially with the mediated schema
(84-100% of source-schema tags are matchable). This is
typically the case for \aggregator" domains, where the data-
integration system provides access to sources that o�er es-
sentially the same service. We plan to examine other types
of domains, where the schema overlap is much smaller. The
performance of LSD on these domains will depend largely
on its ability to recognize that a certain source-schema tag
matches none of the mediated-schema tags, despite super�-
cial resemblances.

8. RELATED WORK
We describe work related to LSD from several perspec-

tives.

Schema Matching: Work on schema matching can be
classi�ed into rule- and learner-based approaches. (For a
comprehensive survey on schema matching, see [22].) Rule-
based approach includes [19, 20, 2]. The Transcm system
[19] performs matching based on the name and structure
of schema elements. The Artemis system [2] uses names,
structures, as well as domain types of schema elements to
match schemas. In general, rule-based systems utilize only
schema information in a hard-coded fashion, whereas our
approach exploits both schema and data information, and
does so automatically, in an extensible fashion.
In the learner-based approach, the Semint system [16] uses

a neural-network learner. It matches schema elements us-
ing properties such as �eld speci�cations (e.g., data types
and scale) and statistics of data content (e.g., maximum,
minimum, and average). Unlike LSD, it does not exploit
other types of data information such as word frequencies
and �eld formats. The ILA system [21] matches schemas of
two sources based on comparing objects that it knows to be
the same in both sources. Both Semint and ILA employ a
single type of learner, and therefore have limited applica-
bility. For example, the neural net of Semint does not deal
well with textual information, and in many domains it is
not possible to �nd overlaps in the sources, making ILA's

method inapplicable.
Clifton et al. [3] describe DELTA, which associates with

each attribute a text string that consists of all meta-data
on the attribute, then matches attributes based on the sim-
ilarity of the text strings. The authors also describe a case
study using DELTA and Semint and note the complimentary
nature of the two methods. With LSD, both Semint and
DELTA could be plugged in as new base learners, and their
predictions would be combined by the meta-learner.
The Clio system [18] introduces value correspondences,

which specify functional relationships among related ele-
ments (e.g., hotel-tax = room-rate � state-tax-rate). Given a
set of such correspondences, Clio produces the SQL queries
that translate data from one source to the other. A key chal-
lenge in creating the queries is to �nd semantically meaning-
ful ways to relate the data elements in a source, in order to
produce data for the other source. For example, given the
above value correspondence, Clio must discover that room-
rate belongs to a hotel that is located in the state where
the tax rate is state-tax-rate. To this end, Clio explores join-
ing elements along foreign-key relationship paths. There
can be many foreign keys, thus many possible ways to join.
Hence, the problem boils down to searching for most likely
join path. Clio uses several heuristics and user feedback to
arrive at the best join path, and thus the best query candi-
date. Clio is therefore complimentary to the current work of
ours. It can take the mappings produced by LSD as part of
its input.

Combining Multiple Learners: Multi-strategy learn-
ing has been researched extensively [17], and applied to sev-
eral other domains (e.g., information extraction [7], solving
crossword puzzles [12]). In our context, our main innova-
tions are the three-level architecture (base learners, meta-
learner and prediction combiner) that allows learning from
both schema and data information, the use of integrity con-
straints to further re�ne the learner, and the XML learner
that exploits the structure of XML documents. Yi and Sun-
daresan [27] describe a classi�er for XML documents. How-
ever, their method applies only to documents that share the
same DTD, which is not the case in our domain.

Exploiting Domain Constraints: Incorporating do-
main constraints into the learners has been considered in
several works (e.g., [6]), but most works consider only cer-
tain types of learners and constraints. In contrast, our
framework allows arbitrary constraints (as long as they can
be veri�ed using the schema and data), and works with any
type of learner. This is made possible by using the con-
straints during the matching phase, to restrict the learner
predictions, instead of the usual approach of using con-
straints during the training phase, to restrict the search
space of learned hypotheses.

9. CONCLUSIONS & FUTURE WORK
We have described an approach to schema matching that

employs and extends machine learning techniques. Our ap-
proach utilizes both schema and data from the sources. To
match a source-schema element, the system applies a set of
learners, each of which looks at the problem from a di�erent
perspective, then combines the learners' predictions using
a meta-learner. The meta-learner's predictions are further
improved using domain constraints and user feedback. We
also developed a novel XML learner that exploits the hierar-



chical structure in XML data to improve matching accuracy.
Our experiments show that we can accurately match 71-92%
of the tags on several domains.
More broadly, we believe that our approach contributes an

important aspect to the development of schema-matching
solutions. Given that schema matching is a fundamental
step in numerous data management applications [22], it is
desirable to develop a generic solution that is robust and
applicable across domains. In order to be robust, such a
solution must have several important properties. First, it
must improve over time { knowledge gleaned from previ-
ous instances of the schema-matching problem should con-
tribute to solving subsequent instances. Second, it must
allow knowledge to be incorporated in an incremental fash-
ion, so that as the user gets to know the domain better,
knowledge can be easily modi�ed or added. Third, it must
allow multiple types of knowledge to be used to maximize
the matching accuracy. Machine learning techniques, and
in particular, multi-strategy learning, provide a basis for
supporting these properties. Hence, while we do not ar-
gue that our techniques provide a complete solution to the
schema-matching problem, we do believe that we provide
an indispensable component of any robust solution to the
problem.
We are extending our current work in two ways. First,

we are addressing the limitations of the current system, as
outlined in Section 7. And second, we are extending our ap-
proach to non 1-1 mappings, and to �nd translation queries,
as discussed in Section 2.
The most up-to-date information on LSD can be found

on its website [1]. The site also stores a public repository
of data intended to be used as benchmarks in evaluating
schema matching algorithms.
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