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ABSTRACT
We argue that more attention should be devoted to devel-
oping self-service string matching (SM) solutions, which lay
users can easily use. We show that Falcon, a self-service en-
tity matching (EM) solution, can be applied to SM and is
more accurate than current self-service SM solutions. How-
ever, Falcon often asks lay users to label many string pairs
(e.g., 770-1050 in our experiments). This is expensive, can
significantly compound labeling mistakes, and takes a long
time. We developed Smurf, a self-service SM solution that
reduces the labeling effort by 43-76%, yet achieves compara-
ble F1 accuracy. The key to make Smurf possible is a novel
solution to efficiently execute a random forest (that Smurf
learns via active learning with the lay user) over two sets
of strings. This solution uses RDBMS-style plan optimiza-
tion to reuse computations across the trees in the forest. As
such, Smurf significantly advances self-service SM and raises
interesting future directions for self-service EM and scalable
random forest execution over structured data.
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1. INTRODUCTION
String matching (SM) finds strings from two given sets

that refer to the same real-world entity (see Figure 1). This
problem is critical for many data science tasks, such as data
exploration, cleaning, and entity matching, among others.

As a result, SM has received much attention. Many solu-
tions have been proposed [50, 19], most of which declare two
strings a and bmatched if sim[t(a), t(b)] ≥ ε, where sim(a, b)
is a string similarity measure (e.g., Jaccard, TF/IDF), t is
a tokenizer (e.g., word-based), and ε is a threshold. Most
existing works focus on developing string similarity measures
and efficiently executing matching condition sim[t(a), t(b)] ≥
ε over large sets of strings [50, 19, 45].
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Figure 1: Matching two sets of strings.

While much progress has been made, current SM works
are still limited in that they are not well suited for lay users,
such as domain scientists, journalists, and business users
[28]. Most such users are not familiar with the SM literature,
and do not know how to select sim(a, b) nor ε. As data sci-
ence applications proliferate, more and more lay users need
to perform SM. Thus, it is increasingly critical that we de-
velop SM solutions that they can easily use. Such solutions
have been called “self-service” and “hands-off”, among oth-
ers [21, 51, 24, 25].

In this paper we develop a self-service solution for SM.
Most current SM solutions are not self-service because lay
users do not know how to select sim(a, b) and ε. To ad-
dress this problem, recent work [8, 2, 12] asks lay users to
label string pairs as match/no-match (in a batch mode or
an active learning mode), then uses the labeled data to au-
tomatically select sim(a, b) and ε. These solutions however
achieve only limited accuracy (see Section 7.1), because they
consider matching conditions that are a single predicate (i.e.,
sim([t(a), t(b)] ≥ ε). In practice, using multiple predicates
can significantly improve the SM accuracy.

Example 1. Consider matching two sets of person names
that contains both long names (e.g., Shivaram Venkatara-
man) and short names (e.g., Dave Maier). A single predi-
cate such as jaccard[2gram(a), 2gram(b)] ≥ ε does not work
well because it is difficult to set ε properly. A high value
for ε helps match long names accurately, but can be too
high for short names, incorrectly predicting many match-
ing short names as non-matches. Conversely, a low ε helps
match short names accurately, but can be too low for long
names. Intuitively, we should use two predicates of the form
jaccard[2gram(a), 2gram(b)] ≥ ε, but one with a high ε for
long names, and the other with a lower ε for short names.
We can check if a name is long using a predicate such as
length(a) > 9, which returns true if the number of non-
space characters in a exceeds 9.

To address this problem, we consider entity matching (EM)
solutions [10, 22, 19]. These solutions have traditionally
been used to match tuples with multiple attributes [10, 22].
However, we believe that using them to match strings can
achieve much higher accuracy (than single-predicate SM so-
lutions), because they employ powerful matching conditions,
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Figure 2: The workflow of Falcon, which requires a lay user to label tuple pairs as match/no-match in Steps
2©, 3©, and 5©.

Figure 3: (a) A decision tree learned by Falcon and
(b) blocking rules extracted from the tree.

such as a random-forest classifier that uses multiple predi-
cates (e.g., jaccard[2gram(a), 2gram(b)] ≥ ε, length(a) >
9) [24, 14].

Most current EM solutions, however, are not well suited
for lay users [29, 18]. For example, they often require a
developer to write heuristic rules, called blocking rules, to
reduce the number of candidate pairs to be matched, then
train and apply a matcher to the remaining pairs to pre-
dict matches. The developer must know how to code (e.g.,
to write rules in Python) and match entities (e.g., to se-
lect learning models and features). Lay users clearly cannot
perform these tasks.

The Falcon Solution: In response, we have developed
Falcon, a self-service EM solution [14]. To match two tables
A and B, like most current EM solutions, Falcon performs
blocking and matching, but it makes both stages self-service
(see Figure 2). In the blocking stage (Figure 2.a), it takes
a sample S of tuple pairs (Step 1©), then performs active
learning with the lay user on S (in which the user labels
tuple pairs as match/no-match) to learn a random forest F
(Step 2©), which is a set of n decision trees [7]. The forest
F declares a tuple pair p a match if at least αn trees in F
declare p a match (where α is pre-specified).

In Step 3©, Falcon extracts all tree branches from the root
of a tree (in random forest F ) to a “No” leaf as candidate
blocking rules. For example, the tree in Figure 3.a predicts
that two book tuples match only if their ISBNs match and
the number of pages match. Figure 3.b shows two blocking
rules extracted from this tree. Falcon enlists the lay user
to evaluate the extracted blocking rules, and retains only
the precise rules. In Step 4©, Falcon executes these rules
on tables A and B to obtain a set of candidate tuple pairs
C. This completes the blocking stage (Figure 2.a). In the
matching stage (Figure 2.b), Falcon performs active learning
with the lay user on C to obtain another random forest G,
then applies G to C to predict matches (Steps 5© and 6©).

Thus Falcon is well suited for lay users, who only have to
label tuple pairs as match/no-match. It has been deployed
as a cloud service at UW-Madison, and many domain scien-
tists have successfully used it to match strings [25]. Section
7.1 shows that Falcon indeed significantly improves match-
ing accuracy compared to single-predicate SM solutions.

Limitations & Proposed Smurf Solution: Our UW
deployment, however, reveals a major problem with Falcon:
it can ask a lay user to label many string pairs (e.g., 770-
1050 in our experiments). This raises three major prob-

lems. First, it can incur a lot of user expense. In certain
contexts (e.g., drug matching), one needs to hire experts
to label, and these experts are expensive. Second, if users
make mistakes, say mislabeling every 10th pair, then label-
ing many pairs will significantly compound the mistakes.
Finally, when crowdsourcing is used to label, labeling can
take a long time (e.g., 2 days to label 800 pairs). Thus, re-
ducing the number of pairs to be labeled can significantly
reduce the overall SM time.

To address these problems, we seek to significantly reduce
the labeling effort of Falcon, while achieving the same SM
accuracy. Our key observation is that in the blocking stage
Falcon learns a random forest F (Steps 1©- 2©, highlighted in
red), but uses F only to derive blocking rules. Yet F is a
full-fledged matcher by itself, i.e., it can classify each string
pair as match/no-match. So why not apply F directly to A
and B to match the string pairs? This way we can discard
the rest of the Falcon workflow (Steps 3©- 6©), thus saving
the labeling effort in Steps 3© and 5©.

While appealing, this raises a difficult technical challenge:
how to effectively execute random forest F over two tables
of strings A and B without enumerating all pairs in A×B?
Our solution decomposes the process of executing all deci-
sion trees in the random forest F into executing a subset of
trees in a pruning step, then the remaining trees in a veri-
fication step. It then uses RDBMS-style plan optimization
to efficiently execute sets of decision trees in both steps, by
reusing computation across the trees. We call this solution
Smurf (String matching using random forest).

Contributions: As described, this paper significantly
advances the state of the art in string matching. Specifically:

• We argue for the increasing importance of self-service
SM, and show that current single-predicate self-service
SM solutions achieve limited accuracy.

• We develop Smurf, a self-service SM solution that uses
multiple-predicate matching conditions (in form of ran-
dom forests).

• We describe extensive experiments showing that Smurf
indeed can significantly outperform single-predicate SM
solutions, by 1.15-22.4% F1. Further, Smurf achieves
F1 accuracy comparable to Falcon, the best current
self-service EM solution, yet drastically reduces the
number of pairs to be labeled by 43-76%.

• At the heart of Smurf is a novel solution to efficiently
execute a random forest over two large sets of strings,
using RDBMS-style plan optimization.

Many existing SM works focus on efficiently executing match-
ing conditions (using indexes [50, 19, 45], see Section 3). But
they have considered only single-predicate conditions (ex-
cept [32], which we compare with in Section 7.2). Our work
on efficiently executing a random forest builds on these, but
can be viewed as a logical next step, in that it considers more
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powerful matching conditions (in form of random forests us-
ing multiple predicates). As such, our work significantly
advances this important SM research direction.

Our work also raises two interesting future research di-
rections: Can Smurf be extended to perform EM? And can
our solution of executing a random forest over sets of strings
be extended to more general settings, such as a set of tables
linked via foreign-key joins? In Section 7.3 we explore these
questions. In particular, we provide preliminary evidence
showing that Smurf can indeed be extended to EM, and can
achieve comparable F1 accuracy at a far lower labeling cost
(than Falcon). But a more rigorous future study is necessary
to examine how best to extend it.

Finally, Smurf has been developed as a part of a larger
project at UW-Madison [29, 20], which builds Magellan, an
ecosystem of interoperable tools for EM and SM, and more
details about Smurf can be found in a technical report [42].

2. RELATED WORK
Self-Service Data Solutions: This topic has received
increasing attention [21, 51, 24]. Its goal is to develop so-
lutions (e.g., in cleaning, matching, wrangling, etc.) that
are very easy for lay users to use. Several self-service SM
solutions have been proposed [8, 2, 12]. The most advanced
solution [8] learns a single-predicate SM condition using ac-
tive learning. In contrast, Smurf learns a random forest SM
condition, and thus can achieve higher SM accuracy. Self-
service EM solutions include [24, 14]. Among these, the
Falcon system is the most advanced and can be applied to
SM, but often requires a large user labeling effort. Smurf
drastically reduces this labeling effort, while achieves com-
parable accuracy.

String & Entity Matching: String matching (SM), also
called string similarity joins (SSJs), has been widely studied
[48, 6, 27, 33] (see [50] for a survey). To avoid examining
all pairs of strings, prior works use inverted indexes [38, 17],
prefix filter [9], size filter [3, 6], position filter and suffix filter
[48], etc. Work has examined SM within a database [26, 9,
4, 44] and developed scalable parallel solutions (e.g., using
MapReduce [46, 34, 15, 16]). Recent work has also exam-
ined top-k SSJs [47, 52]. Current SM work however has
only examined single-predicate matching conditions (e.g.,
[48, 46]). In contrast, Smurf considers more powerful multi-
predicate matching conditions in form of random forests.
Entity matching (EM) has also received much attention [10,
22, 19, 30, 35, 11], and a wide range of EM solutions have
been developed. Most current EM solutions however are
not self-service. Recent self-service EM solutions include
[24, 14]. Smurf uses Falcon [14] to perform self-service SM,
but significantly reduces its user labeling effort.

Scalable Machine Learning over Structured Data:
This topic has received growing attention. Most works have
focused on efficiently learning an ML model over structured
data. For example, the works [31, 39] learn generalized lin-
ear models over a join without having to materialize the join
output. The works [36, 41, 49] learn random forests over
large datasets. In contrast, Smurf focuses on the comple-
mentary problem of efficiently applying an ML model over
structured data (specifically on applying a random forest to
two sets of strings). This problem has received little atten-
tion. A work related to Smurf is [23], which develops prun-
ing techniques for reducing the prediction time of ensemble

models, but this work assumes a set of feature vectors as
input and thus is not applicable to our SM context.

Rule Execution & Multi-Query Optimization: Exe-
cuting a decision tree means executing the matching rules of
the trees (see Section 4). The works [14, 32] have examined
how to efficiently execute a single matching rule, e.g., [32]
in effect performs a similarity join using a single rule with
multiple predicates. In contrast, Smurf examines how to ef-
ficiently execute a set of rules, by reusing computation. Sec.
7.2 shows that Smurf outperforms [14, 32] for SM, because
it can reuse computations across rules.

This combined execution of rules is reminiscent of multi-
query optimization in RDBMSs, which optimizes the execu-
tion of a set of queries [40]. Similar to Smurf, prior works
on multi-query optimization also represent each query as a
DAG and combine the DAGs into a single DAG by exploit-
ing the common sub-expressions in the queries [40, 53, 37].
However, Smurf’s reuse rules exploit the semantics of the
string matching operators that we define and hence enable
more reuse opportunities; in contrast, existing work would
treat the features as blackboxes. Further, Smurf often exe-
cutes a large number of rules (48-127 in our experiments),
necessitating an incremental search strategy to reduce the
search time (see Sec. 5.3). In contrast, existing works con-
sider fewer queries (e.g., less than 20 in [53, 37]) and hence
use more expensive search strategies.

Additional Related Work: The problem of selecting a
subset of trees for the pruning step is reminiscent of select-
ing an optimal set of SSJ filters (e.g., size filter, prefix filter)
when executing a single-predicate SSJ condition [43]. How-
ever, the SSJ filters considered in [43] form a conjunction,
whereas in our pruning step the trees form a disjunction (i.e.,
we need to output the string pairs predicted as a match by
at least one tree). Finally, finding an optimal tree sequence
for the verification step is similar to ordering pipelined fil-
ters [5]. However, our problem is more complex, a special
case of which is the problem in [5] (see the tech report [42]).

3. PROBLEM DEFINITION
Features & Predicates: We define a feature to be a
function that takes two strings a and b and returns a numeric
value. A predicate p(a, b) is of the form f(a, b) op ε, where f
is a feature, op is a comparison operator (e.g., ≥,≤), and ε
is a threshold. Predicate p(a, b) evaluates to true iff strings
a and b satisfy the comparison, and to false otherwise.

For example, feature jaccard 3gram(a, b) tokenizes strings
a and b into sets of 3-grams Sa and Sb, then returns the Jac-
card score |Sa∩Sb|/|Sa∪Sb|. Predicate jaccard 3gram(a, b)
> 0.8 evaluates to true iff the Jaccard score exceeds 0.8. In
SM contexts, features often involve string similarity mea-
sures, e.g., edit distance, Jaccard, overlap, etc. [50].

String Matching & String Similarity Joins: Given
two sets of strings A and B, string matching (SM) finds
all pairs (a ∈ A, b ∈ B) that refer to the same real-world
entity [50, 19]. Most current solutions return as matches
all pairs (a, b) ∈ A × B that satisfy a single predicate, e.g.,
jaccard 3gram(a, b) > 0.8. [50, 19]. These solutions are
said to perform a string similarity join (SSJ) between A
and B, using this predicate as the join condition [50].

Using Indexes to Execute SSJs: Applying the join
predicate to all pairs in A× B is often impractical because
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A×B can be very large. To address this, prior work typically
builds an index I over a table, say A (sometimes multiple
indexes are built, over both tables). For each string b ∈ B,
it consults I to locate only a (relatively small) set of strings
in A that can potentially match with b. It then applies the
join predicate only to these string pairs. Numerous indexing
techniques have been developed, e.g., inverted index, size
filtering, prefix filtering, etc. [50, 19]. Smurf uses these
indexes, as we will see in Section 4.

The Falcon Entity Matching Solution: As discussed
in Section 1, single-predicate SM solutions achieve only lim-
ited accuracy. So we consider EM solutions, which often
employ powerful matching conditions with multiple pred-
icates. Specifically, we consider Falcon, a self-service EM
solution [14]. For space reasons, we now describe only Steps
1© and 2© of the Falcon workflow (see Figure 2), because we
will use those steps in Smurf.

Step 1© - Creating a Sample S: Given two tables A and
B to match, Falcon takes a small sample S of tuple pairs from
A×B (without materializing this product). This is because
learning directly on A×B is difficult as A×B is often too
large. Randomly sampling from A and B, however, will not
work because S is likely to contain very few matching tuple
pairs, rendering learning ineffective.

To address this, Falcon first randomly selects a set of x
tuples from table B (assumed to be the larger table). Next,
for each tuple b selected from B, Falcon pairs it with (1)
y/2 tuples from A that are likely to match (see below), and
(2) y/2 random tuples from A. Thus Falcon tries to get a
reasonable number of matches into sample S yet keep it as
representative of A × B as possible. To find tuples from
A that are likely to match tuple b ∈ B, Falcon builds an
inverted index I on the smaller table A, then uses it to
quickly find tuples in A that share many tokens with b. The
resulting sample S contains xy tuple pairs, where x and y
are tunable parameters (see [14] for details).

Step 2© - Active Learning on Sample S: Falcon first
examines the schemas of A and B to create a set of features.
For example, if it detects that attribute city is of type string,
it creates many features that use string similarity measures,
e.g., edit dist(A.city,B.city), jaccard 2gram(A.city,B.city),
etc., as well as features that capture string properties, such
as length(A.city) (see [14]). Next, Falcon uses these features
to convert each tuple pair in sample S into a feature vector.
This produces a set of feature vectors S′. Next, Falcon trains
an initial random forest F (by asking the user to supply two
positive and two negative examples), uses F to select a set
of “most informative” examples in S′, asks the user to label
these examples as match/no-match, uses them to retrain F ,
and so on, until a stopping condition is met.

The Proposed Smurf Solution: To match two sets
of strings A and B, we propose that Smurf execute only
Steps 1©- 2© of Falcon to learn a random forest F (discarding
Steps 3©- 6©, thus saving a significant amount of user labeling
effort). Smurf then executes a novel last step: apply F to
match string pairs (a, b) in A × B (without materializing
A × B). In the rest of the paper we focus on efficiently
executing this last step. Specifically:

Definition 2 (SM using random forests). Given
two sets of strings A and B, perform active learning with
a user U (by executing Steps 1©- 2© of Falcon) to learn a

random forest F . Given any two strings a ∈ A, b ∈ B, F
can predict if they match. Now efficiently apply F to A and
B to obtain all pairs (a ∈ A, b ∈ B) predicted matched.

As a first step, in this paper we will develop a solution to the
above problem that runs on a single machine. This solution
is easy for lay users to download, install, and run. It is well
suited for scenarios where lay users (e.g., domain scientists,
journalists) do not know how to use, or want to use, or
have access to a machine cluster [28, 25]. Solving the above
problem on a machine cluster is ongoing work.

4. EXECUTING A RANDOM FOREST
We now provide an overview of our solution to efficiently

execute a random forest over two sets of strings.
Suppose we have learned the random forest F of three de-

cision trees (DTs) t1, t2, t3 in Figure 4.a (here, for simplicity,
we show each predicate such as edit dist(a, b) < 3 only as
edit dist < 3). We now consider how to efficiently execute
F over two sets of strings A and B. Note that given a string
pair (a ∈ A, b ∈ B), each tree in F will predict the pair as
match or non-match (see Figure 4.a). We refer to the set
of all string pairs a tree (or a random forest) predicts to be
matches as the output of that tree (or that random forest).

Pruning and Verification: Suppose the random forest
F outputs a pair (i.e., declaring it a match) only if at least
two out of the three trees also output the pair. Naively, we
can execute F on two sets of strings A and B by executing
each tree ti on A and B to obtain an output Ci, then output
all pairs that appear in the outputs of at least two trees (see
Figure 4.b). This however is very time consuming.

A better idea is to execute just two trees, say t1, t2 on A
and B, to obtain outputs C1 and C2 (see Figure 4.c). The
set I = C1 ∩ C2 consists of all pairs predicted match by
both t1 and t2, and so can be output immediately as a part
of output of the random forest F .

The set J = (C1 ∪ C2) \ (C1 ∩ C2) consists of all pairs
predicted match by only one tree (either t1 or t2). It is easy
to see that we need to apply the remaining tree t3 only to set
J . Let K be the set of pairs in J predicted match by t3.
Clearly, any such pair is also a match for the random forest
F , because it is matched by exactly two trees (either t1 or
t2, together with t3). The output of random forest F is thus
I ∪K (see Figure 4.c). Any other pair (i.e., neither in I nor
in J) is not predicted match by both t1 and t2 and hence
cannot be a match for F .

In practice, the set J tends to be relatively small (see
Section 7.2). Thus, applying tree t3 to J tends to be much
faster than applying it to the original sets of strings A and
B. This time saving is significant when F is large, say 10
trees. Suppose in this case we need at least five trees to
match in order for F to match. Then we can apply six trees
to A and B to obtain sets I and J , then apply the remaining
four trees to just the relatively small set J .

Smurf uses the above idea. We refer to the first step of
applying a subset of trees as pruning, and the second step
of applying the remaining trees to J as verification.

Executing a Tree by Executing Its Matching Rules:
The pruning step must execute a set of trees over A and B.
Continuing with the example in Figure 4, suppose this step
must execute tree t1 (Figure 4.a).

We refer to each path from the root of t1 to a “match”
node as a matching rule. Figure 5.a shows the two rules
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Figure 4: An example to motivate the pruning and verification steps.

Figure 5: Rules extracted from tree t1 in Figure 4.a.

extracted from t1. Each rule is a conjunction of two pred-
icates. Rule r1 for instance captures the first path leading
to a “match” node in the tree. Note that since on this path
the predicate (edit dist < 3) takes value “N”, i.e, false, in
rule r1 we capture this as (edit dist ≥ 3).

Executing tree t1 then reduces to executing these two rules
on A and B, then combining their output. Figure 5.b illus-
trates this step. Note that the output of t1 is the union of
the outputs of the rules, because any pair predicted match
by a rule is also predicted match by the tree.

Prior Work on Rule Execution: We now consider how
to execute a matching rule efficiently. No prior work has ad-
dressed this problem explicitly for string matching. But two
recent works [14, 32] have addressed it for record matching
and can be applied to this context.

The first work, Falcon [14], proposes two solutions: Ap-
plyAll and ApplyGreedy. To execute a rule such as r1 in
Figure 5.a, ApplyAll builds indexes for all predicates in the
rule, i.e., for both (edit dist ≥ 3) and (dice 3gram > 0.8).
It then consults all indexes and take the intersection of the
outputs of these indexes to be the set H of record pairs that
can possibly be in the rule output. Finally, it evaluates the
rule on H. ApplyGreedy builds an index for just one predi-
cate in the rule, consults the index to find a set H of record
pairs, then applies the rule to H. The key challenge is to
select a predicate that is highly selective to build an index
on, to minimize the size of H.

The second work [32] proposes a solution that we will refer
to as RAR (Rule Applied to Record Pairs). RAR analyzes
the entire rule, builds a single index covering all predicates
in the rule (using prefix filtering ideas), uses the index to
find a set H, then applies the original rule to H.

Limitations of Prior Work & Our Solution: As de-
scribed, prior work has developed efficient solutions to ex-
ecute a single matching rule. Executing a tree however re-
quires executing a set of rules. As far as we can tell, no
work has examined efficiently executing a set of matching
rules. (Falcon [14] does consider a set of rules, but those are
blocking rules, not matching rules as considered here. When
adapting Falcon to matching rules, it is easy to show that
Falcon is capable of executing only a single such rule.)

Executing a set of rules by executing each rule individually
can be very time consuming. We observe that these rules
often share a lot of computation. So we seek to execute them
jointly, in a “multi-query optimization” style. Specifically,
we define a set of core operators, use them to generate a plan
encoding the rules, then optimize and execute the plan.

Example 3. Consider again the two rules r1, r2 in Figure
5.a. Predicates (dice 3gram > 0.8) of r1 and (dice 3gram >

Figure 6: Executing rules in a joint fashion.

Figure 7: The process of executing a random forest
in Smurf.

0.6) of r2 share computation. The plan in Figure 6.a ex-
ecutes both rules jointly, by reusing this computation. It
uses three operators: join, select, and filter (see Section
5.1). Specifically, the plan first performs a single-predicate
join between A and B, using join condition dice 3gram >
0.6. Next, it selects from the output of this join all pairs
where feature dice 3gram (which has been computed) ex-
ceeds 0.8 (see the left path of the plan), then it computes
feature edit dist for these pairs and selects only those with
edit dist ≥ 3. This produces the set D1, the output of rule
r1. Similarly, the right path of the plan produces D2, the
output of rule r2. The plan returns C1 = D1 ∪D2, the out-
put of tree t1. Note how computing the feature dice 3gram
is done only once in this plan (in the “join” node).

So far we have discussed executing a single tree. The pruning
step executes a set of trees. It is easy to see that the above
idea generalizes to this case: we simply extract all matching
rules from the trees, then execute them in a joint fashion.
(We do need to make sure that we know which output pair
comes from which tree.) For example, to execute trees t1, t2
(Figure 4.a), we extract their three matching rules, then
combine the rules to form the plan in Figure 6.b. Note how
this plan returns both C1 and C2, the outputs of trees t1 and
t2, respectively. The verification step also executes trees and
thus will also use the above joint execution idea.

Solution Architecture: The above ideas lead to the
overall architecture for executing a random forest F in Fig-
ure 7. Given the set of trees T in F , we first select a subset
T ′ of trees to perform pruning. This produces a set of pre-
dicted matches I and a set of candidate pairs J . Next, in
the verification step, we apply the remaining trees T \ T ′ to
J , to obtain a set of matches K. The output of F is then
I ∪ K. Both the pruning and verification steps rely on a
module that provides efficient execution of a set of trees, us-

282



ing operators, indexes, cache, plan generation, optimization,
and execution. The key challenges are: (1) how to select a
subset of trees for the pruning step? (2) how to execute
the remaining trees in the verification step? and (3) how to
execute a set of trees, by extracting the rules, defining op-
erators, then generating, optimizing, and executing a plan?
We now discuss our solutions to these challenges. First we
discuss (3), then build on it to discuss (1) and (2).

5. OPTIMIZING AND EXECUTING
A SET OF DECISION TREES

We now describe how to efficiently executing a set of trees.
We consider the following concrete problem (and show later
how it can be used for pruning and verification):

Definition 4. [Executing trees over two sets of strings]
Let G be a set of decision trees. Given two sets of strings A
and B, return all pairs (a, b) ∈ A×B that is a match output
by at least a tree in G, and associate with each such pair the
IDs of all trees in G that output that pair.

To solve the above problem, we begin by extracting each
path from the root of a tree in G to a “match” node as a
matching rule. Each rule ri is of the form pi1(a, b) ∧ . . . ∧
pimi

(a, b) → predict (a, b) as match, where each pij(a, b) is
a predicate (see Section 3).

Let R be the set of all matching rules extracted from the
trees in G. Executing G reduces to executing the rules in R,
then union their outputs. As discussed earlier, executing the
rules in isolation is inefficient. So we seek to execute them
jointly, by sharing computation. To do so, we define a set
of operators, convert the set of rules into a plan composed
of these operators, develop optimization techniques, then
search a large plan space to select a good plan. We now
discuss these steps.

5.1 Operators and Default Plan Generation
We define then motivate the following four operators:

joinp(A,B): This operator takes two sets of strings A
and B and a predicate p, and returns all pairs (a, b) ∈ A×B
that satisfies p. For example, given predicate jaccard word(a,
b) > 0.5, this operator returns all pairs (a, b) with Jaccard
score above 0.5.

filterp(C): This operator returns all string pairs c ∈ C
that satisfies predicate p. It assumes that feature f in p
has not been computed for the pairs in C. So given a pair
c ∈ C, it computes f for c, then outputs c if c satisfies p.
For example, given jaccard word(a, b) > 0.5, this operator
computes feature jaccard word for each pair (a, b) ∈ C,
then outputs (a, b) if it satisfies the predicate.

selectp(C): This operator is the same as filterp(C), but
it assumes feature f in predicate p has already been computed
for all pairs in C. So it simply evaluates p for each c ∈ C
and outputs c if p evaluates to true.

featuref(C): This operator assumes feature f has not
been computed for pairs in C. So it computes f for all pairs
in C then returns those pairs.

Motivations: Operator joinp(A,B) performs a single-
predicate SSJ, and has been studied intensively [50]. Op-
erator filterp(C) is typically applied to string pairs coming
out of a joinq(A,B) operator, as we will see below. To mo-
tivate operators selectp(C) and featuref (C), suppose in a

plan (defined below) we execute a joinq(A,B) operation to
obtain a set of pairs C, then execute both filterjac word>0.6

and filterjac word<0.8 on C. Then we would compute fea-
ture jac word twice. To avoid this, we can execute opera-
tion featurejac word once, followed by two select operations
selectjac word>0.6 and selectjac word<0.8.

Default Plan: We now discuss how to convert a set of
rules into a default plan (later we show how to rewrite this
plan into a set of plans, then select a good one). First, we
convert each rule into a plan: given each rule p1(a, b)∧ . . . ∧
pm(a, b) → match, we construct a plan A,B → joinp1 →
filterp2 → . . .→ filterpm → C. This plan performs joinp1

on sets of strings A and B (using indexes), applies filterp2
to the output of the join, applies filterp3 to the output of
filterp2 , etc., until producing the output C. We then merge
the individual plans by adding a node to union their outputs,
to obtain a “global” default plan. For example, the set of
two rules r1 : (edit dist < 5) ∧ (jac 2g > 0.5)→ match and
r2 : (dice 3g > 0.7) ∧ (edit dist < 7)→ match is converted
into the default plan in Figure 8.a (ignore the dotted boxes
and the notations P1, P2 for now).

A plan is thus a directed acyclic graph, where the root
nodes (those with no incoming edges) denote input data
(e.g., A, B), the leaf nodes (those with no outgoing edges)
denote output data (e.g., C), the remaining nodes denote the
four operators described above plus the set union operator,
and the edges denote the flow of data among the operators.

5.2 Strategies for Reusing Computation
Given a plan G many possible strategies exist for reusing

computation within G. As a first step, in this paper we
propose four such strategies. The key idea is to identify
plan fragments that often share computation, then analyze
how to merge them to enable reuse. We focus in particular
on a common kind of fragment called reusable paths:

Definition 5 (Reusable path). Given a plan G, which
is a DAG, a reusable path P is a path in graph G of the form
o1 → o2 → . . . → on, such that (a) each node oi is an op-
erator and has exactly one incoming edge and one outgoing
edge in graph G, and (b) P is the longest such path, i.e.,
we cannot extend path P before o1 or after om to obtain a
longer path that still satisfies (a).

When there is no ambiguity, we will use “path” instead of
“reusable path”. We refer to nodes o1 and om as the root
and leaf nodes of a path, and the node with an edge leading
to o1 as the parent node of the path. Figure 8.a shows two
reusable paths P1 and P2 (denoted with dotted boxes).

We now describe four reuse strategies for paths: join reuse,
inter-path filter reuse, intra-path filter reuse, and filter or-
dering. For space reasons, we only describe the key idea of
each strategy, deferring the details to a technical report [42].

1. Join Reuse: This strategy merges two paths with
joins to enable join reuse. Consider the two paths P1 and
P2 in Figure 8.a. Path P1 performs joinedit dist<5, while
P2 performs joindice 3g>0.7. These two joins are different
and cannot be shared. Observe however that P2 contains
a node filteredit dist<7. We can push this node down to
become the root node of P2, then merge it with the root
node joinedit dist<5 of P1, to obtain the plan fragment in
Figure 8.b, which reduces the number of joins from two to
one. To realize this idea, we first define
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Figure 8: Default plan generation, join reuse, and inter-path filter reuse.

Definition 6 (Predicate containment). Let p1 and
p2 be two predicates defined over the same feature f , E de-
note a set of string pairs and pi(E) denote the result of ap-
plying pi over E. We say that (a) p1 is contained in p2,
denoted p1 v p2, iff for any E, p1(E) ⊆ p2(E), and (b) p1
is equivalent to p2, denoted p1 ≡ p2, iff p1 v p2 and p2 v p1.

For example, for predicates p1 : jac 3g(a, b) > 0.5 and p2 :
jac 3g(a, b) > 0.7, we have p2 v p1. Join reuse then works
as follows. It takes as input two paths P1 and P2 such that
(a) both roots are join operations, and (b) the parents are
the same input (e.g., two sets of strings A and B). We first
find a node ni containing predicate p(ni) in P1, and a node
nj containing predicate p(nj) in P2 such that either p(ni) ≡
p(nj), p(ni) v p(nj) or p(nj) v p(ni). If ni, nj exist, then
we push them down the paths to become the two new roots
(the old roots become new filter nodes). Then we merge the
two paths. Specifically, if p(ni) ≡ p(nj), then we delete nj

and append the rest of path P2 to ni. If p(ni) v p(nj), then
we modify ni to be a selection operator and append it as a
child of nj (see Figure 8.b), and so on.

Note that the above describes one join reuse rule. If multi-
ple combinations of ni, nj exist, then each combination gives
rise to a join reuse rule. Later we use these rewrite rules to
generate a space of alternative plans.

2. Inter-path Filter Reuse: In this strategy we con-
sider two paths that share the same parent, identify filters
(across the paths) that perform common computation, then
merge/modify them to reuse the computation. We distin-
guish two cases:

(a) Reusing filters with the same feature: To motivate,
consider paths P3 and P4 in Figure 8.c, which share the same
parent joincosine 3g>0.6. Both paths execute filteredit dist<5.
So we can push this filter down to be the root of each path,
then merge them, to produce the plan fragment in Figure
8.d, which performs the above filter only once.

More generally, this strategy works as follows. Given two
paths P1 and P2 sharing the same parent, if we find a filter
node ni containing predicate p(ni) in P1, and a filter node nj

containing predicate p(nj) in P2 such that p(ni) and p(nj)
are defined over the same feature f , then we rewrite P1 and
P2 by pushing ni and nj down to be the root nodes of the
paths. Next, we merge ni and nj . If p(ni) ≡ p(nj), then we
delete nj and append the rest of P2 to ni. If p(ni) v p(nj),
then we modify ni to be a selection operator and append it
as a child of nj . If none of these holds, then we add a new
feature node nf that computes the feature f as a child of
the parent node, move ni and nj to be nf ’s children, then
make ni and nj into select nodes.

(b) Reusing filters with correlated features: To mo-
tivate, consider again the plan in Figure 8.d. Consider the
path P5 consisting of the sole operation filterdice 2g>0.8 and

Figure 9: Intra-path filter reuse and ordering.

the path P6 consisting of the sole operation filterjac 2g>0.5.
These two filters do not share the same feature, and hence
cannot benefit from the reuse strategy in Case (a). However,
these features are correlated, in that they perform some com-
mon computation. Indeed, dice(X,Y ) = 2|X ∩ Y |/(|X| +
|Y |) and jac(X,Y ) = |X ∩ Y |/|X ∪ Y |. So they both com-
pute the overlap feature |X ∩ Y |.

To reuse this computation, we modify the fragment in
Figure 8.d into that in Figure 8.e (we omit the union op-
erator at the top for space reasons), where we first exe-
cute featureoverlap 2g, then execute the above two filters.
However, we rewrite these filters with new features. Con-
sider filter filterdice 2g>0.8. Feature dice 2g of this filter
performs a full computation of the Dice score, i.e., comput-
ing the overlap, among others. But now featureoverlap 2g

already computes the overlap. So we define a new feature
dice 2g v2, which also computes the Dice score, but assumes
that the overlap information already exists (and stored with
the incoming string pair). So it does not compute the over-
lap again, saving time compared to the old feature dice 2g.
Thus, we rewrite filterdice 2g>0.8 into filterdice 2g 2v>0.8,
and rewrite filterjac 2g>0.5 into filterjac 2g 2v>0.5.

3. Intra-path Filter Reuse: This strategy is similar to
inter-path filter reuse, but applies to filters within a single
path. Here we can also distinguish two cases:

(a) Reusing filters with the same feature: Within a sin-
gle path, we also often have multiple filters with the same
feature. (Such paths encode rules extracted from decision
trees, and these rules often have multiple predicates with
the same feature.) In such cases, we can reuse computation
across these filters. For example, the path in Figure 9.a has
two filters involving feature edit dist. Clearly we can rewrite
the second filter as a select operation, because edit dist has
been computed in the first filter (see Figure 9.b).

(b) Reusing filters with correlated features: Within a
single path, we also often have filters that have different,
but correlated features. We can also share computation
among these filters, in a way similar to the case of inter-
path filter reuse. Consider for example the path in Figure
9.c. Here features overlap word and jac word are different,
but correlated: computing the Jaccard score requires com-
puting the overlap. As a result, we can rewrite operation
filterjac word>0.6 as filterjac word v2>0.6 (see Figure 9.d),
where feature jac word v2 is a new feature that also com-
putes the Jaccard score, but assumes that the overlap has
been computed and stored with the incoming string pair.
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4. Filter Ordering: Within a path the filters can be re-
ordered (i.e., moved around) without affecting the output
of the path. Different orderings however can significantly
affect the runtime of the path. Consider again the path
in Figure 9.d. Here filterjac word v2>0.6 is quite fast, be-
cause it assumes the overlap information has been computed
(by the upstream filteroverlap word>3). On the other hand,
filterdice 3g>0.7 is slow. If we re-order these two filters, to
obtain the path in Figure 9.e, then the slow filterdice 3g>0.7

is applied to fewer string pairs, and thus the entire path
may execute much faster. As a result, in this strategy given
a path we seek to find a good ordering of its filters. This
raises two challenges: how to estimate the runtime of an or-
dering and how to search the large space of possible order-
ings. We have adapted the 4-approximation greedy solution
in [5] to this problem (see the tech report [42]).

5.3 Searching for a Good Plan
We now describe how to search for a good plan. The

reuse strategies in the previous section give rise to a set of
rewrite rules, each of which rewrites a plan into a potentially
better plan (see [42] for the pseudo code of the rules). So a
simple search strategy is to start with the default plan G (see
Section 5.1), apply all possible rewrite rules repeatedly, until
we cannot apply any more rules, to obtain a place space G.
We then estimate the runtime of each plan in G (see Section
5.4), and select the fastest plan. G however is often huge,
rendering this strategy impractical.

Staged Search: As a result, we explore the following
staged search strategy. Given the default plan G, we apply
(a) all possible join reuse rules repeatedly (until we can-
not apply any further), then (b) all possible inter-path filter
reuse rewrite rules, then (c) all possible filter ordering rules,
and finally (d) all possible intra-path filter reuse rules. The
tech report [42] gives the pseudo code of this search process.

The rationale for this ordering of the rules is as follows.
First, joins are very expensive. So we want to do (a) first, to
consider all possible join reuse opportunities. We can delay
(c) and (d) to the end, because they are local rules and do
not increase the estimated runtime of any target plan (as
we discuss below). This leaves inter-path filter reuse rules
to be executed in (b). Finally, we do (c) before (d) because
it is not difficult to prove that if there is any intra-path filter
reuse we want to perform for a path, we can always perform
it (or another reuse with equivalent effect) after we have
performed filter ordering for the path.

Let U be the resulting plan space. We can reduce U some-
what, by observing that applying filter ordering or intra-
path filter reuse rules does not increase the estimated time
of the plan. Formally, suppose applying a filter ordering or
intra-path filter reuse rule as described in Section 5.2 to a
plan P yields a new plan P ′. Then the runtime of P ′ does
not exceed that of P , where the runtimes are estimated using
the procedure in Section 5.4.

As a result, if we rewrite a plan P into P ′ using one of
the above rules, we can drop P from U . We then estimate
the runtime for each plan in U and select the fastest plan.

Incremental Staged Search: Unfortunately, the plan
space U is still huge (e.g., 100+M plans in our experiments).
As a result, we perform an incremental staged search that
explores a much smaller space yet still finds good plans (see
Section 7). Specifically, let R be a set of n matching rules

to be executed. We first sort the rules in R in some order
r1, . . . , rn (discussed below). Next, we convert the set of
the first two rules r1 and r2 into a default plan P12, then
perform staged search (as described earlier) on it to find the
best plan P ∗12. Next, we convert rule r3 into a default plan
P3, merge it with plan P ∗12 (by adding a node that unions
their output), to form a new plan P123. Then we perform
staged search on P123, to find the best plan P ∗123. During
this search, however, we fix the plan fragment P ∗12, applying
rewrite rules only to the rest of plan P123. Next, we convert
rule r4 into a default plan P4, then merge it with P ∗123, etc.,
until we have processed the last rule rn.

We now discuss how to sort the rules in R. The key idea
is to give the maximal amount of freedom in selecting a join
operator to the rule whose minimal estimated runtime is
higher than that of other rules. As a result, we sort the rules
in the decreasing order of their minimal estimated runtime.
Specifically, for each rule ri ∈ R, we first enumerate all
plans where a predicate in ri becomes a join operator and
the remaining predicates become filter operators (producing
at most k plans, assuming ri has k predicates, see below).
Then for each such plan P we perform all filter ordering
and intra-path filter reuse rewriting, which can only help
reduce P ’s runtime. Finally, we estimate the runtimes of
these plans (see Section 5.4), then select the lowest runtime
to be the minimal estimated runtime of rule ri. For space
reasons we defer the complexity analysis to [42].

5.4 Plan Cost Estimation
We now estimate plan runtime. A plan P is a DAG of

operators. To execute P , we read the sets of strings A and
B from disk into memory, execute the DAG in memory, then
write the output to disk. So we will only estimate the CPU
time of executing the DAG (the I/O time is the same for all
plans), which is the sum of the CPU times of all operations
in the DAG. There are five types of operator: select, feature,
filter, join, and union. Since unions take negligible time, we
only need to consider the first four types of operators. For
each operator type, we need to estimate its runtime as well
as the size of the output relative to the size of the input
(which we need for estimating the runtime of any operator
that consumes the output of this operator).

selectp(C): applies a predicate p to each pair in C to
obtain an output Cout. We estimate the output size as
|Cout| = ρp · |C|, where ρp is a selectivity factor for predi-
cate p. We estimate the runtime of this operator as α · |C|,
where α is the average time to apply p to a pair (this time
involves just a single comparison, hence it is very small and
assumed to be the same regardless of p). The cost model of
this operator thus requires estimating ρp and α (see below).

featuref(C): computes feature f for each pair in C.
Thus the output size is the same as the input size. The
runtime is estimated as βf · |C|, where βf is the average
time to compute feature f for a string pair.

filterp(C): computes a feature f (specified by predicate
p) and applies p to each pair in C, then output only those
pairs satisfying p. We estimate the output size to be ρp ·
|C|, where ρp is a selectivity factor for predicate p, and the
runtime to be (βf + α) · |C|, because for each pair in C it
takes time βf to compute feature f and time α to apply p.

joinp(A,B): returns all pairs in A×B that satisfy pred-
icate p. Thus, we estimate the output size as ρp · |A × B|,
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where ρp is the selectivity factor of predicate p. Estimating
the runtime of this operator is more involved. Given two
sets of strings A and B, this operator first builds an index
I on A. Then for each string b ∈ B, it probes I to obtain a
relatively small set of strings Q(b) in A. Finally, it processes
each pair (b, q), where q ∈ Q(b), by computing feature f for
the pair (the feature mentioned in predicate p), applying
predicate p, then outputting the pair if it satisfies p.

Thus, the runtime of this operator consists of the times
for index building, index probing, and processing of string
pairs. We estimate the index building time to be δp · |A| and
the index probing time to be µp · |B|. Let Q = ∪b∈B Q(b).
Then the processing time is (βf + α) · |Q| (because for each
pair in Q it takes βf time to compute feature f , then α time
to apply predicate p). Finally, we estimate Q = γp · |A×B|,
where γp is a reduction factor showing how much the index-
based probing “shrinks” the set of string pairs A×B.

We now describe how we estimate cost model parameters
α, βf , γp, ρp, δp, and µp. We begin by taking a small random
sample of string pairs X (of size currently set at 30K) from
the sample S used when learning the join condition.

Estimating α: The average selection time per string pair
α is a constant which is independent of the predicate being
applied. We estimate α by measuring the time to apply an
arbitrary predicate (with feature precomputed) over each
pair in X, and taking the average.

Estimating βf : We estimate the time factor βf for each
feature f by measuring the time to apply f to each pair in
X, and taking the average.

Estimating γp: We estimate the reduction factor due to
index-based probing γp for each predicate p as follows. We
begin by applying the prefix filter for p to each pair in X
(i.e., for a given pair (a, b), check if the prefix of a and b
share at least one token) to obtain a set of string pairs Y
(that satisfy the filter). We then estimate γp as | Y | / | X |.
Estimating ρp: We now discuss how to estimate the
selectivity of each predicate p, ρp. We do not precompute
ρp for each predicate p, as we do not assume the predicates
are independent. For example, if we apply a sequence of two
filters containing predicates p1 and p2, respectively, over an
input set of pairs C, we cannot compute the output size of
applying the sequence of filters as ρp1 ∗ ρp2∗ | C | since p1
and p2 may not be independent.

To address this, for each predicate pi we compute the
coverage of pi over sample X, cov(pi, X), which is the set of
pairs in X that pi would satisfy. Then we can estimate the
selectivity of pi, ρp, to be | cov(pi, X) | / | X |. And we can
compute the selectivity of applying a sequence of predicates
p1, p2, to be | cov(p1, X)∩cov(p2, X) | / | X |. Hence we only
keep track of the coverage of each predicate and estimate the
selectivities of predicates on the fly. To estimate selectivities
efficiently, Smurf maintains the coverages of predicates in the
form of bitmaps.

Estimating δp: To estimate the index building time, we
need to estimate δp which is the average time spent per
string in A when building the index. To do so, we take a
small random sample of strings Y from A (where | Y | is
min{0.1 ∗ | A |, 1K}), then measure the time it takes to
index each string a ∈ Y (i.e., the time taken to insert each
token in the prefix of a into the index), and take the average.

Estimating µp: To estimate the index probing time, we

need to estimate µp which is the average time spent per
string in B when probing the index. To do so, we take a
small random sample of strings Z from B (where | Z | is
min{0.1 ∗ | B |, 1K}), then measure the time it takes to
probe each string b ∈ Z (i.e., the time taken to probe each
token in the prefix of b) in the index built over strings in
sample Y (used for estimating δp), and take the average.

6. PRUNING AND VERIFICATION
Recall that to match two sets of strings A and B, we inter-

act with the user to learn a random forest F , then execute
F over A and B. In particular, we break the execution of F
into two steps: pruning and verification. We now describe
how to perform these two steps efficiently.

The Pruning Step: Suppose random forest F has n trees.
For ease of exposition, suppose we need at least dn/2e trees
in F to match, in order for F to match. We can easily prove
that if the pruning step executes at least (bn/2c+ 1) trees,
then any string pair not output by this step (i.e., not output
by any of these trees) cannot be a match.

To minimize the run time of pruning, we will execute ex-
actly (bn/2c + 1) trees in this step (Section 7.1 shows that
executing more trees incurs longer total join execution time.)

Specifically, let T be the set of all trees in random forest
F . We will select a subset T ′ ⊆ T of (bn/2c + 1) trees for
pruning, such that the time taken to apply the trees in T ′ to
A and B to produce a set of pairs J , plus the time taken to
apply the remaining trees in T \T ′ to set J is minimized. Let
these two times be time(T ′) and time(T \ T ′), respectively.
We estimate time(T ) by applying the procedure in Section
5.3 to generate a good execution plan P for the set of trees
T , then take the estimated runtime of P (using the cost
estimation procedure in Section 5.4) to be time(T ). We
estimate time(T \ T ′), the verification time, as described
later in this section.

The problem is that there are too many possible subsets
of trees of size (bn/2c + 1). So we cannot enumerate and
estimate time(T ′) + time(T \T ′) for all of them, then select
the one with the lowest total time. As a result, we select T ′

using greedy search. First, we assign T ′ to be the set of all
trees T . Then in each iteration we remove the tree t from T ′

that results in the largest reduction of time(T ′) + time(T \
T ′), until we have removed (dn/2e − 1) trees. Let T ′∗ be the
remaining set of trees. We perform pruning using T ′∗, i.e.,
we generate an efficient execution plan for T ′∗ (see Section
5) then execute it on A and B.

The Verification Step: Suppose that executing T ′∗ trees
in the pruning step produces a set of pairs J . We now con-
sider how to execute the remaining trees on J . We begin by
noting that the optimization procedure in Section 5, which
finds a good plan to execute a set of trees over two sets of
strings A and B, can easily be adapted to find a good plan
to execute a set of trees over a set of string pairs J .

Now let U be the set of the remaining trees to be executed
on set J . Similar to how we execute trees in the pruning step,
here we can simply use the above optimization procedure to
generate a single plan P that executes all the trees in U
in a combined fashion (i.e., reusing computation). A better
solution however is to apply the trees sequentially to avoid
applying all trees in U to all pairs in J .

Example 7. Consider a forest F of 10 trees, where at
least 5 trees must match in order for F to match. Then the
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Table 1: Overall performance of Smurf vs. Falcon on six datasets.

pruning step executes 6 trees to produce a set of pairs J .
Consider a pair p1 ∈ J matched by 4 trees in pruning. Then
we can declare p1 a match as soon as one of the remaining
4 trees matches p1. Consider a pair p2 ∈ J matched by just
one tree in pruning. Then we can declare p2 a non-match as
soon as one of the remaining 4 trees predicts it a non-match.

Thus we will order and execute the trees in U sequentially.
In particular, we want to find the tree sequence that min-
imizes the total execution time. This problem is NP-hard
(see [42]). As a result, we employ a greedy approach. Specif-
ically, let M be the output of applying a tree sequence
〈t1, . . . , ti〉 to set J , i.e., (a) M contains all pairs in J for
which we still cannot make a match/non-match decision,
and (b) J \ M contains all pairs in J for which we have
already made a match/non-match decision (after execut-
ing sequence 〈t1, . . . , ti〉, see Example 7). Then we refer to
|J \M |/|J | as the pruning rate of the sequence 〈t1, . . . , ti〉
and denote this rate as d(〈t1, . . . , ti〉). Let w(ti) be the av-
erage runtime of tree ti on a string pair.

Intuitively, we want to be able to make match/non-match
decisions as soon as possible, for as many pairs as possible.
So we want to start with the trees with the highest pruning
rates. But we need to balance this against the runtimes of
those trees. Thus, we select the tree sequence as follows.
First, we select a tree ti that maximizes d(〈ti〉)/w(ti). Then
we select another tree tj that maximizes d(〈ti, tj〉)/w(tj),
etc., until we have selected all trees in U . This forms the
sequence Ū to be executed in the verification step.

Recall from Section 6 that when considering whether to
select a subset of trees T ′ for pruning, we need to estimate
the total runtime of executing the remaining trees, U =
T \T ′, in the verification step. To do this, we first find a good
tree sequence Ū , as described above. Let Ū = 〈t1, . . . , tk〉.
Then we estimate the runtime of Ū on set J as |J | · z, where
z = w(t1) + (1− d(〈t1〉)) · w(t2) + (1− d(〈t1, t2〉)) · w(t3) +
· · · + (1− d(〈t1, . . . , tk−1〉)) · w(tk).

7. EMPIRICAL EVALUATION
We experiment with the six datasets described in the first

four columns of Table 1. Addresses describes street ad-
dresses from Yelp and Yellow Pages. Researchers describes
the names of researchers at a university. Citations is derived
from the dataset used in [13]. Names describes full names
from the US Census Bureau [1], and Products and Songs
are derived from the datasets used in [14]. The column “#
Matches” lists the number of gold matches in each dataset.
Smurf was implemented in Cython. All experiments were
run on a machine with Ubuntu 14.04.4, two Intel Xeon E5-
2630 CPUs (8 cores, 2.4GHz), and 32GB of memory.

7.1 Overall Performance
We begin by showing that (a) Smurf achieves comparable

F1 accuracy, yet drastically reduces the user labeling effort,
by 42.8-75.6%, compared to Falcon, and (b) Smurf is signifi-
cantly more accurate than single-predicate SM solutions, by
1.15-22.4% in absolute F1.

Smurf vs Falcon: In the experiments below, both Smurf
and Falcon use random forests of 10 trees (the default in
many learning packages, e.g., scikit-learn), and learn the
forests using synthetic users with 0% error rate in labeling.
(We experiment with real users below, and Section 7.2 ex-
periments with a varying number of trees and with error
rates of up to 20% in user labeling.)

In Table 1, the columns under “Falcon” and “Smurf” show
the accuracy in P,R, F1. They show that Falcon and Smurf
achieve comparable F1 accuracy across the six data sets
(67.18-99.91% F1 vs. 65.08-99.01% F1). Interestingly, Smurf
achieves higher recall than Falcon (e.g., 99.79% vs. 85.2%
on Songs, 64.04% vs. 52.51% on Products), which in turn
achieves higher precision than Smurf. This is because Smurf
considers many more paths in the random forest before de-
ciding to prune a string pair, whereas Falcon prunes pairs
in the blocking step by considering only a few paths in the
random forest.

Columns “# Pairs” (in red color) show the number of
string pairs that the user has to label: Smurf dramatically
reduces the total number of labeled pairs by 42.8-75.6% com-
pared to Falcon (see the last column). For example, on Ad-
dresses Falcon requires 1050 labeled pairs, whereas Smurf
requires only 440, a 58.1% reduction. On Researchers, it is
820 vs. 200, a 75.6% reduction. Finally, columns “Runtime”
show that Falcon and Smurf are comparable across the six
data sets (46-10,140 secs vs. 63-11,700 secs).

Experiments with Domain Scientists: In a recent
project, a team of economists at UW-Madison led by Dr.
Brent Hueth had to match two sets of organization names
of size 21,531 and 2,617. Using Falcon, they had to label
680 string pairs, achieving 97.7% F1 (96.4% precision and
99.2% recall), with a machine time of 11 min. In contrast,
Smurf only required labeling 300 pairs (a 55.8% reduction
in labeling effort), achieving 97.9% F1 (98.3% precision and
97.7% recall), with a machine time of 1 min 32 sec.

Smurf vs Single-Predicate Solutions: Recall that
the most common prior SM solution is to apply a single-
predicate join condition, e.g., jacc 3gram(a, b) > 0.8, to A
and B. We now examine how this solution compares to
Smurf. To do so, for each dataset we find the best single-
predicate join condition by an exhaustive search. Specifi-
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Figure 10: Runtimes of Smurf versus baselines that use existing solutions on rule execution.

Table 2: Selecting a subset of trees for pruning.

cally, we consider 25 features, each created by pairing one
of six common tokenization method (e.g., 2-gram, 3-gram,
word, numeric, etc.) with one of five common similarity
measures (e.g., Jaccard, edit distance, cosine, etc.). For each
feature f , we consider all predicates of the form f ≥ t, where
t ranges from 0.1 to 1 in increments of 0.01 (edit distance
was converted into a similarity measure for this purpose).
We then find the predicate with the highest F1 accuracy.

The results (not shown for space reasons) show that Smurf
consistently outperforms the single-predicate solution, e.g.,
by 1.15% in absolute F1 for Citations and by 10.5-22.4%
for the other datasets. The tech report [42] shows that this
improvement is indeed due to the fact that Smurf can use
multiple predicates in the join condition.

7.2 Executing Random Forests
We now evaluate the performance of executing a random

forest, which is the main technical contribution of this work.

Comparing to Prior Work: As discussed in Section 4,
no published work has optimized the execution of a set of
matching rules. But two recent works, Falcon and RAR [14,
32], have optimized the execution of a single rule. We use
these works to build four baselines for comparison. Basic-
Trees does not do pruning. It executes all trees in the ran-
dom forest on A and B. To do so, it extracts the matching
rules of the trees, executes all of them, then merges their
outputs. To execute a rule r, it creates and executes an
optimized plan for r as described in Section 5.1. As such,
BasicTrees is equivalent to the Falcon variation that uses
ApplyGreedy [14]. But it is not Falcon; rather, it uses the
rule execution part of Falcon to execute all matching rules
extracted from the random forest. (We also experimented
with the ApplyAll variation [14] but it was outperformed by
ApplyGreedy in our settings and is not discussed further.)

RAR is similar to BasicTrees, but when executing an indi-
vidual rule it uses the holistic prefix index solution of [32].
SmartTrees and SmartRAR are versions of BasicTrees and
RAR that use pruning. They first execute a set of (bn/2c+1)
trees (the same set of trees used by Smurf for blocking) to A
and B to obtain a set of pairs J , then apply the remaining
trees to J . They differ from Smurf only in that they do not
execute the rules of the trees in an optimized fashion (i.e.,
no reuse, see Section 4).

Figure 10 compares the runtimes as we increase the dataset
size. Here a value 4x on the x-axis means that we replicate

the original dataset 4 times, by using random perturbations
(e.g., inserting/deleting characters) of the original strings.
For space reasons we only show the results for three datasets.

The results show that Smurf significantly outperforms the
four baselines, and this gap increases as the dataset size
increases, e.g., at dataset size of 10x, Smurf performs 6-32
times better than BasicTrees (i.e., Falcon), 3-25 times better
than SmartTrees, 4-17 times better than RAR, and 2-13
times better than SmartRAR. It is clear that executing the
trees in a joint fashion (to reuse computations), as Smurf
does, is absolutely critical for scaling.

Performance of the Components: We now “zoom in”
to examine the random forest execution in more details.

(a) Pruning: Pruning drastically reduces the number of
pairs to be considered, from 56M-727M for A×B to 4,887-
25,763 pairs. Using pruning, SmartTrees significantly out-
performs BasicTrees, and similarly SmartRAR outperforms
RAR (see Figure 10).

Table 2 examines how well Smurf selects a subset of trees
for pruning. It shows the runtime (in secs) of Smurf vs
three Smurf variations. Smurfrand uses a random subset
of (bn/2c + 1) trees for pruning. Smurfsel selects the first
(bn/2c+1) trees in decreasing order of their pruning power.
Smurftime selects the first (bn/2c+ 1) trees in increasing or-
der of their average execution time (as we want to reduce
the pruning time). The results show that Smurf always out-
performs the three variants, often by a large margin (e.g.,
by 38-51% for Citations), suggesting that Smurf selects good
subsets of trees for pruning.

(b) Verification: We found that executing the trees in the
verification step in a sequential, instead of combined, fash-
ion reduces runtime by 8-20%, suggesting that sequential
execution is effective. To examine how well Smurf orders
the trees, we compare it with three variations that order the
trees (a) randomly, (b) in decreasing order of their pruning
power, and (c) in increasing order of average execution time.
For Addresses and Citations, Smurf is the best (9-15% faster
compared to the second best). For Researchers Smurf is the
second best (11% slower than the best). This suggests that
Smurf selects a reasonable sequence of trees.

(c) Optimization: Table 3 examines the effect of execut-
ing a set of trees in a joint optimized fashion, on the 10x
versions of three datasets. Columns “BT” and “ST” show
that BasicTrees and SmartTrees incur significant runtimes,
and that optimization (i.e., Smurf) drastically reduces these
times to 158-3,333 secs (see Column “O”), a major reduction
of 37-88%. The next four columns show the runtimes when
we turn off each type of optimization: join reuse (O1), inter-
path filter reuse (O2), ordering filters (O3), and intra-path
filter reuse (O4). Comparison with Column “O” shows that
all four optimization types are useful, and that the effects
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Table 3: Runtimes of the components (in seconds).

of some are quite significant (e.g., O1 on all three data sets,
O3 on Researchers and Citations).

Sensitivity Analysis: We have performed extensive sen-
sitivity analysis and found that Smurf is robust to changes
in the sample size (from 50K to 1M pairs), the error rate
of user labeling (0%-20%), the number of trees in the RF
(1-25), and number of trees in the pruning step (6-10). For
space reasons we defer a detailed discussion to [42].

7.3 Discussion & Additional Experiments
Extending Smurf to Entity Matching: We found that
(1) Smurf can be extended to EM, (2) it can achieve accu-
racy comparable to that of Falcon (while drastically reduces
the labeling effort), but (3) more future work is required to
examine how best to extend Smurf to EM.

Specifically, we performed Steps 1©- 2© of Falcon to learn
a random forest F . Then we executed F directly over the
tables A and B. The solution in Sections 4-6 can be min-
imally modified to do this, by revising the reuse strategies
to be “attribute aware”, e.g., in join reuse, we can merge
two nodes joinedit dist<5 and joinedit dist<7 only if the two
“edit dist” features refer to the same attributes.

Surprisingly, we achieved significantly lower EM accura-
cies than Falcon (which executes Steps 1©- 6©), e.g., 74.04%
vs. 81.51% F1 on Products. We found that this was mainly
because the current sampling strategy is suboptimal. For
string matching, the sample S on which Smurf does active
learning is quite representative of the matches between A
and B. However, for EM, S is not as representative (since
it is taken in a way that is not “attribute aware”, by con-
catenating all attributes and treating the entire tuple as a
string), so the random forest F learned on S is not a very
good matcher, resulting in lower EM accuracy. (This prob-
lem does not arise in Falcon; there we do not use F as a
matcher; we use it only to generate blocking rules, and we
can generate good rules even if F is not a good matcher.)

To address this problem, we modified the sampling strat-
egy to be “attribute aware” (see [42] for details), so that
sample S has more matches and is more representative of the
matches between A and B. The result is highly promising.
On the three datasets Products, Songs, and Citations (con-
sidered by the Falcon paper [14]), Falcon achieves 81.51%,
98.8%, 94.5% F1, whereas Smurf achieves 80.04%, 97.16%,
92.43% F1, only 1.47-2.07% lower than Falcon.

The above results suggest that Smurf can achieve accura-
cies comparable to Falcon (while reducing labeling effort).
But more work is required to examine how best to extend
Smurf to EM. First, we need to examine if the sampling
strategy can be improved; that can raise Smurf’s accuracy
even more. Second, in the execution step Smurf creates and
loads multiple indexes into memory. In the EM context,
however, we found that the number of indexes and their
sizes can be quite large (compared to the SM context), and
not all of these indexes can fit into memory, raising the
challenge of how to manage them effectively. Finally, we

need to empirically evaluate how well the modified Smurf
performs compared to existing baselines (e.g., SmartTrees,
SmartRAR) runtime-wise for EM. We leave these as future
work outside the scope of this paper.

Executing a Random Forest over Structured Data:
We are examining extending the solution in Section 4-6 to
the general setting of executing a RF over structured data.
We found that this is indeed possible, but that more work
is required to examine how best to do this extension.

Specifically, we consider the general setting of multiple
tables, where some are linked via key-foreign key (FK) rela-
tionships, e.g., A(x,y), B(u,v), C(p,q), where A.y and B.u
are linked via the FK constraint. We define an instance
to be a set of tuples (one from each table) that satisfy the
constraints, e.g., (tA, tB , tC), where tuple tA is from A and
linked to tB from B via the FK constraint, and tC is an
arbitrary tuple from C. We define a feature to be a func-
tion that takes as input an instance and outputs a value
(e.g., computing a score between A.x and B.v). Let F be a
binary RF classifier whose predicates involve such features
(e.g., learned using [36, 41, 49]).

We consider how to execute F fast over the above tables.
(The output of F is the set of instances classified as true.) In
adapting the solution in Sec. 4-6, we observe that the idea
of pruning and verification (Sec. 4) still applies. Similar
to the case of EM, here the reuse strategies (Sec. 5) must
be modified to be “attribute aware”. But unlike EM, here
the features can be more general (e.g., not string similarity
measures), and so the modifications will be more complex.
For example, when can a feature f be used in a join operator
(see Sec. 5.1)? We propose that when such features are
defined, the developer should supply indexes, if any (similar
to the way we supply indexes for string similarity measures).
Then feature f can be used in a join operator if (a) an index
exists for f , or (b) no index exists but the join combines
two or more tables linked via FK constraints (in this case
we can use the indexes created by the FK constraints to
avoid enumerating all tuple combinations). Reuse strategies
need to take these into consideration. The search strategy
(to find a good plan) remains the same, but the estimation
of cost model parameters and plan execution will have to be
modified (e.g., to manage out-of-memory indexes). While
we are working on these issues, we consider them outside
the scope of this paper.

8. CONCLUSIONS & FUTURE WORK
We argued for self-service string matching, and showed

that single-predicate solutions achieve limited accuracy. We
showed that Falcon, the best current self-service EM solu-
tion, can achieve higher accuracy, but that it often asks lay
users to label too many string pairs. We developed Smurf, a
self-service SM solution that drastically reduces the number
of pairs to be labeled, yet achieves comparable accuracy. At
the heart of Smurf is a novel method to efficiently execute a
random forest over two large sets of strings. Going forward,
we plan to explore more optimization/execution techniques
for random forests, the machine cluster setting, and the fu-
ture directions discussed in Section 7.3.

Acknowledgments: We thank Guoliang Li and Jian He
for helping with the experiments. This work is supported
by UW-Madison UW2020 grant and NSF grant IIS-1564282.

289



9. REFERENCES
[1] Names dataset.

https://catalog.data.gov/dataset/.

[2] A. Arampatzis and A. van Hameran. The
score-distributional threshold optimization for
adaptive binary classification tasks. In SIGIR, 2001.

[3] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, 2006.

[4] N. Augsten, A. Miraglia, T. Neumann, and
A. Kemper. On-the-fly token similarity joins in
relational databases. In SIGMOD, 2014.

[5] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and
J. Widom. Adaptive ordering of pipelined stream
filters. In SIGMOD, 2004.

[6] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In WWW, 2007.

[7] L. Breiman. Random forests. Mach. Learn.,
45(1):5–32, 2001.
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