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ABSTRACT
Entity matching (EM) �nds disparate data instances that refer to
the same real-world entity. EM is critical in health informatics, and
will become even more so in the age of Big Data and data science.
Many EM systems have been developed. In this paper, we �rst
discuss why it is still very di�cult for domain scientists to use
such EM systems. We then describe CloudMatcher, a cloud/crowd
service for EM that we have been building. CloudMatcher aims to
be a fast, easy-to-use, scalable, and highly available EM service on
the Web. We motivate CloudMatcher then describe its design and
implementation. Next, we describe its deployment in the past six
months, providing a detailed analysis of its performance over four
representative datasets. Finally, we discuss lessons learned.

1 INTRODUCTION
Entity matching (EM) �nds disparate data instances that refer to the
same real-world entity. For example, given the two tables in Figure
1.a, where each tuple describes a person, we want to �nd all tuples
across the tables that refer to the same real-world person, such as
tuples a1 and b1 in the �gure. Figure 1.b shows another example
of matching drugs across two tables [33]. Matching tuple pairs
are o�en referred to as matches, and variations of this problem are
known as record linkage, entity resolution, reference reconciliation,
deduplication, etc. (see the related work section).

EM is critical in numerous data management applications, and
will become even more so in the age of Big Data and data science.
In particular, many health informatics applications must match
entities such as drugs (see Figure 1.b), genes, proteins, patients in
electronic health records, etc. [33].

EM is also well-known to be very di�cult, raising both accu-
racy and scalability challenges. As a result, it has been studied
intensively over the past several decades, by the database, AI, KDD,
and WWW communities, among others. Many EM algorithms
have been proposed. Building on these algorithms, many EM sys-
tems have been developed (see [30] for a discussion of 33 recent
open-source and proprietary EM systems).

Today, however, it is still very di�cult for domain scientists
to use such EM systems. First, it is o�en non-trivial and time-
consuming to install and learn to use such systems. Second, many
such systems do not scale to large tables (e.g., those with several
hundreds of thousands of tuples). �ird, systems that scale o�en
do so by using a cluster of machines (running Hadoop or Spark).
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Figure 1: Examples of EM across two tables.

However, many domain scientists do not know how to, or do not
want to, install and use a machine cluster. Finally, and most seri-
ously, to use such systems e�ectively, domain scientists o�en need
to know quite a bit about EM, e.g., knowing about string similarity
measures (e.g., edit distance, Jaccard, TF/IDF, etc.) and when to use
which measure, about machine learning models and when to use
which model, etc. (See Sections 2-3). Obtaining such knowledge is
di�cult even for EM experts, let alone for most domain scientists.

�e CloudMatcher Service: To address these problems, in the
past few years we have been building CloudMatcher, a cloud/crowd
service for EM. We envision CloudMatcher to be a fast, easy-to-
use, scalable, and highly available service on the Web. Speci�cally,
to use this service, a user simply needs to go to CloudMatcher’s
Web site, uploads two tables to be matched, performs some basic
pre-processing, then pushes a bu�on. CloudMatcher will perform
EM end to end. To do so, it will use crowd workers on Amazon’s
Mechanical Turk (or some other crowdsourcing platform) to label
tuple pairs (as matched / no-matched). �e user just has to pay
for the labeling. Alternatively, instead of using crowdsourcing, the
user can just label these tuple pairs. At the end, CloudMatcher
will return the desired matches. In the backend, CloudMatcher
performs EM using a machine cluster that our group will maintain.

As described, when using CloudMatcher, the user does not need
to install or learn how to use any complicated system (using Cloud-
Matcher should be very straightforward). �e user does not have
to know EM (e.g., knowing string similarity measures). He or she
will only perform simple actions such as labeling a tuple pair as
matched / no-matched. Alternatively, if the user is not even willing
to label the tuple pairs, then he or she can pay to “outsource” that
work to a crowd of workers (assuming that the data is not sensitive
and that crowd workers can be quickly trained to label tuple pairs).
Finally, the system can scale to tables of millions of tuples and can
automatically add more machine resources as necessary.

Our initial motivation for building CloudMatcher is to serve
the EM needs of domain scientists at the University of Wisconsin,
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Figure 2: Most current EM solutions consist of a blocking
step and a matching step.

Madison, and a�liated research institutions (e.g., Marsh�eld Clinic),
and in fact, we have deployed such a service at UW-Madison, with
highly promising results (see Section 5). In the near future, we will
open up the service to the broader public, and make the service
open source, so that it can also be deployed at other places, as
appropriate.

Outline and Contributions: In the rest of this paper, we will
describe our ongoing work developing CloudMatcher, our initial
experience using it, and lessons learned. Speci�cally, we �rst de-
scribe the EM problem and typical EM solutions (Section 2). Next,
we describe Corleone, which performs EM end to end, using only
crowdsourcing. We then describe Falcon, which uses a cluster of
machines to scale up Corleone to tables of millions of tuples (Sec-
tion 3). Both the Corleone and Falcon works have been recently
published [14, 21].

We then describe CloudMatcher, which implements Falcon as a
cloud service. It turns out that doing so raises challenges in terms
of e�ective user interaction, fault tolerance, crash recovery, and
scalability (to hundreds or thousands of EM tasks that users may
submit at any time). In this paper we will describe these challenges
in detail, then describe our initial solutions (Section 4).

Using this initial solution, we have implemented a �rst version of
CloudMatcher, and used it for a variety of real-world EM tasks. We
describe our experience and lessons learned, regarding debugging
and explaining, understanding data/problem/solution, and inter-
action with the user, among others (Section 5). As far as we can
tell, this is the �rst work that publicly describes how to develop a
cloud-based EM service and discusses initial experience and lessons
learned (see also the related work section).

CloudMatcher is a part of a major project at UW-Madison on
developing data cleaning and integration tools for data scientists.
Another major part of this project develops Magellan, a Python
package that helps the user perform entity matching end to end
[4, 30].

2 PRELIMINARIES
In this section we describe the EM problem considered in this paper,
the blocking and matching steps of typical EM solutions, and recent
crowdsourcing solutions. Subsequent sections will build on these
to discuss the Corleone, Falcon, and CloudMatcher solutions.

Entity Matching: Many EM variations exist, such as matching
across two tables, matching within a single table, matching men-
tions in text documents into a knowledge base, etc. (see the related
work section). In this paper, we will consider the problem of match-
ing across two tables, speci�cally, given two tables A and B, �nd
all tuple pairs (a ∈ A,b ∈ B) that refer to the same real-world

entity (see Figures 1.a-b). �is problem se�ing is very common in
practice. Our solution however can also be applied to two other
common se�ings: matching tuples within a single table (known as
deduplication), and matching a set of tuple pairs.

Blocking and Matching Steps: Most current EM solutions per-
form a blocking step then a matching step. �e blocking step applies
a heuristic to remove tuple pairs judged obviously not matched
(i.e., “blocking” these tuple pairs from further consideration). �e
matching step then predicts Y/N, i.e., matched/not-matched, for
each remaining tuple pair. Figure 2 illustrates these two steps (here
the blocking step removes two tuple pairs out of six possible pairs).

Blocking heuristics are typically speci�ed by the user. For ex-
ample, when matching the two tables of persons in Figure 1.a, a
user may specify that “two persons whose states disagree do not
match”. Using this heuristic, the blocking step would remove the
tuples (a2,b1) and (a2,b2) because their states (CA and WI) are not
the same.

Blocking is necessary because matching all tuple pairs in the
Cartesian product of the two input tables A and B would be too
expensive, e.g., if each table has 100K tuples, A × B would have
10B tuple pairs. Hence, we need a way to quickly remove as many
obviously non-matched tuple pairs as possible, before applying the
time-consuming matching step to the remaining tuple pairs.

Of course, it would not make sense to do blocking by enumer-
ating all tuple pairs in A × B then removing those judged obvi-
ously non-matched, because the enumeration step alone is already
very time-consuming. Instead, blocking is typically done by using
the blocking heuristic to enumerate only those tuple pairs judged
possibly matched. For example, given the above heuristic about
disagreeing states, we can build an inverted index over Table B,
such that given a state, the index will return all tuples in B with
that state value. Next, given a tuple in Table A, we can consult the
index to �nd only those tuples in Table B that share the same state
(e.g., WI), then enumerate only those tuple pairs.

Numerous solutions have been proposed for the blocking and
matching steps, focusing on accuracy and scalability (see the related
work section).

Crowdsourcing: In the past few years, crowdsourcing has been
increasingly applied to EM. In crowdsourcing, certain parts of
a problem are “farmed out” to a crowd of workers to solve. As
such, crowdsourcing is well suited for EM, and indeed many crowd-
sourced EM solutions have been proposed (see Section 6).

To illustrate such crowdsourcing solutions, consider again the
EM work�ow in Figure 2. In this work�ow, recall that a�er the
blocking step, we apply a matcher to predict Y/N for the surviving
four tuple pairs. We can now send the three pairs with the Y pre-
diction to crowd workers to help verify these predictions. Suppose
that the crowd veri�es that (a,d) and (c, e) are indeed matches,
but (c,d) is not. �en we would output Y predictions for only the
two pairs (a,d) and (c, e), thereby improving the precision of the
matching process. To increase the reliability of the answers ob-
tained from the crowd, a typical solution is to obtain three answers
from three crowd workers for each question, then take the majority
answer to be the �nal answer from the crowd. Current works use
the crowd to verify predicted matches (as illustrated above), �nd
the best questions to ask the crowd, and �nd the best UI to pose
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Figure 3: �e EM work�ow of Corleone.

such questions, among others (Section 6). Many crowdsourcing
platforms can be used for the above purpose. �e most popular
one is Amazon’s Mechanical Turk. Others include CrowdFlower,
Samasource, oDesk, Elance, etc.

3 THE CORLEONE & FALCON SYSTEMS
We now describe Corleone and Falcon, our prior work, which form
the basis for the CloudMatcher cloud/crowd EM service.

3.1 �e Corleone System
Corleone was motivated by the fact that while recent crowdsourced
EM works are promising, they are limited in that they crowdsource
only parts of the EM work�ow, requiring a developer who knows
how to code and match to execute the remaining parts. For example,
several recent solutions require a developer to write heuristic rules,
called blocking rules, to reduce the number of candidate pairs to be
matched, then train and apply a matcher to the remaining pairs to
predict matches. �e developer must know how to code (e.g., to
write rules in Python) and match entities (e.g., to select learning
models and features).

As such, it is very di�cult for an organization to concurrently
deploy multiple crowdsourced EM solutions, because crowdsourc-
ing each still requires a developer and there are simply not enough
developers. To address this problem, we developed Corleone [21], a
solution that crowdsources the entire EM work�ow, thus requiring
no developers. For example, in the blocking step, instead of asking
a developer to come up with blocking rules, Corleone asks a crowd
to label certain tuple pairs as matched/no-matched, uses these pairs
to learn a classi�er, then extracts blocking rules from the classi�er
(as we will explain soon). Other steps in the EM work�ow also
heavily use crowdsourcing, but no developers. �us, Corleone is
said to perform hands-o� crowdsourcing for entity matching.

Speci�cally, given two tables A and B, Corleone applies the EM
work�ow in Figure 3 to �nd all tuple pairs (a ∈ A,b ∈ B) that match.
�is work�ow consists of four main modules: Blocker, Matcher,
Accuracy Estimator, and Di�cult Pairs’ Locator.

�e Blocker generates and applies blocking rules to A × B to
remove obviously non-matched pairs (Figure 4.b shows two such
rules). SinceA×B is o�en very large, considering all tuple pairs in it
is impractical. So blocking is used to drastically reduce the number
of pairs that subsequent modules must consider. �e Matcher uses
active learning to train a random forest classi�er, then applies it
to the surviving pairs to predict matches. �e Accuracy Estimator
computes the accuracy of the Matcher. �e Di�cult Pairs’ Locator

�nds pairs that most likely the current Matcher has matched incor-
rectly. �e Matcher then learns a be�er random forest to match
these pairs, and so on, until the estimated matching accuracy no
longer improves.

Corleone is distinguished in that the above four modules use no
developers, only crowdsourcing. For example, to perform blocking,
most current works would require a developer to examine Tables
A and B to come up with heuristic blocking rules (e.g., “If prices
di�er by at least $20, then two products do not match”), code the
rules (e.g., in Python), then execute them over A and B. In contrast,
the Blocker in Corleone uses crowdsourcing to learn such blocking
rules (in a machine-readable format), then automatically executes
those rules. Similarly, the remaining three modules also heavily
use crowdsourcing but no developers.

Corleone can also be run in many di�erent ways, giving rise
to many di�erent EM work�ows. �e default is to run multiple
iterations until the estimated accuracy no longer improves. But
the user may also decide to just run until a budget (e.g., $300) has
been exhausted, or to run just one iteration, or just the Blocker and
Matcher, or just the Matcher if the two tables are relatively small,
making blocking unnecessary, etc.

3.2 �e Falcon System
As described, Corleone is highly promising. But it su�ers from a
major limitation: it executes mostly a single-machine in-memory
EM work�ow, and thus does not scale at all to tables of moderate
and large sizes. For example, using Corleone to match tables of 50K-
200K tuples would take weeks, rendering the system impractical.

To address this problem, we developed Falcon, a solution that
scales up Corleone to tables of millions of tuples. To do so, we
introduced three key ideas. First, we de�ne basic operators and use
them to model the EM work�ow of Corleone as a directed acyclic
graph (DAG). Next, we scale up the operators, using MapReduce if
necessary. Finally, we optimize within and across operators.

In what follows we discuss these ideas, but only to the extent
necessary for the purpose of this paper (see [14] for a complete
description of Falcon).

3.2.1 The EMWorkflow Considered by Falcon. Currently, Falcon
considers only EM work�ows that consist of the Blocker followed by
the Matcher, or just the Matcher. We now describe the Blocker and
the Matcher, focusing only on the aspects necessary to understand
Falcon.

�eBlocker: �e key idea underlying this module is to use crowd-
sourced active learning to learn a random forest based matcher (i.e.,
binary classi�er) M , then extract certain paths of M as blocking
rules.

Speci�cally, learning on A × B is impractical because it is o�en
too large. So this module �rst takes a small sample of tuple pairs S
from A × B (without materializing the entire A × B), then uses S to
learn matcher M .

To learn, the module �rst asks the user to supply two positive
examples (i.e., two tuple pairs labeled matched) and two negative
examples (i.e., two tuple pairs labeled non-matched). Next, it uses
these “seed” examples to train an initial random forest matcher M ,
uses M to select a set of controversial tuple pairs from sample S ,



bigdas at KDD 2017, Aug 14, 2017, Hailifax, Nova Scotia, Canada Y. Govind et al.

Figure 4: (a) A decision tree learned by Corleone and (b)
blocking rules extracted from the tree.

Figure 5: �e EM work�ow of Falcon as a DAG of basic op-
erators.

then asks the crowd to label these pairs as matched / no-matched. In
the second iteration, the module uses these labeled pairs to re-train
M , uses M to select a new set of tuple pairs from S , and so on, until
a stopping criterion has been reached.

At this point the module returns a �nal matcher M , which is a
random forest classi�er consisting of a set of decision trees. Each
tree when applied to a tuple pair will predict if it matches, e.g., the
tree in Figure 4.a predicts that two book tuples match only if their
ISBNs match and the number of pages match. Given a tuple pair p,
matcher M applies all of its decision trees to p, then combines their
predictions to obtain a �nal prediction for p.

Next, the module extracts all tree branches that lead from the
root of a decision tree to a “No” leaf as candidate blocking rules.
Figure 4.b shows two such rules extracted from the tree in Figure
4.a. �e �rst rule states that if two books do not agree on ISBNs,
then they do not match.

Next, for each extracted blocking rule r , the module computes its
precision. �e basic idea is to take a sampleT from S , use the crowd
to label pairs in T as matched / no-matched, then use these labeled
pairs to estimate the precision of rule r . To minimize crowdsourcing
cost and time, T is constructed (and expanded) incrementally in
multiple iterations, only as many iterations as necessary to estimate
the precision of r with a high con�dence (see [21]).

Finally, the Blocker applies a subset of high-precision blocking
rules to A × B to remove obviously non-matched pairs. �e output
is a set of candidate tuple pairs C to be passed to the Matcher.

�eMatcher: �is module applies crowdsourced active learning
on C to learn a new matcher N , in the same way that the Blocker
learns matcher M on sample S . �e module then applies N to match
the pairs in C .

3.2.2 Modeling the EM Workflow as a DAG of Basic Operators.
As described, the work�ow of Falcon can be modeled as a DAG of
basic operators as shown in Figure 5. In this DAG, given two tables
A and B to be matched, we �rst take a sample S of tuple pairs. Next,
we use the schemas of A and B to automatically generate a set of
features (not shown in the �gure), then use these features to convert
each tuple pair in S into a feature vector, thereby converting S into
a set of feature vectors S ′.

Next, we perform active learning with the crowd1 over S ′ to
learn a matcher M , then extract a set of blocking rules R from M .
We then use the crowd to evaluate these rules and select a sequence
of rules F judged to be optimal (see [21]). Next, we execute F over
the tables A and B. �is produces a set of candidate tuple pairs C .

At this point, the blocking step ends, and the matching step
begins. We �rst convert each tuple pair in C into a feature vector,
thereby converting C into a set of feature vectors C ′. �en we
perform active learning (again) with the crowd to learn a matcher
N . Finally, we apply N to the feature vectors in C ′ to predict
matches.

�e above work�ow uses eight basic operators. As described,
these operators involve complex rules, crowdsourcing, and machine
learning, and can be used to compose a variety of EM work�ows
(see [14]).

It is important to note that we have developed e�cient imple-
mentations for these operators (using MapReduce where necessary),
and have also developed techniques to optimize within and across
operators. We omit further details here for space reasons (see [14]).

4 THE CLOUDMATCHER SERVICE
We are now in a position to discuss CloudMatcher, the cloud/crowd
service that we have been building. In what follows we discuss the
motivations, goals, and then our ongoing work on CloudMatcher.

4.1 Motivations and Goals
As mentioned in the introduction, we want to provide EM services
to hundreds of domain scientists at UW-Madison and a�liated
institutions. Domain scientists o�en do not know how to, or are
reluctant to, deploy EM systems locally (such systems o�en require
a Hadoop cluster, as discussed earlier). So we want to provide such
EM services on the cloud, supported in the backend by a cluster of
machines maintained by our group.

During any week, we may have tens of submi�ed EM tasks
running. Many of these tasks require blocking, but the users do
not know how to write blocking rules (which o�en involve string
similarity functions, e.g., edit distance, Jaccard, TF/IDF), and we
simply cannot a�ord to ask our busy developers to assist the users
in all of these tasks.

�us, we planned to deploy the hands-o� solution of Corleone.
A user can just submit the two tables to be matched on a Web
page and specify the crowdsourcing budget. We will run Corleone
internally, which uses the crowd to match. As described, Corleone
seems perfect for our situation. Unfortunately, it executes mostly a
single-machine in-memory EM work�ow, and does not scale at all
to tables of moderate and large sizes. So we will use Falcon, which

1We omit the step of asking the user to supply “seed” examples to avoid making the
�gure too clu�ered.
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Figure 6: CloudMatcher as a cloud/crowd EM service.

scales to tables of millions of tuples. In particular, we will execute
the EM work�ow of Falcon described in Figure 5.

It is important to note that if users do not want to engage the
crowd, they can label the tuple pairs themselves. �is in e�ect
provides a self-service EM for the users. Most users we have talked
to, however, prefer if possible (e.g., if the data is not sensitive or
too di�cult for the crowd to match) to just pay a few hundred
crowdsourcing dollars to obtain the result in 1-2 days. Figure 6
illustrates both the crowdsourcing and the self-service options
discussed above.

Our goals for CloudMatcher are as follows:

• E�cient resource consumption: Use minimal machine
and crowd resources to perform EM tasks.

• Fault tolerance: If a machine or process crashes, can
recover and continue gracefully.

• Crash recovery: Executing an EM task can take hours
(or days if crowdsourcing is involved). As a result, crash
recovery is critical. Speci�cally, if CloudMatcher crashes
in the middle of an EM task, when resumed, it should
continue where it crashed, instead of restarting the task
from scratch.

• Scaling: CloudMatcher should scale, both for a single
EM task and for multiple EM tasks. �at is, a single EM
task should execute as fast as possible, and the system
should be able to handle hundreds or thousands of EM
tasks concurrently, without being slow on anyone of them.

• Optimization: In order to scale, ideally the system must
be such that there are multiple opportunities for optimiza-
tion, and the system can make use of these opportunities.

• E�cientmanagement of heterogeneous execution en-
vironments: When executing an EM work�ow, each step
in the work�ow may require its own execution environ-
ment. For example, one step is to be executed in Python on
a single machine, whereas another step requires Java over
a Hadoop cluster. CloudMatcher should be able to handle
a broad range of such heterogeneous environments.

• Smooth user experience: �e user should have a very
smooth experience with the system. �e GUI must be
intuitive and requires very li�le guessing to work with.
�e system latency should be at interactive speed, i.e., it
should not take more than a few seconds to respond to the
user. If the user works in a browser, then stops the work
(say for lunch), or close the browser and open another one
in the same or another machine, then the user should be
able to seamlessly continue working.

• Progress report: �e system should tell the user where
it is in the EM process and give estimations on how much
longer it will take to complete certain tasks.

• Visualization: �e system should provide as much visual
information to the user as possible, especially in terms of
its progress.

�e above set of goals makes it clear that developing CloudMatcher
is not a simple ma�er of deploying Falcon. For example, Falcon
focuses on techniques to scale up a single EM work�ow. It does
not focus on goals such as fault tolerance, crash recovery, smooth
user experience, etc.

4.2 Limitations of Current Solutions
To implement CloudMatcher, the simplest solution is to convert
each submi�ed EM task into a Falcon DAG, as shown in Figure
5, then execute the DAG using a work�ow management system
(WMS) such as Luigi, Air�ow, or Pinball. Many such WMSs have
been developed. In theory, they can guarantee certain kinds of fault
tolerance and crash recovery. For example, the WMS can write the
output of each node in the DAG to disk, and thus can guarantee that
in the case of a crash, DAG execution does not have to restart from
scratch. In addition, such WMSs can easily handle multiple Falcon
DAGs being run concurrently, as is common in cloud se�ings.

�ere are however two major problems with the Falcon DAG.
First, the DAG’s granularity is too coarse, rendering it not e�ec-
tive for crash recovery, optimization, and best usage of resources.
Speci�cally, some of the steps in this DAG can take a very long time,
and currently there is no easy way to save their partial results for
crash recovery. Consider for example a step that performs active
learning with the crowd to learn a matcher. �is step can perform
up to 30 iterations of active learning, and can take hours or days
(if the crowd is slow). Ideally, we should be able to save the output
of each iteration, so that in the case of a crash, we can resume at
the crashed iteration. However, since currently the entire step is
modeled as a single node in the Falcon DAG, it is di�cult for us to
perform such partial saving. Also, coarse steps make it di�cult to
optimize within and among the steps.

Another problem is that some of the steps in the Falcon DAG
involve user interaction. For example, before we can start the �rst
active learning process (on sample S ′), we need to ask the user to
supply at least two positive examples and two negative examples.
(�is step is not shown in Figure 5, to avoid making the �gure too
clu�ered.) Machine-wise this step does not take long to execute.
But it involves asking for an input from the user, and this can o�en
cause a problem. �e user may stop in the middle, go to lunch,
have a phone call, etc., in which case this step will be le� “hanging”,
waiting for the user to get back. If not implemented carefully, this
step will continue to “hog” resources until the user responds. �e
same problem arises for any step involving crowdsourcing.

Note that this second problem is relatively new, because the
current work�ow management systems (e.g., Luigi, Air�ow, etc.)
typically are designed to execute DAGs that can be run in batch
mode. �ey are not designed for e�ciently executing DAGs that
can involve user interaction in the middle. In theory, they can
still be used to execute such DAGs, but it will typically result in
ine�cient use of resources (as the executor waits for the user to get
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Figure 7: �e CloudMatcher architecture

back from lunch, say) and can negatively a�ect many other DAGs
that are being concurrently executed.

4.3 Key Ideas of the CloudMatcher Solution
To address the above limitations, in CloudMatcher we employ the
following key ideas:

• We convert the Falcon DAG into an EM work�ow at a
much �ner granularity, to maximize the opportunities for
crash recovery, optimization, and e�cient resource usage.
�e new EM work�ow is not a DAG, as it involves loops
(in addition to conditionals).
• For the new CloudMatcher EM work�ow, we clearly de�ne

tasks (i.e., nodes of the work�ow graph) that are interactive
(i.e., interacting with a user or a crowd to request some
input).

• We partition the CloudMatcher work�ow into “pieces”
such that each piece is either an interactive task or a work-
�ow fragment that can be executed entirely in batch mode.

• We de�ne three kinds of execution engines: user interac-
tion (UI) engine, crowd engine, and batch engine. �e UI
engine is designed to execute interactive tasks e�ciently,
and similarly the crowd engine is designed for executing
tasks that require crowdsourcing. Finally, the batch engine
is designed for executing batch-mode work�ow fragments.

• We use a meta-manager to execute the entireCloudMatcher
work�ow, by executing each piece of the work�ow using
the appropriate execution engine.

• Finally, we divide the responsibilities for managing fault tol-
erance and crash recovery appropriately among the meta-
manager and the execution engines.

Pu�ing these ideas together produces the CloudMatcher archi-
tecture shown in Figure 7. In this �gure, the Web app module is
responsible for authentication, account creation, and processing
GET/POST requests from users. Given a submi�ed EM task, the
meta-manager converts it into an EM work�ow, then partitions the
work�ow into pieces, where each piece is interactive or batch by
nature, as described earlier. �e meta-manager then executes these
pieces using the appropriate execution engines. �e meta-manager
and the execution engines will coordinate the management of fault
tolerance and crash recovery, using the meta-data store (which
records for example which nodes in which graph fragments have
been executed) and the data store (which stores the input/output
and intermediate data for the work�ow nodes).

We now elaborate on the most important aspects of the above
solution architecture.

4.4 �e EMWork�ow of CloudMatcher
Recall that we want to break each long-running step in the Falcon
DAG into many much smaller steps, whenever possible, and isolate
all “points” in the Falcon DAG where we need user interaction,
then make those “points” into their own steps.

Figure 8 shows the resulting work�ow for CloudMatcher. �is
work�ow is quite long and consists of three parts: Part (a) fol-
lowed by Part (b) followed by Part (c). We now brie�y describe this
work�ow, and contrast it to the Falcon one.

• �e very �rst task in the CloudMatcher work�ow is “Cre-
ate job” (see Figure 8.a). In this task, the user goes to the
CloudMatcher Web page, creates a job (whose goal is to
match two tables), and supplies some job related informa-
tion (e.g., contact email). Next, the user uploads the �rst
table, Table A. �e system then pro�les this table, e.g.,
counting the total number of tuples in the table and show-
ing that to the user (to con�rm that the table has indeed
been uploaded and everything appears to be in order). See
the next two tasks on the �gure. �ese two tasks will be re-
peated one more time for Table B (the number “2x” on the
arrow from “Pro�le table” back to “Upload table” indicates
the maximal number of iterations for this loop).

• �e �rst two tasks, “Create job” and “Upload a table”, are
interactive, in that they must interact with the user to ob-
tain information. As discussed earlier, we “isolate” such
interactions into their own tasks. On the �gure, we show
such tasks either with a small human �gure or inside a dot-
ted box with a small human �gure. �e third task, “Pro�le
table”, is not interactive. We refer to such tasks as batch
tasks, as they can be executed in batch mode.

• �e next task, “Check data/schema constraints”, veri�es
certain integrity constraints, e.g., trying to identify a key
column, and if none found, then create a key column for the
table. �e subsequent tasks on Figure 8.a obtain a sample
S of tuple pairs, convert S into a set of feature vectors G,
and obtain at least two positive examples and two negative
examples from the user. We omit further details for space
reasons.

• Once the work�ow fragment on Figure 8.a ends, we con-
tinue with the work�ow fragment on Figure 8.b. Here, we
�rst convert the two positive and two negative examples
(called “seeds”) into feature vectors, then start the active
learning process. Notice that this active learning process
was earlier just a single task in the Falcon work�ow. Here
it has been broken into a loop of four tasks: “Train clas-
si�er”, “Check stopping condition”, “Select batch of tuple
pairs”, and “Label batch”. We repeat this loop up to 30
times. Notice also that the �rst three tasks of this loop
are batch task, whereas the last one (“Label batch”) is an
interactive task.

• Once the active learning �nishes, we obtain a matcher M ,
from which we obtain a set of candidate blocking rules,
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Figure 8: A re�nement of the Falcon DAG, to create the work�ow for CloudMatcher. �e resulting work�ow consists of three
parts, as shown in (a)-(c).

then evaluate the rules and so on. We omit further descrip-
tion of the rest of the tasks in Figure 8.b, as well as the
tasks in Figure 8.c (as they are similar to those in Figure
8.b).

Compared to the Falcon DAG, the CloudMatcher work�ow is di�er-
ent in the following aspects. First, it is at a much �ner granularity,
with all long-running tasks being broken down into as many smaller
tasks as possible. Second, the work�ow is no longer a DAG. It now
has loops (in addition to conditionals). Finally, the work�ow is a
combination of interactive tasks and batch tasks.

4.5 Partitioning the EMWork�ow
Given an EM work�ow as described above, the meta-manager of
CloudMatcher partitions it into work�ow fragments, such that
each fragment is strictly interactive or batch by nature. Figure 9
shows how the �rst part of the CloudMatcher work�ow (which is
the part shown in Figure 8.a) is partitioned into eight interactive
fragments (each of which is in yellow) and six batch fragments (in
blue). �e uppermost batch fragment, for example, consists of three
tasks: “Gen feature funcs”, “Gen sample pairs”, and “Gen feature
vecs”.

4.6 Executing the Work�ow Fragments
A�er partitioning, the meta-manager executes the work�ow frag-
ments, each in the appropriate execution engine. Speci�cally, each
batch fragment will be executed using the batch engine, which uses
a well-known current work�ow management system, such as Luigi,
Air�ow, or Pinball. If an interactive work�ow fragment does not
require crowdsourcing, then it only needs to interact with a single
user to request some input. In this case, we execute the fragment
using the user interaction (UI) engine. Otherwise, we execute the
fragment using the crowd engine.

�e meta-manager uses the metadata store and the data store to
coordinate the execution of the various work�ow fragments, and to
handle fault tolerance and crash recovery. We omit further details
for space reasons.

4.7 �e User Interaction/Crowd Engines
Finally, we describe the working of the UI engine and the crowd
engine. Consider executing an UI task E. �e UI engine starts by
sending a request for the user to do an action (e.g., providing the
name of the job to be created and a contact email address) to the
user’s Web browser (via the Web app). At some point, a�er the
user has �lled out the requested information, he or she will click
the submit bu�on, which sends a request to the Web app, which in
turn contacts the UI engine.
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Figure 9: A partitioning of the �rst part of the CloudMatcher work�ow into interactive and batch fragments.

�e engine then processes the information from the user. If this
information is complete, then the engine indicates to the meta-
manager that this UI task E has been completed. Otherwise, if the
information is incomplete (e.g., only the job name is provided, the
requested email address is still missing), then the UI engine sends
another request (for email address) to the user’s Web browser, and
so on.

As described, the UI engine does not run a process that is ded-
icatedly trying to interact with the user. Instead, it operates in a
“transactional” mode, in which it sends a request to the user, then
“goes do something else”, and returns only when the user has sent
in something. �is transactional mode is desired because we simply
do not know how long it would take for the user to process the
request (he or she may stop for lunch in the middle, etc.), and hence
we do not want to run a dedicated process to wait on the user.

If the task is not UI, but instead requires crowdsourcing, then
the situation is a bit more involved. Suppose the task is to label 20
examples (for active learning). To execute, the crowd engine will
send these 20 examples to a crowdsourcing platform, say Amazon’s
Mechanical Turk (AMT), for labeling. �e problem is that AMT
does not get back to the crowd engine (i.e., there is nothing that is
equivalent to “a user clicking the submit bu�on” in the AMT case).
So the crowd engine needs to “ping” AMT at regular intervals to
check on the progress of the labeling task.

5 DEPLOYMENT & LESSONS LEARNED
We now describe the initial deployment of CloudMatcher, EM
results for several representative datasets, and lessons learned. We
have deployed CloudMatcher on a 4-node Amazon EC2 cluster,
where each node has a 16-core Intel Xeon E5-2676 2.4GHz processor
and 64GB of RAM. For crowdsourcing, we use Mechanical Turk
and assign each question to three crowd workers, paying 2 cents
per answer. In each run we used common turker quali�cations to
avoid spammers, such as allowing only turkers with at least 100
approved HITs and 95% approval rate.

In this paper (the �rst on the topic), we focus on discussing
results regarding the accuracy and ease of performing EM with
CloudMatcher. Subsequent papers will discuss other aspects of

CloudMatcher, such as scalability, crash recovery, fault tolerance,
etc.

5.1 Deployment
CloudMatcher has been developed for over 1.5 years, in a combi-
nation of Python and Java, at cloudmatcher.io:8000. It is not yet
available to the general public (we still need to work out issues
such as how to let a “public” user pay easily and how to securely
store his/her data).

CloudMatcher however has been applied to many datasets at
UW-Madison, Johnson Controls Inc. (JCI), and WalmartLabs, and
has been opened to several other users, including biomedical re-
searchers in a joint project between Marsh�eld Clinic and UW-
Madison, and users at a non-pro�t organization (NPO) tracking
Wisconsin politics.

�e EM results have been good to very good on some datasets,
and not so good on some others. A close examination of these
results reveal several interesting issues. To discuss them, we now
describe applying CloudMatcher to four representative datasets.
�e �rst three columns of Table 1 describes these datasets. People
identi�es the same persons across two tables, given their names
and addresses. �ese tables capture political activities, e.g., signing
up for a recall, donations, etc. �e goal is to track political activities
of local elected o�cials in Wisconsin. �is dataset comes from a
user at a non-pro�t organization (which prefers not to disclose it
identity). Addresses a�empts to match addresses of JCI customers.
Vendors identi�es the same JCI vendors across the tables, given
their names and addresses. (We will explain the dataset Vendors
(no Brazil) later.) Finally, Drugs matches drug descriptions in the
Marsh�eld-UW research team. (We do not yet have the permission
to disclose EM results on matching products at WalmartLabs.) Note
for these real world datasets we don’t have gold matches.

�e rest of Table 1 describes the results of applying Cloud-
Matcher to these datasets. �ese columns are self-explanatory,
except for the last one, which lists the size of the set of tuple pairs
obtained a�er blocking. To compute accuracies, we took a sam-
ple of 500-1000 pairs from the output of CloudMatcher, manually
labeled them, then followed the accuracy estimation procedure
in [21] to estimate precision and recall (see Columns “Precision”
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Table 1: �e results of applying CloudMatcher to several representative datasets.

and “Recall”). A value such as “93.75-96.32” in Column “Precision”
means the precision is in that range with 0.95 con�dence.

From the table, we can see that CloudMatcher achieves high
accuracy on People, with precision in 93.75-96.32 range and recall
in 95.5-97.76. �is demonstrates CloudMatcher “at its �nest”. It
shows how an “ordinary” user at a non-pro�t organization could
simply just upload two tables, wait 24 hours, and pay under $60 (to
the crowd), to obtain good matching results.

Unfortunately the results for the remaining datasets are less
stellar. For Addresses, the precision is high (93-96%), but the recall
is somewhat low (77-81%). A close examination reveals that this
dataset is quite dirty. For example, addresses o�en contain extra
strings, such as “AS AGENT FOR 105 East 17th St Associates 423
W 55th St, New York, NY, 10019”. �is suggests data cleaning is
necessary. Further, the matching instruction for crowd workers
was incomplete, so when crowd workers saw addresses that are
identical except for the “P.O. Box” numbers, they did not know if
those should be matched.

For Vendors, the recall is good (92-98%), but the precision is very
low (30-38%). �is dataset contains many vendors in Brazil, and
it turned out there are serious problems with their descriptions.
Speci�cally, many Brazilian vendors have the same address and
the same last name but di�erent �rst name, e.g., “LUCIANA DOS
SANTOS, RUA JOAO TIBIRICA - 900, VILA ANASTACIO, SAO
PAULO, BRA, 34756800” vs “FERNANDA DOS SANTOS, RUA JOAO
TIBIRICA - 900, VILA ANASTACIO, SAO PAULO, BRA, 34756800”
(note that a vendor can be a person representing a small business,
or a large company; the above two tuples represent two small
businesses). Many crowd workers declared such tuples matched. In
reality they do not. An extensive examination reveals some problem
with the Brazil data, namely, when two vendors were entered into
the JCI system, instead of entering their real addresses, o�en the
address of the JCI o�ce that they were doing business with were
entered. Hence two vendors with di�erent names o�en end up
“sharing” the same address.

�us, the Brazil data is simply incorrect. So the JCI users removed
all Brazil tuples from the two tables and applied CloudMatcher
again. �e results now improved signi�cantly (see the row starting
with Vendors (no Brazil)), achieving precision of 95-98% and recall
of 89-92%.

Another problem with the above dataset is that some of the tuple
pairs are di�cult even for domain experts to match, e.g., “Juan

Carlos Caldelas, Monterrey, MX” vs “Juan Carlos Espinosa Mari,
Monterrey, MX”.

�e last dataset, Drugs, was not hard to match accuracy-wise
(achieving precision of 99% and recall of 98-99%), but was hard to
manage runtime and space-wise. Speci�cally, di�erent runs of this
dataset produced di�erent blocking results, and these results vary
drastically. In some cases the size of the blocking result was quite
reasonable, in the millions (of tuple pairs). But we have also seen
cases of 1-2 billions of tuple pairs. Table 1 shows a case in the middle,
where we “only” have 143M tuple pairs a�er blocking. �is raises
the question of what CloudMatcher should do if blocking produces
very large outputs. If le� unmanaged, the blocking process can take
a very long time, consume all available memory and disk space,
and stall or crash.

5.2 Lessons Learned
From our experience with CloudMatcher so far, we have learned a
set of interesting lessons. Some of the lessons are not so surprising.
For example, users would like to have a way to estimate accuracy
(e.g., precision and recall) at the end of the EM process. �is is
understandable and we plan to implement the crowdsourced accu-
racy estimation procedure in Corleone [21]. Other requests include
ways to store EM models, data, and results, and a dashboard to
monitor the EM process in real time. Other lessons that we have
learned are more signi�cant, as we describe below.

Debugging and Explaining: If there is some problem, such as
low recall on Addresses, low precision on Vendors, or the blocking
process taking too long on Drugs, the user is o�en at a loss as to
why. �ey highly desire tools that they can use to debug or �nd
explanations, so that they know what they can do next to improve
the EM process.

Understanding Data/Problem/Solution: �is is perhaps the
most important lesson we learned from the CloudMatcher experi-
ence. It is clear that in many cases, the user starts out with a very
limited understanding of the data, the problem, and the capabilities
of the solution (which is CloudMatcher in this case). First, the user
may have no idea that the data is dirty (e.g., addresses contain-
ing extra strings), that parts of the data are simply incorrect (e.g.,
Brazil data in Vendors), that parts of the data are so incomplete or
ambiguous that even domain experts cannot match.

Second, the user may also think he/she knows the problem, i.e.,
the “match” de�nition, e.g., what it means for two tuples to match.
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But we have found that this is rarely the case in practice, and it can
have serious consequences. For example, the user thinks he/she
knows the match de�nition. So he/she will write an instruction to
crowd workers based on that knowledge. �en crowd workers run
into ambiguous cases not covered by the instruction (e.g., addresses
that are the same except P.O. Box numbers in Addresses). �ey
do not know what to do. So some will say yes, and some will say
no. As a result, CloudMatcher learns incorrect blocking rules and
matching models, which in turn seriously degrades the quality of
the EM process. Some crowd workers may ask about such ambigu-
ous cases in their emails. O�en that is when the user realizes that
the current match de�nition is not complete. He/she may need to
revise it, then run the EM process again, incurring unnecessary
time and expenses.

Finally, the user may have no idea what a tool such as Cloud-
Matcher is capable of. Recall thatCloudMatcher produces precision
of 94-96% and recall of 95-98% on People dataset. Suppose the user
wants to increase precision to 99%. Can he/she still use Cloud-
Matcher? Or would it already reach its limit and a new tool needs
to be explored?

A New Way to Do EM? As a result of these observations, we
do not believe practical EM can be done in “one shot”. Instead, it
appears to require multiple iterations. Each iteration is used to gain
increasingly more knowledge about the data, the problem, and the
capabilities of the tools. To do so, in each iteration we must have an
arsenal of tools to help users pro�le, explore, and understand these
three targets. We must also have a clear methodology to guide
users on how to use these tools.

How to execute such multiple-iteration processes is an interest-
ing question. Perhaps at the start, a system (such as CloudMatcher)
can help the user execute EM on small data samples (selecting a
variety of data samples so that the user can be exposed to all the
diversity in the data, the problem, and the tool capabilities). Subse-
quent iterations can operate on large samples, and then eventually
when the user has been satis�ed, then a �nal EM process over the
entirety of the data is launched. �is is an open research question.
But we believe solving it is critical for successful EM in practice.

Di�erent Solutions for Di�erent Parts of the Data: Another
important observation is that the vast majority of current EM works
treat the input data as of uniform quality, but in practice this is
rarely the case. Instead, the data commonly contains dirty data of
varying degree (e.g., as in the Addresses dataset), incorrect data
(e.g., Brazil data in Vendors), and incomplete data that even domain
experts cannot match (e.g., as in the Vendors dataset). It makes no
sense trying to debug the system, then spending more time and
money to match incorrect and incomplete data. As a result, it is
important to have tools that help the user explore and understand
the data (as discussed earlier), then ways to help the user “split”
the data into di�erent parts and develop di�erent EM strategies for
di�erent parts.

User Needs Iteration with Crowd Workers: For crowd work-
ers, we found that the most serious problem is giving them clear
instructions of what it means to be a match. As discussed earlier,
at the start the user o�en does not have a complete knowledge yet
of what it means to be a match. So he/she will give incomplete

instructions to the crowd. �is can have serious consequences, as
discussed in that section.

As a result, we believe the problem of how to work with the
crowd to arrive at the clearest instructions possible (as quickly as
possible) is critical to enable practical crowdsourcing. Ultimately,
the larger challenge here is that working with a crowd is not an
“one-way” street. �e user needs to be interacting with the crowd,
possibly in multiple iterations, in order to perform EM e�ciently.

More Expressive UIs: For in-house users (who label the tuple
pairs), we found that they do not like the labeling UI (of seeing tuple
pairs and labeling them). �ey �nd this wasteful and ine�cient. To
explain, observe that most current crowdsourced EM works do not
consider the time it takes for a crowd worker to understand a tuple
pair. �ey o�en focus instead on minimizing the total number of
pairs that the crowd must label (as we also do in this work).

In practice, however, there is a real cost of trying to understand
a tuple. For example, in the Drugs dataset, each drug description is
a complex tuple that describes many ingredients. A domain expert
needs 5-6 seconds to understand such a drug. Suppose this expert
has just labeled drug pair (a,b), then suppose 3 minutes later he/she
needs to label another pair (a, c). In this case the expert needs to
spend time trying to understand a again, i.e., recognizing that this
new tuple a is the same as the old tuple a. �is wastes the expert’s
time and cause resentments. A suggestion that we have heard is
to have a more expressive and e�cient UI, e.g., one that shows a
cluster of drugs, so that an expert needs only to try to understand a
drug once, yet can still e�ciently match it with many other drugs.
It is interesting to explore whether more expressive UIs like this
can work with crowd workers as well (e.g., on AMT), not just with
in-house workers.

6 RELATEDWORK

Entity Matching: Entity Matching (EM) has received enormous
a�ention in the past few decades [8, 9, 16, 18, 31, 35]. Prior works
have addressed various EM scenarios such as matching tuples across
two tables [21], matching tuples within a single table [18], matching
into a knowledge base [20], matching XML data [40], etc. Cloud-
Matcher considers matching tuples across two tables which is a
very common se�ing in practice.

Crowdsourcing for EM andHands-O�EM: Crowdsourced EM
has received increasing a�ention in academia [15, 34, 38, 39, 41] and
industry (e.g., CrowdFlower [2], CrowdComputing, SamaSource
[5] etc.). Most of the works employ crowd to verify the predicted
matches [15, 38, 39, 41]. Recent works Corleone [21] and Falcon
[14] consider learning blockers and matchers using crowdsourcing.
CloudMatcher builds on Falcon to deploy it as a service in the
cloud. As far as we can tell, CloudMatcher is the �rst hands-o� EM
service on the cloud.

Cloud-Based EM: In the recent years, cloud-based analytics has
become popular [23, 25]. However, very limited work has addressed
building an EM service in the cloud. A recent e�ort, Dedupe [3],
is a cloud-based EM service to match tuples within a single table.
Speci�cally, it learns a matcher using active learning, then using
the labeled data it learns a blocker. However, Dedupe uses only
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simple types of blockers and requires the user to label the tuple
pairs selected using active learning. In contrast, CloudMatcher
can employ crowdsourcing to label the pairs (CloudMatcher also
supports user mode). As far as we can tell, CloudMatcher is the
�rst cloud-based EM service providing support for crowdsourcing.

Building EM Systems and EM in Industry: �e vast majority
of work on EM has focussed on developing EM algorithms (e.g., for
blocking and matching steps), trying to improve their accuracy and
minimizing their runtime [8, 18]. In the past few years, however,
there has been e�ort towards building EM systems in academia
[7, 12, 30] and industry [37]. Magellan [30] develops an end-to-end
EM system built on the top of Python data ecosystem. It clearly
distinguishes between the development and production stages, and
provides tools to help users perform EM end to end. CloudMatcher
leverages these tools to build a cloud-based service.

Recently, there has also been e�orts towards building open-
source ecosystems for data integration. A recent e�ort, BigGorilla
[1], is an open-source data integration and data preparation ecosys-
tem built on the top of Python data ecosystem, to enable data
scientists to perform integration and analysis of data. We believe
that such ecosystems can bene�t from the services developed by
CloudMatcher.

�ere has been relatively li�le published about EM in industry
[13, 20, 27, 37]. [27] matches unstructured product o�ers to struc-
tured product records using a probabilistic approach, and [20] links
tweets into a knowledge base.

Scaling EM: Most works of scaling EM focus on e�ciently execut-
ing the blocking step. Prior works have addressed scaling speci�c
blocking approaches such as sorted neighborhood blocking [29],
key-based blocking [10], meta blocking [17] and so on. A recent
work, Falcon [14], considers more general blocking rules (each be-
ing a Boolean expression of predicates) and develops a MapReduce
solution to e�ciently execute such rules over two tables. Cloud-
Matcher deploys the Falcon solution in the cloud.

Novel User Interfaces for Crowd Workers: Prior works have
addressed designing novel user interfaces for crowd workers [26,
38, 42]. For example, [38] clusters the tuples into groups, shows the
workers a group of tuples and asks them to �nd all duplicate tuples
in the group, rather than asking the workers to label tuple pairs
as match/non-match. �ese works are complementary to ours and
CloudMatcher can bene�t from them.

Data Pro�ling, Exploration, and Cleaning: Numerous works
have addressed data pro�ling and exploration [6, 24, 36]. Based on
our experiences with CloudMatcher, we observe that users o�en
need to pro�le and explore the data during an EM task. For example,
a user may pro�le the input tables to identify the various matching
de�nitions, so that he/she can provide be�er instructions to the
crowd workers. However, most current works on data pro�ling
and exploration do not provide tools speci�c for EM tasks. Hence,
we believe that there needs to be more e�ort towards developing
pro�ling and data exploration capabilities speci�c for EM tasks.

Data cleaning has received enormous a�ention [11, 19, 22, 24,
28, 32]. Many works address EM as a part of the data cleaning
work�ow [19, 22]. Based on our experiences with CloudMatcher

we believe that there needs to be more e�ort towards data cleaning
solutions speci�c for EM tasks.

7 CONCLUSIONS
We have described CloudMatcher, a cloud/crowd service for EM.
We have motivated CloudMatcher then described its design and
implementation. Finally, we have described its deployment and
lessons learned. �ese lessons point to challenges in understanding
the EM problem, crowdsourcing, and general human interaction
(e.g., with in-house users). We conclude that these challenges must
be addressed to develop truly successful EM services, both for
health informatics and for other general domains. Much more work
remains to be done on CloudMatcher, but the initial results suggest
the high promise of this EM-as-a-service approach.
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