

A Relational Approach to Incrementally Extracting and
Querying Structure in Unstructured Data

Eric Chu Akanksha Baid Ting Chen AnHai Doan Jeffrey Naughton

Computer Sciences Department

University of Wisconsin-Madison

{ericc, baid, tchen, anhai, naughton} @cs.wisc.edu

Abstract

There is a growing consensus that it is desirable

to query over the structure implicit in

unstructured documents, and that ideally this

capability should be provided incrementally.

However, there is no consensus about what kind

of system should be used to support this kind of

incremental capability. We explore using a

relational system as the basis for a workbench for

extracting and querying structure from

unstructured data. As a proof of concept, we

applied our relational approach to support

structured queries over Wikipedia. We show that

the data set is always available for some form of

querying, and that as it is processed, users can

pose a richer set of structured queries. We also

provide examples of how we can incrementally

evolve our understanding of the data in the

context of the relational workbench.

1. Introduction

Currently, to find information from the vast amount of

unstructured data (i.e., text) on the Web, users have to rely

on a combination of keyword search, browsing, and

possibly predefined search options. Although these

mechanisms are easy to use and often lead to what users

are looking for eventually, they cannot leverage the

potentially rich set of structures embedded in text. For

example, consider the page about the city Madison in

Wikipedia [36]. It contains sections of text titled

“History,” “Geography,” “Demographics,” and so on.

From the text we might find relationships that we want to

extract (e.g., “technology companies” such as “Raven

 Jan Feb ... Dec

Avg High
Temp °F (° C)

23 (-5) 29 (-2) ... 29 (-2)

Avg Low
Temp °F (° C)

6 (-14) 12 (-11) ... 13 (-11)

Mean Temp
°F (° C)

15 (-9) 20 (-7) ... 21 (-6)

Avg

precipitation

in (cm)

1.14 (2.9) 1.14 (2.9) ... 1.32 (3.35)

Figure 1. A portion of the temperature table from the page about

Madison in Wikipedia. Though the content has a clear structure,

users cannot query it using structured queries.

Software” and “Human Head Studios” have headquarters

located in “Madison”). Furthermore, the page has “wiki

tables” that capture explicit structured data, such as one

that records the city’s monthly average low, average high,

and mean temperature, and mean precipitation (a portion

of the table is shown in Figure 1). The ability to query this

set of structures is highly desirable. For example, we may

want to know how cold Madison gets during winter, by

averaging the minimum temperature of December,

January, and February; and if there is also a temperature

table for the city Seattle, we may want do the same for

Seattle and compute the difference between the two

averages. However, to do so, we need to extract these

tables and pose structured queries.

Since unstructured data can practically contain any

structure, extracting and maintaining a set of structures for

querying are a constant work in progress for a system.

Therefore, at any point in time, a user should be able to

query using as much or little structure as is currently

known, and should be able to perform increasingly

sophisticated queries as the system incrementally evolves

its understanding of the data.

Unfortunately, there is little consensus about what kind

of system should be used to support this kind of

incremental capability. In this paper, we explore using a

relational system as the basis for a workbench for

extracting and querying structure from unstructured data.

This approach is perhaps surprising because relational

database systems are often regarded as one of the most

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date

appear, and notice is given that copying is by permission of the Very Large

Database Endowment. To copy otherwise, or to republish, to post on servers

or to redistribute to lists, requires a fee and/or special permissions from the

publisher, ACM.

VLDB ’07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

rigidly structured alternatives, and their design goals seem

diametrically opposed to the kind of flexibility required for

incremental discovery and exploitation of structure.

However, we show that this is not the case with our

workbench model, which provides 1) a way to store the

evolving set of documents and structures, 2) tools that can

be used to query and to incrementally process the data, and

3) a way to handle changes in our understanding of the

data set as it is processed.

The system we envision allows users to load a set of

documents without any pre-processing, and begin querying

the documents immediately using keyword searches. Of

course, at this point, there is no benefit above that

provided by a traditional Information Retrieval (IR)

system. To extract more information from the collection

of documents, we need to somehow process the

documents, store the result of that processing, and make it

available for querying. For example, it may be useful to

run one or more clustering tools over the documents, and

to record the results of these by labelling the documents

with cluster identifiers. It may be useful to extract

structure from the documents, perhaps in the form of

attribute-value pairs, and to record the attribute-value pairs

found in each document. It may also be useful to integrate

these attribute-value pairs; that is, record that attribute i of

one document corresponds to attribute j of another

document.

It is important that all this information is available for

querying, in any combination, at any time. For example,

users should be able to run keyword searches over

documents belonging to any combination of clusters and

restrict the search to documents that satisfy predicates on

specified attribute values. Users should also be able to run

SQL-like queries over the extracted attributes, perhaps

again limited to documents belonging to specified clusters.

Also, as more attributes are correlated by integration, the

results of queries over these attributes (possibly extracted

with different names in different documents) should

improve in quality.

Certainly one could build such a system using many

different approaches. One could start from scratch and

write a stand-alone system that works over file-system

resident data. One could adopt an XML-centric approach,

and place one’s hope in the growing capabilities of XML

query engines. These and other approaches could certainly

be successful. However, it is our argument that existing

relational database technology can go a long way toward

supporting such a system. Our basic idea is simple: at the

start, the documents are loaded into the RDBMS in a table

with only two attributes: id and text. As clustering tools

and extracting tools are run over the data, we add

attributes, and store the results of those tools in the new

attributes. Of course, most attributes will be null for most

documents; however, recent work on managing sparse data

sets provides evidence that such extremely sparse data sets

can be efficiently managed by an RDBMS. As integration

tools relate sets of attributes, we record these relationships

(and the lack thereof) in “mapping tables.”

The workbench we envision supports three basic

operators – Extract, Integrate, and Cluster – for

50VARCHAR(50)a4headquarter.city

50VARCHAR(50)a3official flower

50VARCHAR(50)a5headquarter.company

unlimitedTEXTa2DocContent

100VARCHAR(100)a1DocTitle

50VARCHAR(50)a4headquarter.city

50VARCHAR(50)a3official flower

50VARCHAR(50)a5headquarter.company

unlimitedTEXTa2DocContent

100VARCHAR(100)a1DocTitle

name id type size

Figure 2. Attribute catalog.

a3 6 “dahlia
”

“Seattle is the
largest ...”

55577a2“Seattle,
Washington”

19a155614t2r17 a3 6 “dahlia
”

“Seattle is the
largest ...”

55577a2“Seattle,
Washington”

19a155614t2r17

“Madison is the

captial of ...”

45767a2“Madison,

Wisconsin”

18a145768t1r17 “Madison is the

captial of ...”

45767a2“Madison,

Wisconsin”

18a145768t1r17

relation id tuple id record length value length valueattr id

Figure 3. Records in interpreted storage format.

processing the data set incrementally. It uses a modified

“wide table” to store the data set, and a mapping table and

a relationship table to store the schematic relationships

within the set of structures.

A workbench based on a relational system can offer

many benefits for supporting structured queries over

unstructured documents. First, the data is always available

for querying. With full-text indexes, users can start posing

keyword queries over the set of documents as soon as it is

loaded into the workbench. As we obtain more structure

over time, the data’s utility increases and users can pose

increasingly sophisticated queries. Second, the operators

can be combined and applied repeatedly to keep evolving

our understanding of the data set. To handle the evolving

set of structures, the wide table provides a simple, but

scalable alternative that does not require complicated

schema design. Lastly, in addition to support for querying,

the workbench can take advantage of other strengths of a

database, such as concurrency control, recovery, and query

optimization.

The reason we call our approach a workbench is that it

does not do anything by itself – it only provides the tools

to process, manage, and query the data. Database

administrators (DBAs), and perhaps even the users, need

to decide the parameters of the operators, the choice of

specific clustering, extraction, and integration algorithms,

what to do with the output, when they are finished with

processing, and other relevant issues. Our goal is to

provide an environment in which to run these tools, record

the results, and make the results available for querying.

As a proof of concept, we applied our approach to

support structured queries over Wikipedia. Wikipedia is a

database of unstructured documents that contain a lot of

structured data. However, currently, the only way to query

documents in Wikipedia is by doing “vanilla” keyword

search (i.e., with no advanced search options), and

browsing. In the case study, we first describe our

simulation of the workbench. Next, we provide examples

of how we combine the three basic operators to

incrementally evolve our understanding of the data, and

show that users can benefit from each stage of this process.

For example, with just a little effort in extraction, we can

allow users to specify a scope for their keyword queries to

improve precision; with more effort, we can allow them to

build more complex structured queries that include

arithmetic comparison, aggregation, and even joins.

The rest of our paper is organized as follows. Section

2 presents the data and schema representation adopted in

the workbench. Section 3 defines the three operators and

describes how we use them to evolve our understanding of

the data in the context of the workbench. Section 4

presents our case study on Wikipedia. Section 5 discusses

related work. Section 6 concludes the paper and suggests

future work.

2. Schema and Data Representations

2.1 A Wide, Sparse Table with Complex Attributes

In considering a storage model for the documents and their

extracted structures, an important observation is that the

continuing extraction of heterogeneous structures will

gradually lead to a sparse data set. A data set is considered

sparse when it comprises a large number of attributes, but

most entities (or documents in our case) have non-null

values for only a small fraction of all these attributes.

For storing a sparse data set, Agrawal et al. [4]

discussed using vertical tables as an alternative to

horizontal tables with positional storage. However,

Beckmann et al. [7] later showed that vertical tables

generally suffer from complex queries and poor

performance, and that horizontal tables with interpreted

storage outperform both vertical tables and positionally

stored horizontal tables. More recently, we argued that

using a multi-table schema to store a sparse data set often

creates more problems than it solves, and that the right

approach is to use a wide table [14]. That is, forego

schema design and store all objects in a single horizontal

table using the interpreted storage format. We use this

same storage model for our workbench.

Unlike the predominant positional storage format,

which would cause a huge storage space blow-up by

storing the null values in a sparse data set, the interpreted

storage format [13] avoids storing the null values.

Specifically, the system uses an attribute catalog to record

for each attribute its name, id, type, and size. A tuple in

the interpreted format starts with a header, which contains

fields such as relation-id, tuple-id, and record length; then,

for each of its non-null attributes, the tuple stores the

attribute’s identifier, length field (if the type is of variable

length), and value. Attributes that appear in the catalog,

but not in the tuple, are implicitly null for that tuple. The

interpreted storage format is highly flexible for schema

evolution – we only need to update the system catalog and

the tuples that have non-null values for these attributes.

Let us consider how an empty wide table in our

workbench evolves when we insert the two pages about

dahlia

official

flower

[(Seattle, Starbucks),

(Seattle, Amazon.com),

...]

[(Madison, Raven

Software),

(Madison, Human Head

Studios), ...]

headquarter(city,

company)

“Seattle is the
largest city in the

Pacific Northwest ...”

“Madison is the

capital of the U.S.
state of Wisconsin

...”

DocContentDocTitle

Seattle,
Washingon

Madison,

Wisconsin

dahlia

official

flower

[(Seattle, Starbucks),

(Seattle, Amazon.com),

...]

[(Madison, Raven

Software),

(Madison, Human Head

Studios), ...]

headquarter(city,

company)

“Seattle is the
largest city in the

Pacific Northwest ...”

“Madison is the

capital of the U.S.
state of Wisconsin

...”

DocContentDocTitle

Seattle,
Washingon

Madison,

Wisconsin

Figure 4. The wide table after extracting the attribute “official

flower” and then the relationship “headquarter(city, company).”

Madison and Seattle from Wikipedia. Each page

corresponds to a row in the table. We declare two

attributes in the catalog. The first one is the title of the

page (DocTitle), which we use as a unique identifier for a

page for the purpose of demonstrating. The second is the

content of the page (DocContent). Clearly, these two

columns in the table will be dense because every page

must have non-null values for them.

The schema grows when we apply an extractor and

find at least one page containing the target attribute. For

example, suppose we run an extractor on the two

documents and it extracts the value “dahlia” for the

attribute “official flower” (we allow attribute names to be

keywords or phrases, just as the elements in a “malleable”

schema [19]) from the Seattle page. To reflect this

knowledge, we add “official flower” to the catalog (Figure

2), and update the record for Seattle by appending

information about the new attribute to the end of the

record (the second record in Figure 3). Because the

extractor does not find a value for this attribute from the

Madison page, we leave the corresponding record

unaffected. In Figure 4, the first three columns represent

the current state of the wide table. Similarly, if for some

reason we decide we need to remove the attribute “official

flower,” we will just need to remove the entry in the

attribute catalog and update only the records that have a

non-null value for “official flower.”

Unfortunately, the conventional practice of first normal

form – the requirement that each field in the database

holds an atomic value – would not work well for our

workbench for two reasons. First, it is common for an

extractor to extract multiple instances of the same

structure. For example, an extractor for the attribute

“lake” will extract instances such as “Lake Mendota” and

“Lake Monona” from the Madison page, and “Lake

Washington” and “Lake Union” from the Seattle page.

Storing each instance in a separate column in the wide

table is unreasonable, especially when there are many

instances (e.g., Seattle has 22 instances of “sister city”).

However, if we create a new table for each distinct

structure, the number of tables will be prohibitively large,

and a SQL query will likely involve many joins. Second,

even if the document contains only one instance of a

particular structure, the structure can be complex, such as a

hierarchy or an n-ary relationship. A concrete example is

the weather table in Figure 1. Each temperature value is

host id host name mappings

a6 temp (°F) {a6 = a7 * 9/5 + 32}

a7 temperature (°C) {a7 = 5/9 * (a6 – 32)}

Figure 5. The mapping table to reconcile the two attributes that

have the same meaning (albeit in different units).

relationship id definition

r1 {a4, a5}
Figure 6. A structure table with only one entry for the

headquarter(city, company) relation.

associated with three attributes: the month, the semantics

(minimum or maximum), and the unit (Fahrenheit or

Celsius). Although in this case the DBAs could transform

the table to make it relational and store each attribute in

the wide table, this solution is inconvenient in the long

run. Ideally, having extracted a structure, we would like to

just store it in a column with as little administration as

possible.

To fix these problems, we allow a table in the

workbench to contain complex attributes (e.g., attributes

whose values can be lists, arrays, tables, sets of tuples,

etc.), in keeping with the complex attribute support found

in object-relational database systems. Note that we do not

require that the RDBMS-provided query language know

how to operate on all of these structures – instead, we

envision users and/or administrators writing user defined

functions (UDFs) that “know about” these structures and

are invoked in users’ queries. Figure 4 shows the wide

table after we extract instances of the relation

headquarter(city, company) and store them under one

column.

In summary, the wide table provides a simple, but

flexible way to store the evolving set of structures

extracted from the documents. Each document

corresponds to a row in the wide table. New structure

discovered from a document is appended at the end of the

corresponding row. Due to the diversity of structure, the

table can have many attributes, be very sparse, and some

attributes can have internal structure.

Some might doubt the scalability of this wide-table

approach. One problem is that the number of attributes

that this wide table can contain is limited by the number of

bits allocated for the attribute identifier – we currently use

a 16-bit attribute identifier, which limits the number of

attributes to 65,536. As we will see in our case study with

Wikipedia, depending on the extraction approach, the

number of attributes can easily exceed this number even

with just one data source. For this problem, we note that

nothing prevents us from allocating, for instance, 32 bits

for the attr-id. But more importantly, the main purpose of

the wide table is to provide convenient and flexible storage

to cope with the evolution of data. At the beginning, we

know nothing about the structure, so everything is stored

in one table. However, as we gain a better understanding

of the data, we may identify subsets of structures that are

logically different. At this point, we could optionally

create views or new tables for these subsets, or “split” the

wide table. Deciding whether and when to go beyond the

“single table” view of the data is an interesting topic for

future work.

2.2 Mapping Table and Relationship Table

The mapping table is a data structure to store mappings for

different attributes that correspond to the same real-world

concept. It is similar in spirit to the mapping tables

described by Kementsietsidis et al. [27]. In the logical

view, each row in the mapping table describes a set of

mappings to a distinct “host” attribute. A mapping to the

host is an expression that may include just the identifier of

another attribute for a simple 1-1 correspondence, or an

expression if the mapping involves some form of

conversion or involves more than one attributes (i.e., n-1

correspondence to the host). For example, if the weather

table from the Madison page records the temperature only

in Fahrenheit with the attribute “temp (°F),” and the

weather table from the Vienna page records its

temperature only in Celsius with the attribute “temperature

(°C),” then we will want to map the two attributes to

support any query that involves these two measures.

Figure 5 shows the mapping table after the update. The

column “host name” is just for demonstration.

When a query includes an attribute, the system looks

up the attribute in the mapping table. If there is a mapping

between this attribute and some other attribute, the query

may need to rewrite the query to also include the matching

attribute for evaluation.

The purpose of the relationship table is to record

complex structures that comprise multiple attributes, such

as the headquarter(city, company) relation, for possible

future updates. In the logical view of this table, each row

describes a distinct structure with two attributes: a

relationship identifier and the set of attributes that belong

to the structure. Figure 6 shows the entry that defines the

headquarter relation, whose attributes “city” and

“company” are also added to the attribute catalog shown in

Figure 2. Note that this is not the only way to keep track

of which attributes belong to which complex structure.

For example, instead of using a relationship table, we

could add a column that stores the relationship id of each

attribute, if applicable, in the attribute catalog.

3. Operators for Incremental Processing

of Data

Two types of evolution can occur in the workbench. The

first one is due to the system’s evolving understanding of

the data. The second is due to changes to the documents

such as inserting and deleting documents, and updating the

contents of existing documents. In the latter case, deleting

and updating document contents may cause changes that

need to be propagated to the set of structures, the mapping

table, and the relationship table. We do not consider this

case in this paper. Instead, we assume that once a

document is in the workbench, its content remains

unchanged. For the purpose of explanation, in this section,

we assume that the DBAs are the only ones using these

operators, although that is not necessarily the case as we

could potentially allow user participation in improving the

structure. However, addressing how to leverage mass

collaboration in the context of the workbench is out of the

scope of this paper.

We identify three basic operators – Extract, Integrate,

and Cluster – that the workbench should support. Just as

their names suggest, Extract is for extracting structure,

Integrate is for identifying attributes that correspond to

the same real-world concept, and Cluster is for clustering

a set of different attributes based on some similarity

function. These operators are the basic building blocks

that can be combined and applied repeatedly to keep

evolving the system’s understanding of the data.

The operators should satisfy three requirements. First,

each operator should be able to use different algorithms.

Second, the DBAs should be able to specify a scope for

the input on which a chosen method operates. Third,

given the output, the DBAs should be able to specify what

they want to do with it. We can consider each of these

operators as a procedure in which a DBA specifies the

scope of an operator through a query, and the other

parameters – methods, output, and action with the output –

in a UDF. In Section 4.1, we discuss some possible

parameters for each operator, then in Section 4.2, we

describe how the operators can be combined to improve

performance.

3.1 Basic Operators

Extract:

We classify extraction methods into two types. The

first one detects structure such as entity and relationship

from natural language. Most IE systems fall into this

category, such as DIPRE [8], Snowball [2], and KnowItAll

[21]. The second type extracts structured data embedded

in text of known format, such as LaTex, XML, and wiki

markup text [6]. It is a common practice to write ad hoc

scripts to extract structured data from a specific format.

Both types of extractors should be considered for use in

the workbench.

The output of an extractor is a set of structures. We

assume that the schema of a structure is part of the

extractor’s definition, and that each structure may have

one or more instances. The DBAs can either store the

output in the wide table, or feed it to the Integrate and

Cluster operators. Before storing a structure, the system

should check the attribute catalog and the relationship

table to see if the structure has been used before. If there

is an exact match between an existing structure and the

newly discovered structure, we store the instances in the

same column in the wide table. Otherwise, we have to

catalog the new structure and store its instances in a new

column (but in the same row as the corresponding

document).

As we will show later, the scope parameter is useful

for improving the performance of the extractors as the

system processes the data. The DBAs can also apply an

extractor on columns other than DocContent, to extract

structure of a finer granularity in existing structure (e.g.,

from “date” to “day,” “month,” and “year”). Finally,

although the scope is usually specified as a SQL query, in

the case of Extract, the scope can also be expressed as a

keyword query to select a set of documents relevant to a

specific topic. This approach can be an efficient way to

filter irrelevant documents for domain-specific extractors,

as demonstrated by Agichtein et al. [1].

Integrate:

Integrate takes as input a set of structures from the

wide table or a previous operator, and returns one or more

sets of mappings over attributes that correspond to the

same real-world concept. Based on schema-matching

techniques, the chosen method can consider schema-based

information (e.g., attribute names and clusters of

attributes), and instance-based information (e.g., data

contents). The DBAs have to decide what to do with each

set of mappings. They can store the mappings in the

mapping table. Alternatively, if the attributes have not yet

been inserted into the wide table (e.g., they have just been

generated by Extract), the DBAs may consider collapsing

the attributes into one attribute in some cases, such as

when the different attributes are just stems of the same

word.

Cluster:

Cluster takes in a set of documents or a set of

attributes and classifies the input into one or more clusters.

Although it sounds like Integrate, Integrate identifies

attributes that are semantically the same, whereas Cluster
tries to group together different documents or structures

based on some predefined notion of similarity. Document

clustering is a well-studied area in Information Retrieval

and a variety of approaches can be used for this operator.

For attribute clustering, one method that we explored in

previous work is to group together attributes that have

non-null values in the same tuples [14], which was shown

to be very promising for sparse data sets.

The clustering information is useful in a number of

ways. For instance, it helps the DBAs decide what views

to build to optimize SQL queries over the wide table. As

mentioned earlier, when there are clear clusters and the

table approaches the maximum number of attributes it can

store, the DBAs may want to physically split the wide

table into multiple tables for the clusters. Also, the

clusters may reveal undiscovered domain knowledge that

may improve the other two operators.

Our workbench does not currently model the results of an

operator with their probability of being accurate, as in

probabilistic databases. Instead, it relies on the threshold

that the particular method uses to determine extraction,

integration, and clustering; the DBAs can also verify the

output of the operators themselves. Although

incorporating probabilities and reasoning about them could

be very useful, it is orthogonal to the basic operators of our

workbench and out of the scope of this paper.

One assumption we make in this model is that the

specific algorithms of the three operators are already

coded as programs that can be conveniently applied to the

data in the workbench. Unfortunately, the reality is much

more complicated. For example, currently, PostgreSQL,

which we use for our case study, only allows UDFs written

in C/C++, so even if we have extraction scripts written in

Perl, we cannot apply them as UDFs. How to facilitate the

application of external programs within the workbench is

an important and practical problem to address. A possible

idea is to create a repository of external programs. The

DBAs and users can write these external programs (that

may follow some guidelines set by the workbench), and

upload them to the repository. The workbench can then

use them on the data set.

3.2 Operator Interaction

One powerful feature of our workbench is that the

operators can be combined synergistically in a “whole is

greater than the sum of the parts” fashion. That is, the

operators can be combined to improve each other’s

performance, in terms of both efficiency and quality.

There are six possible pairwise combinations of distinct

operators: Integrate-Extract, Cluster-Extract, Extract-
Cluster, Integrate-Cluster, Extract-Integrate, and

Cluster-Integrate. Of course, they can be extended into a

sequence of operators – we could do triples, quadruples,

etc. In the following, we explain for each case how the

previous operator benefits the subsequent one.

Integrate-Extract:

Integrate can help find new targets for Extract. For

example, suppose that the DBAs have used Extract to

extract from the attribute “address” the finer-grained

attributes “street address”, “city,” “state,” and “zip code.”

When Integrate identifies a mapping between “address”

and another attribute “sent-to” based on the data instances,

the DBAs may want to apply the same extractor on “sent-

to.”

Cluster-Extract:

At the early stage of processing, when the DBAs know

nothing about the documents, they can only apply domain-

independent extractors on the entire set of documents.

However, when Cluster discovers a specific domain, the

DBAs can narrow the scope of Extract and apply domain-

specific extractors on only the documents in this domain.

Because domain-specific extractors are more powerful but

often applicable to only a small subset of the documents,

domain discovery can greatly improve Extract’s

efficiency and the quality of its results.

Extract-Cluster:

The extracted set of structures may provide more

information that Cluster can use to group together

documents or attributes. For example, we try to cluster

pages about cities in Wikipedia (see Section 6) based on

the section names they contain. Although we are fairly

successful in finding most city pages, the short pages are

left out because they do not have a section name (just a

title). However, after we extract the “city info-box”

structure in some of these pages, Cluster will recognize

them and put them in the city cluster.

Integrate-Cluster:

Integrate can prevent Cluster from creating multiple

clusters where logically a single cluster would be better.

For example, given a data set with attributes {C#,

Company, FirstName, LastName, CustID, Contact,

CName}, Cluster may find two clusters – the tuples either

have non-null values for the set of attributes {C#, CName,

FirstName, LastName}, or the set of attributes {CustID,

Company, Contact}. However, if we have run Integrate

first and find the set of mapping {C# = CustID, CName =

Company, FirstName + LastName = Contact}, then

Cluster will end up with only one cluster.

Extract-Integrate:

This pair is more a necessity than an option –

obviously we need to extract a set of structures before

integrating them.

Cluster-Integrate:

Cluster can narrow the scope for Integrate in two

ways. First, when Cluster identifies a domain for a set of

structures, the DBAs may want to apply domain-specific

schema matchers on this set of structures. Second, when

Cluster identifies two overlapping sets of attributes (e.g.,

{CustID, CName} and {CustID, Company}), DBAs may

want to look for possible mappings in the difference

between the two sets of attributes because they may be

semantically the same (e.g., CName = Company).

We conclude this section with two thoughts. First,

incremental processing is a flexible scheme to support

structured queries over unstructured data. On the one

hand, the interaction of operators with different methods

supports robust evolution of structure. On the other hand,

DBAs can also process the data lazily – that is, they do not

try to process the data unless they determine that getting

the structure will significantly improve searching

experience. A lazy approach is more appropriate when

resources are limited, as it avoids over-processing

structure that users do not care. Second, the correctness of

structured queries over this data set is limited by how

much, and how well, the DBAs have processed the data.

In other words, the results obtained via structured queries

can have less-than-perfect recall and precision.

4. Case Study: Wikipedia

4.1 Preliminaries

As a proof of concept, we conducted a preliminary case

study on applying our workbench model on Wikipedia, an

online encyclopedia written collaboratively by volunteers.

Coincidentally, in addressing DB and IR integration,

Weikum recently suggested turning Wikipedia into a

database that can answer advanced queries, as a first,

smaller-scale step to turn the entire Web into a gigantic

knowledge base [35]. The pages in Wikipedia are actually

stored in a relational database; however, they are stored as

blobs of text and the only way to find information from

them is via browsing and “vanilla” keyword search, with

no advanced search options such as those found in the

“Advanced Search” page of Google [24]. The purpose of

this case study is to illustrate how our relational

workbench can incrementally evolve structure from the

contents of Wikipedia, and how users can pose

increasingly sophisticated queries at each stage of the

processing.

Wikipedia has many qualities that make it an ideal

subject of this case study. The contents are embedded in

wiki markup text. There are guidelines on how to create

and edit a wiki page. As a result, even though many users

can make changes to the same page, in general the pages

have a consistent structural organization. For example,

they all have a title; many of them comprise text organized

into a hierarchy of sections, and contain structured data in

the forms of “wiki table” and “info box.” Moreover, it

encourages the use of templates for wiki tables and info

boxes in the same domain, so the same structure is often

used across many pages.

For our case study, we downloaded a database dump of

Wikipedia that includes only the current revisions, as of

December 5, 2005. The dump has more than 4 million

XML files in 8.5 GB. Each XML file contains a blob that

is the content of a wiki page, and metadata about the page

such as page-id, title, revision-id, contributor-user-name,

last-modification-date, etc. To more easily track the

evolution progress and the results of our queries, we also

selected a small subset of pages as a control data set. The

control set comprises pages from three domains: major

American cities (254 files), major universities from the

states of Wisconsin, New York, and California (255 files),

and top male tennis players on the ATP tour in the “Open

Era” (373 files). For the rest of this section, we refer to

these domains as “City,” “University,” and

“TennisPlayer,” respectively. We ran our experiments in

PostgreSQL.

4.2 Incremental Processing

Stage 1: Initial Loading

In the first stage, we parsed the XML files and loaded

them into a single table, which initially had five columns:

PageId, PageText, RevisionId, ContributorUserName, and

LastModificationDate. Each page corresponds to a single

row. We used the page title as the PageId of a page.

PageText contains the content of the page in wiki text.

The other attributes describe the metadata about the page.

With a full-text index on PageText, users can already

query the documents using keyword searches, even though

we have not begun processing the data.

Stage 2: Extracting SectionName(text)

Next, from each page we extracted the structure

SectionName(text), in which SectionName represents the

name of a first-level section in the page and the text is the

content in that section. For example, the page titled

“Madison, Wisconsin” has 16 first-level sections, such as

“History,” “Geographics,” “Demographics,” and so on.

For each instance of this structure we appended it to the

“Federer

was

born...”

Personal

Life

“Stanford

University

owns ...”

Campus

“Stanford

was

founded...”

“What is now

Seattle...”

“Madison

was

created...”

History

“The Leland

Stanford ...”

Stanford

University

“Roger Federer

(born August 8,

1981) is a ... ”

Roger
Federer

“Five

companies

on the ...”

“Seattle is the

largest city in ...”

Seattle,

Washington

“Wisconsin

state

government.
.”

“Madison is the

captial of the ...”

Madison,

Wisconsin

EconomyPageTextPageId

“Federer

was

born...”

Personal

Life

“Stanford

University

owns ...”

Campus

“Stanford

was

founded...”

“What is now

Seattle...”

“Madison

was

created...”

History

“The Leland

Stanford ...”

Stanford

University

“Roger Federer

(born August 8,

1981) is a ... ”

Roger
Federer

“Five

companies

on the ...”

“Seattle is the

largest city in ...”

Seattle,

Washington

“Wisconsin

state

government.
.”

“Madison is the

captial of the ...”

Madison,

Wisconsin

EconomyPageTextPageId

Figure 7. A portion of the wide table after extracting

SectionName(text) over the control data set. The table has a total

of 1,258 attributes and 882 rows, but only 1.05% of all cells have

non-null values.

end of the corresponding row. Note that when two

instances had different section names, we stored their text

in two different columns. (Figure 7)

One reason to extract this structure is that it allows us

to do “focused” keyword search. For example, suppose

we want to retrieve from the control set the pages about

male tennis players who have been ranked world number

one, we can pose the keyword query “World No. 1 tennis

player” over the PageText column. For this query,

PostgreSQL returns 86 players. It includes all the 23

players who indeed have been ranked number one in the

world since the “Open Era.” For the other 63 players,

most of them are included for reasons such as they have

been ranked number one in doubles, they have defeated a

top-ranked player, and so on.

Continuing with the example, suppose we know that

the pages of the players who have been number one almost

always mention that fact in the introduction section.

Therefore, we may want to try posing the same keyword

query over only the introduction section. This query

returns 67 players, 21 of which have been number one. In

other words, it gives us better precision but worse recall.

Incidentally, for the two players who are excluded, their

introduction does mention that they have been ranked

number one before, but the fact is expressed as “world

number one” instead of “world No. 1.”

Although extracting the structure SectionName(text)

allows us to do focused keyword search, it leads to

inserting 1,253 new attributes into the wide table. Each

row has only 13 non-null attributes on average. The entire

table has about 1.05% non-null values. Fortunately, using

the interpreted storage format can avoid the storage

explosion caused by storing the null values.

We checked how many of these attributes are

equivalent based on name similarity, and found that even

in this small control data set with just 882 files from 3

domains, a significant percentage of attributes are

equivalent or highly similar to another attribute.

Specifically, more than 350 of the 1,253 attributes belong

to one of the 14 most common attribute topics. Figure 8

shows these 14 attribute topics with some examples. We

City University TennisPlayer
famous people (37): famous people from abilene, famous

people born in akron, famous madisonians, ...

demographics (15): demographics and diversity,

population and demographics, population history, ...

museum (23): museums and cultural organizations,

museums and attractions, museum and historical

attractions, museums and cultural arts, ...

colleges and universities (33): schools & colleges,

colleges & research institutes, schools & universities, ...

culture and entertainment (33): arts and entertainment,

entertainers, arts literature humanities, ...

highways (24): us highways, highways, streets and

highways, ...

athletics (7): athletics and

traditions, school athletics, athletics

and mascots, athletics highlights, ...

greek life (14): greek social

organizations at alfred, greek letter

organizations, greek social

fraternities, campus greek life,

fraternities, ...

campus (73): facilities & campus

construction, hillside campus, main

campus, new york city campus,

campus and facilities, ...

single_titles (28 total): singles titles

(21), singles titles (33), singles titles (5),

...

doubles_titles (12 total): doubles titles

(15), mens doubles titles (50), career

doubles titles (54), ...

personal (6): personal and family life,

personal life, personal information, ...

grand_slam_record (16): grand slam

records, grand slam results, grand slam

history, ...

career overview (35): career highlights,

tennis career, professional career, ...

Figure 8. The 14 attribute topics with the most aliases found in the control data set. For each topic, we show the most representative attribute in bold,

the number of aliases in that topic, and some examples.

Figure 9. A network diagram by Many Eyes on the section

names extracted from the control data set. We can see that the

section names form three fairly clear clusters.

could store these mappings in a mapping table as described

in Section 3.

Figure 8 reveals two interesting observations. First,

many section names are a mix of attribute names and

values. For example, the attribute “singles titles” is

frequently followed by a number in parentheses, e.g.,

“singles titles (13).” Apparently, the many aliases of

“singles titles” are due to the convention of putting the

total number of titles next to the section name, while the

content of that section describes when and where a player

has won each of these titles. We also observed this pattern

of mixing data with metadata in attributes such as “doubles

titles” and “famous people.”

This observation indicates an opportunity for

extraction. For the “singles titles” example, we can extract

the number in parentheses into a new structure,

NumberOfSinglesTitlesWon(number), and store it in the

wide table. The section names can be changed back to

“singles titles,” resulting in many fewer aliases. This

example illustrates how Integrate and Extract can benefit

each other.

The second observation is that given the output of an

operator, there is often more than one reasonable action.

For example, after we extracted the SectionName(text)

structure, we immediately stored them into the wide table,

and then stored the mappings in the mapping table.

However, a better decision might be to run Integrate and

Extract as described above to reduce the attribute

explosion, and store only the sections that we believe are

likely to be used for focused keyword search. Of course,

the first approach has the advantage that we can “undo”

any mappings that are later found to be incorrect, simply

by updating the mapping table. We leave these decisions

to the DBAs.

Suppose we do not know that the documents in the

control set come from the domains University, City, and

TennisPlayer. We might be motivated to see if the

SectionName(text) instances form any clusters because

pages in the same domain often have similar section

names. We used the following definition of Jaccard

coefficient to identify clusters. Given two attributes

(section names in this case) AX and AY, let X be the set of

rows for which AX is non-null, and let Y be defined

analogously. The Jaccard coefficient for AX and AY is

defined as:

Jaccard(AX, AY) = |X∩Y|/|X∪Y|

The coefficient’s value ranges from zero to one. It is zero

when no rows have non-null values for both AX and AY,

and one when AX and AY are either both null or both non-

null for all tuples. We created an adjacency matrix on the

attributes with the Jaccard coefficients as the values. Next,

we tried to visualize the clusters via a network diagram, a

feature in the Many Eyes visualization tool developed by

IBM [32]. The tool takes in an input list of distinct

attribute pairs that have a Jaccard coefficient greater than

Domain

(# files)

Returned

Pages

Correct

Pages

Recall Precision

City (254) 477 247 .97 .51

University

(255)

498 240 .94 .48

TennisPlayer

(373)

375 330 .88 .88

Figure 10. The results of posing a keyword query to retrieve a

set of documents for each domain. TennisPlayer enjoys a high

precision because its domain is relatively disjoint from the other

two domains, in which many pages mention both cities and

universities.

The University of Wisconsin-Madison

Motto Numen Lumen The divine within the ...

Established 1848

Type Public State University

Faculty 2053

Students 41466

... ...

Colors Cardinal & White

Mascot Bucky Badger

Figure 11. Info box of the University of Wisconsin-Madison.

0.1, and appear non-null in at least 0.05% of rows. The

output is a graph in which the vertices correspond to the

attributes, and the edges represent the pairs that satisfy the

constraints. Strongly related attributes are kept in close

proximity to each other. The size of a vertex is

proportional to the number of its outgoing edges. Figure 9

shows this network diagram, which depicts the three

clusters quite clearly. Looking at the vertices closely, we

were able to identify the domains of the three clusters, as

labelled in the figure.

We also tried doing keyword search as a means to

approximate clusters. That is, assuming we know that the

domains are City, University, and TennisPlayer, we pose

three keyword queries: “city,” “university,” and “tennis

player” over the control set to get three sets of documents.

Figure 10 shows the results of these keyword queries. All

of them have high recall, which is not surprising because

the keyword queries describe the domains accurately.

However, notice that while TennisPlayer enjoys a

relatively high precision, the other two domains have

significantly poorer precision. This result also makes

sense because many university pages mention the city

where the university is located, and many city pages

mention major universities that are located in the city. We

posed the same keyword queries over the entire Wikipedia,

and retrieved 175,193 pages for City, 114,173 pages for

University, and 851 pages for TennisPlayer. These

numbers are reasonable because they include pages about

cities and universities from all over the world, and all

kinds of tennis players, including male and female

professionals, and possibly amateur and junior players.

Nevertheless, these numbers are a huge reduction from the

4 million+ pages in Wikipedia, so keyword search is a

very good way of narrowing the scope of documents for

further processing.

We can draw an interesting comparison between the

two approaches. Clustering section names does not

depend on any prior knowledge about the set of

documents. Moreover, if there is a set of extracted

structures, then clustering is a good approach for

discovering domains because based on the clusters, we

could create views to improve efficiency for queries over

this set of structures. In contrast, the keyword search

approach is simple and potentially effective if the DBAs

have prior knowledge about the documents. This approach

is appropriate for identifying a scope for applying domain-

specific extractors. This example demonstrates the

robustness of our relational workbench, as it supports a

wide variety of approaches for doing the same task.

As yet another approach to find clusters, we note that

for many online unstructured data sets, the contents have

already been organized into subsets. For example, the

contents in Wikipedia are organized into categories and

presented as many lists (which can in turn contain more

lists). We can certainly leverage this existing

organization.

Identifying clusters of attributes can help increase the

efficiency of queries over the data set. For example, after

we cluster the documents based on these domains over the

table that contains all Wikipedia documents, the scanning

times for City, University, and TennisPlayer are 26.12 ms,

24.62 ms, and 25.69 ms, respectively. Without this

clustering information, to find the documents from each

cluster, we have to scan the entire table, which takes about

44 seconds.

In concluding this stage, we note that extracting only

one kind of structure – SectionName(text) – already leads

to many opportunities for evolving the structure.

Therefore, it is very important to have a flexible

infrastructure to handle this evolution.

Stage 3: Extracting info box as a blob

In the next stage of processing, we extracted info

boxes, which are a general template that contains

predefined attributes and vary depending on the domain.

That is, the definition of a city info box is different from

that of a university info box. Figure 11 shows a portion of

the info box of the University of Wisconsin-Madison.

Although ideally we would want to extract each

attribute-value pair, a much simpler alternative is to just

store the entire info box as a blob. This blob would not

support structured queries over the attributes; however, it

allows focused keyword search over the info box. For

instance, we can find out which universities have

“cardinal” as their school color, by posing the keyword

query “cardinal” over the university info boxes in our

control set. The answer set for this query includes seven

schools. Six of them have “cardinal” as one of their

school colors. One of them has “red” as its school color,

but has a mascot called “Cardinal Burghy.” In contrast,

running the keyword query “cardinal university” over the

PageText column of the control data set returns 51 pages.

Most of them are either university pages that mention

sports teams whose names contain “cardinal,” or city

pages that contain the term “cardinal” in various contexts,

such as sports teams, high schools, religion, and “cardinal-

direction.” This example shows that sometimes even a

small effort in processing data can greatly improve the

quality of keyword search.

Stage 4: Extracting structured data from info boxes

and wiki tables

In the last stage of our case study, we demonstrate the

process of extracting and querying structured data from

info boxes and wiki tables. For our first example, we go

back to address the first query given at the beginning of

the paper: compute the average of the average low

temperatures of December, January, and February from the

temperature wiki table of Madison (Figure 1). To do this

query with our relational workbench, first we need to

transform the contents of the temperature wiki table into a

relation. There are many alternatives. We chose to use the

following schema:

temperature_wiki(city, month, lowF, lowC, highF, )

Since PostgreSQL does not allow a column to store a

relation, we simulated the effect by storing a table

identifier in the column that originally stores

temperature_wiki according to our model, and created

temperature_wiki as a separate table. We used the name

“temperature_wiki” as the table identifier. Figure 12

shows the wide table and a portion of temperature_wiki.

The following query computes the average of the average

low temperatures of January, February, and December:

Q1: SELECT AVG(Low_F)

FROM temperature_wiki as T

WHERE T.city = ‘Madison, Wisconsin’ AND

Month = 1 OR Month = 2 OR Month = 12;

Since temperature_wiki associates each measurement

with a city, we could reuse it for any city page that

contains this wiki table. Once we have extracted many

temperature wiki tables from pages of Wikipedia into

temperature_wiki in this fashion, we could pose queries

that do powerful comparisons, such as “find the coldest

city,” or “rank the cities based on their precipitation.”

As a comparison to the earlier keyword queries that

retrieve top ranked male tennis players, we extracted the

tennis info box structure, which has the attribute

highest_singles_rankings, and posed the equivalent

structured query:

Q2: SELECT id

FROM info_box_tennis_player

WHERE highest_singles_rankings = 1;

Q2 returns 23 players, 22 of which have been ranked

number one. This result has a much better precision than

the keyword queries. One player that has been ranked

number one is not included in the answer because that

temperature_wiki

temperature

“Madison

was

created...”

History

“Wisconsin

state

government..”

“Madison is the

captial of the ...”

Madison,

Wisconsin

EconomyPageTextPageId

temperature_wiki

temperature

“Madison

was

created...”

History

“Wisconsin

state

government..”

“Madison is the

captial of the ...”

Madison,

Wisconsin

EconomyPageTextPageId

Wide Table

temperature_wiki

...23-1461Madison,
Wisconsin

...29-11122Madison,

Wisconsin

...462361Seattle,

Washington

...29-111312Madison,

Wisconsin

...High_FLow_CLow_FMonthCity

...23-1461Madison,
Wisconsin

...29-11122Madison,

Wisconsin

...462361Seattle,

Washington

...29-111312Madison,

Wisconsin

...High_FLow_CLow_FMonthCity

Figure 12. Implementation for storing an internal table in the

wide table – a table identifier is assigned to the internal table

(temperature_wiki), which is created as a separate physical table.

player’s page does not have an info box. This example

demonstrates the improvement we can potentially get by

exploiting structured data embedded in text; however, the

correctness of the query is limited to the availability of the

structure and the quality of our processing.

In addition to arithmetic comparison and aggregation,

a powerful advantage that structured queries have over

keyword search is their ability to join documents. For

example, suppose a student wants to find out which

university is located in a place that can get very cold in

January. The student can pose a query that joins the

university pages in the wide table with the temperature

table of the cities where the universities are located, based

on the “location” field extracted from the university pages:

Q3: SELECT T1.ID

FROM WideTable T1, temperature_wiki T2

WHERE T1.location = T2.city AND T2.month =

1 AND Low_F < 20;

Not surprisingly, Q3 returns the University of Wisconsin-

Madison. In our data set, this university is the only one

returned because only a small number of cities have

temperature tables, and many of them are in sunny

California.

In this case study, we present the first few stages of

incrementally evolving structure from a small set of

Wikipedia pages. Although we have only scratched the

surface of processing these pages, we have already seen a

significant improvement in the type of queries that users

can use: from keyword search over unstructured data, to

focused keyword search over sections of text and blobs of

info boxes and wiki tables, to doing arithmetic

comparison, aggregation, and even joins. Note that during

this process, we have only focused on extracting structure

based on the syntax of the Wiki markup text; we have not

even used extractors based on natural language processing

and statistical learning. There is still so much structure yet

to be discovered and exploited, that we need a flexible

infrastructure that gives us many options in how to manage

these evolving structures.

5 Related Work

There is a large body of literature relevant to various

aspects of our workbench model. In this section, we try to

cover a representative sample of this related work, but it is

by no means exhaustive.

Our wide table resembles Google’s Bigtable [12], a

distributed storage system for managing structured data

that is designed to scale to a very large size. The

difference is that Bigtable focuses on storing document

metadata, whereas our wide table needs to store different

forms of extracted structures.

Our Extract, Integrate, and Cluster operators overlap

somewhat in their functions with Data Cleaning tools [34],

which deal with detecting and removing errors and

inconsistencies from data in order to improve the quality

of data. Also, supervised learning algorithms can be

defined as operators that DBAs can apply to the data set.

Exploring how to adapt existing data cleaning and learning

tools in the context of our workbench is a very interesting

and promising area for future work.

There is a large body of literature in information

extraction [e.g., 3, 15, 17], data integration [e.g, 25], and

data clustering [e.g., 5], which we will not describe here.

In the following, we review some recent or ongoing

projects that address problems similar to those addressed

by the workbench.

AVATAR [28], a prototype by IBM, aims to provide

seamless support for queries over unstructured and

structured data, mainly from the business domain. It relies

on hand-written annotators to emit the structures.

Although a relational database (DB2) is used to store these

structures, AVATAR devises an object model as an

abstraction layer to hide the details of the underlying

storage. It also features a statistical model to handle

uncertainty about the extracted structures. One of its

focuses is to support online analytic processing (OLAP)

over uncertain and imprecise data [9].

ExDB [10] is an “extraction database” that extracts

structures from web text and supports structured queries

over them. Using IE systems that are domain-independent

and unsupervised, such as KnowItAll [21], it extracts data

values (e.g., “Einstein,” “Switzerland”), binary

relationships (e.g., “Einstein” was born in “Switzerland”),

and semantic types (e.g., “Switzerland” is a “country”).

The tuples are loaded into a probabilistic database, which

records for each tuple the probability of that tuple being

true. ExDB supports structured probabilistic queries that

use a Datalog-like notation.

SEMEX [18] is a platform for personal information

management and integration. It supports desktop search

via semantically meaningful associations, which may be

extracted by analyzing specific file formats (e.g., Latex

and Bibtex), derived from external sources, or defined by

users. Therefore, a major challenge is to identify different

references that correspond to the same real-world concept

[20]. Another line of work is the proposal of “malleable”

object-oriented schemas to model uncertainty that arises in

diverse and evolving structures [19].

Cimple [16] is a platform for community information

management. For instance, its prototype system, DBLife,

manages information for the database research community.

Although it is domain (or rather, community) specific, the

data may come from multiple sources. With a larger group

of users, Cimple explores techniques that leverage mass

collaboration, for tasks such as improving the accuracy of

data integration tools [33].

Google’s PAYGO [30] is a data integration architecture

intended to manage structured data on the Web scale.

Therefore, it has to model any kind of structures, which

can come from any domain (e.g., school, government,

sports, etc.) and from any source (e.g., queryable HTML

forms in the Deep Web [11], Flickr [22], Google Base

[23], etc.). PAYGO and our workbench model share the

same philosophy that a system should be able to

incrementally evolve its understanding of the data.

For storing sparse data sets, Yu et al. [37] and we [14]

separately advocated the use of a wide table – that is,

forego complicated schema design and store all attributes

in a single physical table. As explained in Section 2, our

workbench uses a modified wide table to store the

evolving set of structures.

Mansuri et al. [31] presented a system for

automatically integrating unstructured text into a multi-

relational database. By using statistical models for

structure extraction and matching, the system loads

unstructured records into columns that spread across

multiple tables in the database, and resolves the

relationship of the extracted text with existing column

values.

Liu et al. [29] described an alternative approach to

answer structured queries over unstructured data. Instead

of extracting structures from unstructured data, it

transforms a given structured query to a keyword query

and poses this keyword query over the unstructured data

directly. Although this approach does not require

extraction, it somewhat defeats the purpose of posing

structured queries, as it is inapplicable to express queries

that involve disjunction, inequality predicates (e.g., <, >),

or aggregation. However, we noted that when a data set is

sparse, it is often possible to use keyword search as an

optimization technique for many structured queries that

contain only equality predicates in conjunction [14]. Jain

et al. [26] describes another approach to answer structured

queries over text data, by executing multiple extractors and

combining their results on the fly.

Although many of these systems explore similar

problems and propose similar techniques in comparison to

our work, none of them employs their approach inside a

relational database in an end-to-end fashion. For most of

them, the use of a relational database is limited to storing a

set of structures, which usually have a well-defined

schema when they are loaded into the database. Some

systems, such as SEMEX, do not even use a relational

database (although it would be possible to use one). In

contrast, we focus on the seemingly unpromising idea of

incrementally processing data in a relational database.

6 Conclusion

In this paper, we propose the use of a relational database

as a workbench not only for storing and querying

structured data, but also for incrementally evolving

structure from unstructured data. As a proof of concept,

we conducted a case study of applying our approach to

evolve and query the structure in the contents of

Wikipedia. Our experience in this study demonstrated that

our approach exploits existing technology effectively and

allows one to quickly and incrementally discover and

query the structure lurking in unstructured documents.

Much scope for future work remains – virtually every

aspect of our system can be “drilled down” upon to

discover and evaluate alternative approaches. Some

interesting outstanding problems include:

• How to handle updates to the unstructured data.

That is, how should these updates be propagated

to the wide table, the mapping table, etc.? This

topic is relevant especially for Wikipedia, in

which users update the content all the time.

• How to record the evolution of data, so when a

new document arrives and we find that it is similar

to existing documents in the workbench, we know

how we should process the new document.

• How to help users write queries that exploit the

structure discovered in this workbench.

• How to optimize queries in this context, such as

when they involve attributes that have many

mappings.

We intend to address these and other questions in the

future, and it is our hope that our initial work in this area

will inspire other researchers to also address these

questions.

References:
[1] E. Agichtein, L. Gravano. Querying Text Databases for

Efficient Information Extraction. ICDE 2003: 113-124.

[2] E. Agichtein, L. Gravano. Snowball: Extracting relations

from large plain-text collections. ACM DL, 2000.

[3] E. Agichtein and S. Sarawagi. Scalable Information

Extraction and Integration. KDD 2006 Tutorial.

[4] R. Agrawal, A. Somani, Y. Xu. Storage and querying of e-

commerce data. VLDB, 2001.

[5] P. Andritsos, P. Tsaparas, R. Miller, K. Sevcik. LIMBO:

Scalable Clustering of Categorical Data. EDBT 2004.

[6] S. Auer, J. Lehmann: What have Innsbruck and Leipzig in

common? Extracting Semantics from Wiki Content. ESWC

2007.

[7] J. Beckmann, A. Halverson, R. Krishnamurthy, J. Naughton.

Extending RDBMSs to support sparse datasets using an

inerpreted attributes torage format. ICDE, 2006.

[8] S. Brin. Extracting patterns and relations from the World-

Wide Web. WebDB, 1998.

[9] D. Burdick, P. Deshpande, T. S. Jayram, R. Ramakrishnan,

S. Vaithyanathan: OLAP Over Uncertain and Imprecise

Data. VLDB 2005.

[10] M. Cafarella, C. Re, D. Suciu, O. Etzioni, M. Banko.

Structured Querying of Web Text. CIDR 2007.

[11] K. Chang, J. Cho. Accessing the Web: From Search to

Integration. SIGMOD 2006 Tutorial.

[12] Chang et al. Bigtable: A Distributed Storage System for

Structured Data. OSDI 2006.

[13] N. Chapin. A Comparison of File Organization Techniques.

In Proc. of 24
th
 national conference, pg. 273-283, USA,

1969. ACM Press.

[14] E. Chu, J. Beckmann, J. Naughton. The Case for a Wide-

Table Approach to Manage Sparse Relational Data Sets.

SIGMOD, 2007.

[15] W. Cohen, A. McCallum. Information Extraction from the

World Wide Web. KDD 2003 Tutorial.

[16] P. DeRose, W. Shen, F. Chen, A. Doan, R. Ramakrishnan.

Building Structured Web Data Portals: A top-down,

compositional, and incremental approach. VLDB 2007.

[17] A. Doan, R. Ramakrishnan, S. Vaithyanatha. Managing

Information Extraction. SIGMOD 2006 Tutorial.

[18] X. Dong, A. Halevy. A Platform for Personal Information

Management and Integration. CIDR 2005.

[19] X. Dong, A. Halevy. Malleable Schemas: A Preliminary

Report. WebDB 2005.

[20] X. Dong, A. Halevy, J. Madhavan. Reference

Reconciliation in Complex Information Spaces. SIGMOD

2005.

[21] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu,

T. Shaked, S. Soderland, D. Weld, A. Yates. Unsupervised

named-entity extraction from the web: An experimental

study. Artificial Intelligence, 165(1):91-134, 2005.

[22] Flickr. http://www.flickr.com.

[23] Google Base. http://base.google.com.

[24] Google Advanced Search.

http://www.google.com/advanced_search?hl=en

[25] A. Halevy, A. Rajaraman, J. Ordille. Data Integration: The

Teenage Years. VLDB 2006.

[26] A. Jain, A. Doan, L. Gravano. SQL Queries over

Unstructured Text Databases. ICDE 2007.

[27] A. Kementsietsidis, M. Arenas, R. Miller. Mapping Data in

Peer-to-Peer Systems: Semantics and Algorithmic Issues.

SIGMOD 2003.

[28] R. Krishnamurthy, S. Raghavan, J. Thathachar, S.

Vaithyanathan, and H. Zhu. AVATAR information

extraction system. IEEE Data Engineering Bulletin, Special

Issue on Probabilistic Databases, 29(1), 2006.

[29] J. Liu, X. Dong, A. Halevy. Answering Sturctured Queries

on Unstructured Data. WebDB 2006.

[30] J. Madhavan, S. Jeffery, S. Cohen, L. Dong, D. Ko, C. Yu,

A. Halevy. Web-scale Data Integration: You can only afford

to Pay As You Go. CIDR 2007.

[31] I. Mansuri, S. Sarawagi. A system for integrating

unstructured data into relational databases. ICDE 2006.

[32] Many Eyes.

http://services.alphaworks.ibm.com/manyeyes/home

[33] R. McCann, A. Kramnik, W. Shen, V. Varadarajan, O.

Sobulo, A. Doan. Integrating Data form Disparate Sources:

A Mass Collaboration Approach. ICDE 2005.

[34] E. Rahm, H. Do. Data Cleaning: Problems and Current

Approaches. IEEE Bulletin of the Technical Committee on

Data Engineering, Vol 23 No. 4, December 2000.

[35] G. Weikum. DB&IR: Both Sides Now. SIGMOD Keynote

Talk, 2007.

[36] Wikipedia. http://en.wikipedia.org/wiki/Main_Page

[37] B. Yu, G. Li, B. Ooi, L. Zhou. One Table Stores All:

Enabling Painless Free-and-Easy Data Publishing and

Sharing. CIDR 2007

