
Executing Entity Matching End to End: A Case Study
Pradap Konda1, Sanjay Subramanian Seshadri2, Elan Segarra3, Brent Hueth3, AnHai Doan3

1Facebook, 2NetApp, 3University of Wisconsin-Madison, U.S.A.

ABSTRACT
Entity matching (EM) identifies data instances that refer to the
same real-world entity. Numerous EM works have covered a
wide spectrum, from developing new EM algorithms to scaling
them to building EM systems. But there has been very little if
any published work on how EM is carried out in practice, end to
end. In this paper we describe in detail a case study of applying
EM to a particular domain end to end (i.e., going from the raw
data all the way to the matches).

Specifically, we describe a real-world application for EM in the
science policy research community. We describe how our team
(the EM team) interact with the science policy team to carry out
the EM process, using PyMatcher, a state-of-the-art EM system
developed in theMagellan project at UW-Madison. We highlight
the communication between the two teams and the zig-zag nature
of the EM process. We identify a set of challenges that we believe
arise inmany real-world EM projects but that current EM systems
have either ignored or are not even aware of. Finally, we provide
all data underlying this case study, including labeled tuple pairs
and documentation supplied by the science policy team, to serve
as a good challenge problem for EM researchers.

1 INTRODUCTION
Entity matching (EM) identifies data instances that refer to the
same real-world entity, such as (David Smith, UW-Madison) and
(D. M. Smith, UWM). EM has been a long-standing challenge in
data management [6, 11], and will become even more important
in data science. This is because many data science projects need
to integrate data from disparate sources before analysis can be
carried out, and such integration often requires EM.

Consequently, EM has received enormous attention (see Sec-
tion 2). Surprisingly, as far as we can tell, there has been very
little if any published work on how EM is carried out in practice,
end to end. The closest that we can find are works that perform
EM in a particular domain, e.g., e-commerce, mobile data, pa-
tient records, drugs, etc. But these works focus on developing
specialized EM algorithms that exploit the characteristics of the
target domain, e.g., exploiting product taxonomies (to match e-
commerce products) or the spatio-temporal nature of mobile data
(to match phone calls).

In this paper we describe in detail a case study of applying
EM to a particular domain, end to end (i.e., going from the raw
data all the way to the matches). This case study is quite rich,
and it clearly demonstrates many novel challenges for current EM
solutions and systems. We will soon release all the data underlying
this case study (to be available at [20]), so that our community
can use it as a challenge problem for EM.

Specifically, in summer 2015 we started theMagellan project
at the University of Wisconsin-Madison, to build EM systems.
We believe that building practical EM systems is critical for ad-
vancing the EM field, the way systems such as System R, Ingres,

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Hadoop, and Spark are critical for advancing the fields of rela-
tional data management and Big Data. Subsequently, we built
an EM system called PyMatcher [17], which is quite different
from EM systems built so far (see Section 2). We then looked for
real-world applications to “test drive” PyMatcher.

To do so, we talked with the science policy research commu-
nity, which has been building a large “data lake” called UMET-
RICS. Currently UMETRICS collects data from 24 participating
U.S. universities, on research grants and the researchers involved
in these grants. They use the data to study questions such as
“What are the results of investments in research?” and “How
do universities affect the regional economy?”, and indeed many
studies have been published using UMETRICS data (e.g., [30]).

Building UMETRICS requires matching grants across different
datasets. The UMETRICS team (at the University of Michigan)
has developed and deployed a rule-based EM workflow, but its
accuracy is not satisfactory. So we collaborated with a science pol-
icy team at UW-Madison to build a more accurate EM workflow,
using PyMatcher.

This workwas eye-opening to us. Before starting this work, we
already felt that existing EM systems were not powerful enough
because they failed to address many challenges that arise in real-
world EM [17]. That was why we started theMagellan project.
Working with UMETRICS suggested to us that we were probably
on the right track, but that real-world EM does raise many more
challenges that we have also failed to recognize.

These challenges apply equally well toMagellan and other ex-
isting EM systems. We discuss the challenges in detail in Section
13, covering the need to develop how-to guides (that provide de-
tailed guidance to the users on how to carry out EM step by step,
end to end), new pain points in EM (e.g., labeling, match defini-
tion), the need for different EM solutions for different parts of the
data, support for easy collaboration among multiple team mem-
bers (who are often in different locations), handling changes that
inevitably arise during the EM process, managing machine learn-
ing “in the wild”, the need to use both learning and hand-crafted
rules, and the need to design a new type of EM architecture. In
summary, we make the following contributions:

• We describe a real-world application for EM in the science
policy community. We describe what the users want in
terms of EM, how their goals change over time, and what
end results they are aiming for.
• We describe in detail how our team (the EM team) interacts
with the science policy team (the UMETRICS domain ex-
pert team) to carry out the EM process, using PyMatcher,
a state-of-the-art EM system developed in our group. We
highlight the communication between the two teams and
the zig-zag nature of the EM process.
• We identify a set of challenges that we believe arise in
many real-world EM projects but that current EM systems
have either ignored, or are not even aware of, or have not
addressed well. While in this paper we have focused on
just one case study, in the past few years we have worked
with many more real-world EM cases, and the challenges
described here also commonly arise in those cases.

• Finally, we provide all data underlying this case study,
including all the labeled tuple pairs and documentation
supplied by the domain expert [20]. This dataset can serve
as a good challenge problem for EM researchers.

Overall, we hope that the case study here can contribute to help-
ing EM researchers understand better the challenges of the EM
process and develop more effective EM solutions. The UMET-
RICS data and Jupyter notebooks will be available at [20], and a
technical report with far more details will be available at [19].

2 BACKGROUND & RELATEDWORK
We now discuss the EM problem, related work, then PyMatcher,
which was used to perform EM for the case study.

Entity Matching: This problem, a.k.a. entity resolution, record
linkage, etc., has received enormous attention (see [6, 11] for
books and surveys). A common EM scenario finds all tuple pairs
(a,b) that match, i.e., refer to the same real-world entity, between
two tables A and B (see Figure 1). Other EM scenarios include
matching tuples within a single table, matching into a knowledge
base, matching XML data, etc. [6].

Most EMworks develop matching algorithms, exploiting rules,
learning, clustering, crowdsourcing, among others [6, 11]. They
try to improve the matching accuracy and reduce costs (e.g.,
run time). Trying to match all pairs in A × B often takes very
long. So users often employ heuristics to remove obviously non-
matched pairs (e.g., products with different colors), in a step
called blocking, before matching the remaining pairs. Several
works have addressed scaling up blocking (e.g., [3, 8, 16, 29]),
learning blockers [4, 9], and using crowdsourcing for blocking
[13] (see [7] for a survey).

Many works have considered EM for a particular domain, such
as e-commerce (e.g., [10, 15, 21, 22]), patient records [24], finan-
cial entities [12], medical sciences [5], drugs [26], and more. But
they do not focus on the entire end-to-end process, the interac-
tion between the EM team and the domain expert team, and on
identifying the challenges for current EM systems, as we do in
this paper.

In contrast to the extensive effort on EM algorithms, there
has been relatively little work on building EM systems. As of
2016 we counted 18 major non-commercial systems (e.g., D-Dupe,
DuDe, Febrl, Dedoop, Nadeef), and 15 major commercial ones
(e.g., Tamr, Data Ladder, IBM InfoSphere) [6]. Our examination
of these systems (see [18]) reveals the following four major prob-
lems: these systems do not cover the entire EM pipeline, they
are stand-alone monolithic systems and hence they make it very
difficult to exploit a wide range of techniques, it is very difficult to
write code to “patch” these systems even though this is often nec-
essary in practice, and these systems provide very little guidance
to users on how to execute the EM process. These shortcomings
motivated us to develop theMagellan project, which we briefly
describe next.

The Magellan Project (PyMatcher and CloudMatcher): In
the Magellan project we developed an on-premise Python-based
EM system called PyMatcher and a cloud-based self-service sys-
tem called CloudMatcher. In this paper we only used the Py-
Matcher system, which we briefly describe below.

Compared to current EM systems, PyMatcher is novel in four
aspects. (1) It provides how-to guides that tell users what to do in
each EM scenario, step by step. (2) It provides tools to help users
do these steps; the tools seek to cover the entire EM pipeline, not

Name City State

Dave Smith Madison WI

Joe Wilson San Jose CA

Dan Smith Middleton WI

Name City State

David D. Smith Madison WI

Daniel W. Smith Middleton WI

a1

a2

a3

b1

b2

Matches

(a1, b1)

(a3, b2)

Table A Table B

Figure 1: An example of matching two tables.

just matching and blocking as current EM systems do. (3) Tools
are built into the ecosystem of data science tools in Python, allow-
ing PyMatcher to borrow powerful capabilities in data cleaning,
visualization, learning, etc. (4) PyMatcher provides a powerful
scripting environment to facilitate interactive experimentation
and quick “patching” of the system. See [14, 17] for more, and see
sites .дooдle .com/site/anhaidдroup/projects/maдellan for code.

3 PROBLEM DEFINITION
We now introduce the science policy research community, their
effort to conduct data-driven research by creating a large data lake
called UMETRICS, their need to perform EM to build UMETRICS,
and the EM problem considered in this paper.

The Science Policy Research Community: A large country
such as the U.S. spends hundreds of billions of dollars on science
R&D (i.e., research & development) per year. It is important to be
able to track the impact of this spending and develop effective
science R&D policies. The science policy research community
studies such issues.

UMETRICS: To do so effectively, in the past decade, this com-
munity has been building a data science infrastructure centering
around a large data lake called UMETRICS, which stands for
“Universities: Measuring the Impacts of Research and Innovation,
Competitiveness and Science” [2].

Currently UMETRICS collects data from 24 participating uni-
versities, specifically data on (a) all people paid and all purchases
from vendors and subcontracts for all federally funded grants, and
(b) the specific job titles and the source of funding for research
projects at the universities. As such, the data can be used to study
questions such as “What are the results of investments in re-
search?” and “How do universities affect the regional economy?”,
and indeed many studies have been published using UMETRICS
data (e.g., [30]).

The Need for Entity Matching: While highly promising,
building UMETRICS require a lot of work to integrate the data
submitted by the 24 participating universities. For example, if
UW-Madison submits a table that lists research grants from the
National Science Foundation (NSF), then those grants must be
matched into existing grants already in UMETRICS.

This matching is highly non-trivial. For example, the same
research project can have different research titles recorded in
UMETRICS and at universities. As another example, a grant given
by a funding agency to a research project may be distributed to
many smaller projects in the same university, and this infor-
mation will be recorded in multiple entries in UMETRICS, so
matching these entries is not trivial.

The Need to Improve the Current EM Solution: Currently
the UMETRICS team (at the University of Michigan) performs
suchmatching using hand-crafted rules. But the accuracy remains
unsatisfactory. As a result, a team led by Professor Brent Hueth
(in the Department of Agricultural and Applied Economics at
UW-Madison and a co-author of this paper) set out to examine
how to improve the accuracy of this EM solution.

Matching the USDA Dataset with the UMETRICS Dataset:
As a concrete project, they first selected a dataset that contains
grants awarded to UW-Madison fromUSDA (the U.S. Department
of Agriculture) in a certain time period. We will refer to this
dataset the USDA dataset.

Next, they wanted to match grants in this USDA dataset into
UMETRICS. To do so, they performed a simple selection inUMET-
RICS to select all grants awarded to UW-Madison by USDA in the
same time period (UMETRICS allows such selections). For sim-
plicity, let us call this new dataset the UMETRICS dataset. Next,
the team wanted to match grants between the USDA dataset and
the UMETRICS dataset. Their goal is to find a new EM workflow
that is more accurate than the current rule-based EM workflow
(deployed in UMETRICS).

This team, which we will call the UMETRICS team, consisted
of Professor Brent Hueth, a Ph.D. student in economics, and an
hourly student in CS. Initially, we did not get closely involved
in the EM process. Instead, we let the UMETRICS team try to
match the two datasets themselves. We only provided advice for
specific problems such as debugging the matches and evaluating
the match results. However, after multiple meetings, we observed
that the UMETRICS team simply did not know how to perform
EM in a systematic fashion. They had no idea what to do first,
what to do second, etc., even though they had a CS student in
the team who has learned about EM in a data science class.

So we decided to get involved. Our team, which we will call
the EM team, consisted of Professor AnHai Doan, a Ph.D. stu-
dent in CS, and an hourly student in CS. Our team took over
the matching work. We viewed the UMETRICS team as domain
experts, and consulted with them in that capacity (by meeting
for an hour per week and via emails). Our goal here is to simulate
and understand the collaboration between an EM team and a
domain expert team, as such settings commonly occur in real-
world matching projects. Henceforth “we” refers to the EM team
(in CS), when there is no ambiguity.

We decided to use PyMatcher to perform EM, by following
its how-to guide (see the PyMatcher’s homepage for this guide).
In the following sections, we discuss the steps we followed. We
intentionally discuss them in details, to show all the steps that hu-
man users must perform. We also discuss them in chronological
order to show how zig-zag the process was. Finally, we discuss
details such as where the files were stored, how the two teams
communicated, to highlight the logistic aspects of executing such
an EM project in a distributed fashion.

4 UNDERSTANDING THE DATA
We received the raw data from the UMETRICS team in a Google
Drive folder. We started by exploring to understand the tables
in the datasets, specifically to understand the “entities” in these
tables and the relationships among the entities.

We first opened the raw data and found six CSV tables with the
“UMETRICS” prefix and one CSV table with the “USDA” prefix.
From the table names, we assumed that the names with the
“UMETRICS” prefix correspond to UMETRICS-related tables and
the name with the “USDA” prefix corresponds to the USDA table.

Next, we explored each table to obtain a brief understanding of
the information included in it and the data values of its columns.
Specifically, we browsed a few sample rows that were randomly
selected from the table and examined general statistics such as
the number of unique values, number of missing values, mean,
median, etc., for each column.

UMETRICS

Table Name Num. Rows Num. Cols
UMETRICSAwardAggMatching 1336 13
UMETRICSEmployeesMatching 1454070 13
UMETRICSObjectCodesMatching 4574 3
UMETRICSOrgUnitMatching 264 5
UMETRICSSubAwardMatching 21470 23
UMETRICSVendorMatching 377746 21

USDA

Table Name Num. Rows Num. Cols
USDAAwardMatching 1915 78

Figure 2: Summary of the original UMETRICS and USDA
tables given by the UMETRICS team.

Figure 2 lists the number of rows and columns for each table.
Figure 3 shows a few rows from UMETRICS tables, and Figure 4
shows a few rows from the USDA table.

To explore the smaller tables (which have fewer than 300K
tuples), we used pandas [25] and MS Excel. To explore the larger
tables, we used SQLite. To profile the tables, we used the pandas-
profiling tool [1] and custom Python scripts.

The UMETRICS Tables: The schemas of the six UMETRICS
tables are as follows:
UMETRICSAwardAggMatching(UniqueAwardNumber,AwardTitle,
FundingSource,FirstTransDate, LastTransDate,
RecipientAccountNumber,TotalOverheadCharged,
TotalExpenditures,NumberOfTransactions,
DataFileYearEarliest, DataFileYearLatest,
SubOrgUnit, CampusID)

UMETRICSSubAwardMatching(UniqueAwardNumber, Address,
BldgName, City, Country, DUNS, DomesticZipCode, EIN,
ForeignZipCode, ObjectCode, OrgName, OrganizationID,
POBox, PeriodEndDate, PeriodStartDate, RecipientAccountNumber,
SrtName, SrtNumber, State, StrName, StrNumber,
SubAwardPaymentAmount, DataFileYear)

UMETRICSOrgUnitsMatching(CampusId, SubOrgUnit, CampusName,
SubOrgUnitName, DataFileYear)

UMETRICSEmployeeMatching(UniqueAwardNumber, PeriodStartDate,
PeriodEndDate, RecipientAccountNumber,
DeidentifiedEmployeeIdNumber, FullName,
OccupationalClassification, JobTitle, ObjectCode,
SOCCode, FteStatus, ProportionOfEarningsAllocated,
DataFileYear)

UMETRICSVendorMatching(UniqueAwardNumber, PeriodStartDate,
PeriodEndDate, RecipientAccountNumber, ObjectCode,
OrganizationID, EIN, DUNS, VendorPaymentAmount,
OrgName, POBox, BldgNum, StrNumber, StrName, Address,
City, State, DomesticZipCode, ForeignZipCode, Country,
DataFileYear)

UMETRICSObjectCodesMatching(ObjectCode, ObjectCodeText,
DataFileYear)

Entities of the UMETRICS Tables: Based on our exploration
and profiling of the UMETRICS tables, we inferred the entities of
each table as much as we could. “UMETRICSAwardAggMatch-
ing” included information about awards, i.e., research grants. It

Figure 3: Example rows from the UMETRICS tables.

Accession
Number

Project Title Sponsoring
 Agency

Funding
 Mechanism

Award
Number

Initial
Award

Fiscal Year

Recipient
Organization

Recipient
DUNS

Project
Director

Multistate
Project

 Number

Project
Number

Project
Start Date

Project
End Date

Project
Start
Fiscal
Year

… … Financial: USDA
Contracts,

Grants, Coop Agmt

175763 GENETIC
ORGANIZATION
AND EPIGENETIC
SILENCING OF
MAIZE R GENES

State
Agricultural
Experiment
Station

State Funding NaN NaN SAES –
UNIVERSITY
OF WISCONSIN

NaN Kermicle,
J.L

NaN WIS04059 1997-07-01 2010-09-30 1997 … … NaN

190977 The Changing
Location and Extent
of the Wildland-
Urban Interface
During the 1990's

State
Agricultural
Experiment
Station

State Funding NaN NaN SAES –
UNIVERSITY
OF WISCONSIN

NaN Hammer,
R

NaN WIS04593 2001-10-01 2011-09-30 2002 … … NaN

Figure 4: Example rows from the USDA table.

included funding information for the research projects in the uni-
versity. “UMETRICSSubAwardMatching” included information
about how the awards are split into multiple sub-awards to fund
the research projects.

“UMETRICSOrgUnitsMatching” included information about
different organization units to which the awards were given.
“UMETRICSEmployeeMatching” included information about the
employees in the university, and “UMETRICSVendorMatching”
included information about the vendors interacting with the
university. We were not clear about the information included in
the “UMETRICSObjectCodesMatching” table.

Relationships among the UMETRICS Tables: We observed
that “UMETRICSAwardAggMatching” was the central table to
which most other tables (except “UMETRICSObjectCodesMatch-
ing”) could be joined using a key-foreign key relationship. For
this table (i.e., “UMETRICSAwardAggMatching”), the attribute
“UniqueAwardNumber” was the primary key.

We found that the tables “UMETRICSEmployeeMatching,”
“UMETRICSVendorMatching,” and “UMETRICSSubAwardMatch-
ing” included the “UniqueAwardNumber” column, which could
be joined with the ”UniqueAwardNumber” of the “UMETRIC-
SAwardAggMatching” table. The table “UMETRICSOrgUnits-
Matching” included a “CampusId” column that could be joined
with “CampusId” in the “UMETRICSAwardAggMatching” table.
The table “UMETRICSObjectCodesMatching” included an “Ob-
jectCode” column that could be joined with the “ObjectCode”
column in the “UMETRICSEmployeeMatching” table.

The USDA Table: Only one table contained USDA information
(see Figure 4). This table has 78 columns. Because of space con-
straints, a partial schema of this table including a few columns is
shown below.
USDAAwardMatching(AccessionNumber, ProjectTitle,
SponsoringAgency, FundingMechanism, AwardNumber, ...,
ProjectNumber, ProjectStartDate, ProjectEndDate, ...,
ProjectDirector, ...,
Financial: USDAContracts, Grants, Coop Agmt)

5 UNDERSTANDING MATCH DEFINITION
After exploring the tables, we have obtained an understanding
of the entities and their relationships. However, we did not know
how to use these tables to match the awards (i.e., grants), e.g.,
which tables are relevant for matching? What does it mean to be
a match between the UMETRICS and USDA datasets?

In response, theUMETRICS team sent us amatching document,
which discusses the most relevant tables, provides a matching def-
inition, and provides a few sample matching and non-matching
record pairs. This document stated that only three tables (among
seven) were most relevant for matching and provided the follow-
ing matching definition.

• (M1) If a part of “UniqueAwardNumber” in UMETRICS
matches “Award Number” in USDA, then the record pair
can be considered a match. Specifically, “UniqueAward-
Number” can take the form “XX.XXX YYYY-YYYY-YYYYY-
YYYYY”. Thus if “YYYY-YYYY-YYYYY-YYYYY” matches
the “Award Number,” then the record pair is a match. An
example of such a match is shown in Figure 5.
• (M2) A number of records in USDA do not have values
for “Award Number.” In such cases, the records may be
matched by checking whether the “AwardTitle” in UMET-
RICS and the “Project Title” in USDA are similar. An ex-
ample of such a match is shown in Figure 6.
• (M3) A record pair from UMETRICS and USDA can also
be matched by comparing the individuals involved in the
project.

From the above matching definition, we could infer one positive
matching rule based onM1. Specifically, for a record pair from
UMETRICS and USDA tables, if the second part of “UniqueAward-
Number” in the UMETRICS record matches exactly the “Award
Number” in the USDA record, then the record pair could be de-
clared a match.

It is possible to use this positive rule to filter out all the positive
matches, then proceed with a smaller set for matching. However,
we did not do that because we were not sure if the match defini-
tion had been stabilized as yet. Instead, we decided to incorporate
this rule as a part of the blocking step (as we will see soon).

Apart from M1, the other two instructions (M2 and M3) in
the above matching definition are not precise. For example, in
M2, what does it mean to say “similar”? Further, if the award
and project titles match exactly, but are very generic (e.g., “Lab
Supplies”), then we still cannot conclude that the records match.
So we cannot capture these matching instructions as rules, to be
applied to the tables to obtain the matches.

As this example suggests, matching definitions are often writ-
ten in English, in a verbose and imprecise fashion. Business own-
ers often train analysts to perform matching. These analysts gain
experience over time and tune their understanding of a “match.”
They do this by exploring a wide variety of examples and check-
ing with the business owners when in doubt. This suggests that
understanding a matching definition is an iterative process that
involves continuous interaction with the business owners.

6 PRE-PROCESSING THE DATA
Recall that we were given six UMETRICS tables (describing how
the funding from different agencies was used for the research
projects at UW-Madison) and one USDA table (describing how
the funding from USDA was used for research projects at UW-
Madison).

UMETRICS USDA
field value field value

UniqueAwardNumber 10.200
2008-34103-19449 Accession Number 214335

AwardTitle

DEVELOPMENT OF
IPM-BASED CORN
FUNGICIDE
GUIDELINES FOR
THE NORTH
CENTRAL STATES

Project Title

Development of IPM-
Based Corn Fungicide
Guidelines for the North
Central States

FirstTransDate 10/1/08 Award Number 2008-34103-19449

FirstTransDate 10/1/08 Project Start Date 8/15/08

Project End Date 8/14/11
 Project Director ESKER, PAUL

Figure 5: A matching pair based on Award Number.

UMETRICS USDA
field value field value

UniqueAwardNumber 10.203 WIS01040 Accession Number 206746

AwardTitle

SWAMP DODDER
(CUSCUTA
GRONOVII) APPLIED
ECOLOGY AND
MANAGEMENT IN
CARROT
PRODUCTION

Project Title

Swamp Dodder (Cuscuta
gronovii) Applied
Ecology and
Management in Carrot
Production

FirstTransDate 10/1/07 Award Number -

LastTransDate 12/31/08 Project Start Date 10/1/06

Project End Date 9/30/08

 Project Director Colquhoun, J.

Figure 6: A matching pair based on Award Title.

Even with this moderate number of tables, the matching pro-
cess will be difficult if we have to consider all of them. So we
decided to subset the tables (i.e., selecting only a portion of in-
formation from the tables, perhaps even using just a subset of
the tables) and apply transformations to obtain only two tables
that can be used for matching. To do so, we used the matching
document provided by the UMETRICS team.

Specifically, we created two tables “UMERICSProjected” and
“USDAProjected” (later we will match these two tables), using
the following steps.

(1) First, from the six UMETRICS tables, we selected two ta-
bles judged most relevant for matching by the UMETRICS team
(as discussed in the matching document): “UMETRICSAwardAg-
gMatching” and “UMETRICSEmployeeMatching”. (Naturally we
also keep the table “USDAAwardMatching”.)

(2) Next, we checked that “UniqueAwardNumber” and “Ac-
cession Number” were indeed the key columns in the “UMET-
RICSAwardAggMatching” and “USDAAwardMatching” tables,
respectively. We also checked that “UniqueAwardNumber” was
indeed a foreign key in the “UMETRICSEmployeesMatching”
table with valid values, and could be joined with the “UMETRIC-
SAggAwardMatching” table. We used PyMatcher and pandas to
perform these validations.

(3) Then we checked the four remaining UMETRICS tables to
see if they contained any information useful for matching. To
do this, we manually examined the names of the attributes of
these four UMETRICS tables and compared these names to the
names of the attributes of the USDA table, to find attribute pairs
with similar names. We found that “Recipient Organization” and

“Recipient DUNS” from theUSDA tablewere similar to “OrgName”
and “DUNS” in the “UMETRICSVendorMatching” table1.

Next, we checked if the attributes with similar names have sim-
ilar values. Specifically, we checked for any overlap of values and
compared the distributions of values using mean, median, etc. We
did this using pandas and custom Python scripts. We found that
the values of “OrgName”and “DUNS” from the “UMETRICSVen-
dorMatching” table did not overlap with the values of “Recipient
Organization” and “Recipient DUNS”.

We concluded that the four remaining UMETRICS tables do
not share any information with the USDA table, and thus are
not useful for matching. Thus, we ignore them in the subsequent
pre-processing steps.

(4) Finally, we applied transformations to the selected tables.
Specifically, we (a) projected out the UMETRICS and USDA tables
to create two tables with relevant columns for matching, (b)
matched the columns between the tables and renamed them with
the same names, and (c) added an ID column to each table. We
now elaborate on these steps.

(4.a) First, we projected and kept from the two tables “UMET-
RICSAwardAggMatching” and “USDAAwardMatching” only at-
tributes that are relevant for matching (we consulted the match-
ing document and the UMETRICS team about which attributes
to keep). This produced the following two tables:
UMETRICSProjected(UniqueAwardNumber, AwardTitle,
FirstTransDate, LastTransDate)

USDAProjected(AwardNumber, ProjectTitle, ProjectStartDate,
ProjectEndDate, AccessionNumber, ProjectDirector)

The “AccessionNumber” was included in the “USDAProjected”
table because the UMETRICS team required the output matches
to be listed as pairs of “UniqueAwardNumber” and “Accession-
Number.”

(4.b) Next, we matched the column names between the two
tables and renamed them with the same name. Specifically, we
matched “UniqueAwardNumber,” “AwardTitle,” “FirstTransDate,”
“LastTransDate” from the “UMETRICSProjected” table to “Award-
Number,” “ProjectTitle,” “ProjectStartDate,” “ProjectEndDate,” re-
spectively. We named them “AwardNumber,” “AwardTitle,” “First-
TransDate,” “LastTransDate.” We renamed “ProjectDirector” in
the “USDAProjected” table as “EmployeeName.” The updated
schemas are shown below.
UMETRICSProjected(AwardNumber, AwardTitle,
FirstTransDate, LastTransDate)

USDAProjected(AwardNumber, AwardTitle, FirstTransDate,
LastTransDate, AccessionNumber, EmployeeName)

Thenwe added a new column, “EmployeeName,” to the “UMET-
RICSProjected” table. To do so, we joined this table with the
“UMETRICSEmployeesMatching” table on the “AwardNumber”
and “UniqueAwardNumber” columns. There were multiple em-
ployee names for the same award in the “UMETRICSEmploy-
eesMatching” table. Therefore, for each award, these employee
names were concatenated, and each employee name was sepa-
rated by the | character.

(4.c) Finally, we added an ID column (“RecordId”) to both the
“UMETRICSProjected” and “USDAProjected” tables, to uniquely
identify each record in each table. The final schema of the two
tables are (see Figure 7):

1What we did here is essentially schema matching [27]. But we did it manually due
to the relatively small sizes of the tables.

Figure 7: Sample rows of the UMETRICSProjected and US-
DAProjected tables.

UMETRICSProjected(RecordId, AwardNumber, AwardTitle,
FirstTransDate, LastTransDate, EmployeeName)

USDAProjected(RecordId, AwardNumber, AwardTitle,
FirstTransDate, LastTransDate, AccessionNumber,
EmployeeName)

We used pandas, PyMatcher, and custom Python scripts to
perform the join and other transformations.

7 BLOCKING
After applying the transformations, the resulting tables, “UMET-
RICSProjected” and “USDAProjected”, have just 1336 and 1915
records, respectively.

Since they are small, can we just match all pairs of records in
their Catersian product? In other words, is blocking necessary?
It turns out that blocking is still required even in this case. This
is because to perform learning-based matching and to evaluate
the match results, we must first take a sample from this set (of
record pairs in the Cartesian product) and label them.

In our case, however, the Cartesian product of the input tables
has 2.5M record pairs, and most of them would be non-matches.
Random sampling from this set will result in very few matches.
Therefore, we still have to perform blocking to remove obvious
non-matching record pairs, so that later when we sample we can
obtain more matches in the samples.

We used the matching definition provided by the UMETRICS
team to guide the blocking step. We proceeded as follows:

(1) First, we applied a blocking scheme to include all record
pairs that satisfy M1. This is because if M1 is indeed a positive
matching rule, then all record pairs satisfying M1 must be in-
cluded in the candidate set (to be fed into the matching step).

Recall thatM1 declares a record pair a match if the second half
of the “AwardNumber” attribute of the “UMETRICSProjected”
table matches exactly the “AwardNumber” attribute of the “US-
DAProjected” table. To find all record pairs that satisfyM1, we
applied an attribute equivalence (AE) blocker to these tables. This
blocker includes a record pair (in the candidate set) only if the
blocking attributes of both input tables agree.

In our case, the AE blocker cannot be applied directly because
the “AwardNumber” from “UMETRICSProjected” and “USDAPro-
jected” cannot be compared for an exact match. So we first used
a regular expression to extract the suffix of “AwardNumber” of
the “UMETRICSProjected” table and stored the result as a tem-
porary column, “TempAwardNumber,” in the same table. Then
we applied the AE blocker using “TempAwardNumber” from the

“UMETRICSProjected” table and “AwardNumber” from the “US-
DAProjected” table as blocking attributes. Finally, we removed
the temporary column (“TempAwardNumber”) from the “UMET-
RICSProjected” table. This blocking scheme produced a candidate
set of record pairs C1.

(2) Next, based on the matching definition M2, we decided
to include the record pairs that have similar award titles. We
examined a sample of the award titles in the “USDAProjected”
and “UMETRICSProjected” tables, and observed that the titles
often have multiple tokens (i.e., words in this case).

Intuitively, two similar award titles should share at least a few
tokens. So we applied an overlap blocker to the input tables us-
ing “AwardTitle” as the blocking attribute. This blocker discards
a record pair if the number of shared tokens (in the blocking
attribute) is less than an overlap threshold K .

Specifically, we normalized all the strings in the “AwardTi-
tle” column by lower casing and removing special characters
(e.g., single/double quotation marks, hash symbols, exclamation
marks, round/curly braces, etc.). Then we performed overlap
blocking using a word-level tokenizer, using the overlap thresh-
old 3 after trying a few other thresholds (e.g., the threshold of 1
resulted in 200K record pairs, and a threshold of 7 resulted in a
few hundred record pairs). This produced a candidate set C2.

(3) The overlap blocker drops a record pair if the number
of tokens in the blocking attribute was less than the overlap
threshold K (in our case, K was 3). So we examined the award
titles between the two tables to see if similar titles with fewer
than 3 tokens exist, and we found quite a few such title pairs2.

To include these record pairs, we applied an overlap-coefficient
blocker, using “AwardTitle” as the blocking attribute. For any
two strings X and Y we have overlap_coe f f icient (X ,Y) = |X ∩
Y |/min(|X |, |Y |) (assuming X and Y have been tokenized into
two sets). This blocker is similar semantics-wise to the overlap
blocker. However, it returns a score between 0 and 1, regardless
of the title length, and thus can handle the case where a title
has fewer than 3 tokens. To apply this blocker, we first lower
cased all the strings in the “AwardTitle” column, removed special
characters, then performed overlap-coefficient blocking using a
word-level tokenizer and a threshold of 0.7 (after trying a few
other thresholds). This produced a candidate set C3.

(4) Next, we unioned C1, C2, and C3 to obtain a consolidated
candidate set C , which has 3177 record pairs3.

We then checked for any potentially missing matches in C
using the blocking debugger of PyMatcher [23]. Briefly, this
debugger takes the two input tables (“UMETRICSProjected” and
“USDAProjected”) and the candidate set C , and returns the list
of record pairs that (a) are in the Cartesian product of the two
tables but not inC , and (b) are judged to be potential matches by
the debugger. These pairs are ranked in decreasing likelihood of
being matches. If the user does not see many true matches in this
list (e.g., by manually examining the top 100 pairs), then he/she
can conclude that the blocking process probably has not killed
off many true matches. See [23] for details, including how the
debugger performs the above process fast.

2Specifically, we first used PyMatcher to find all title pairs whose Jaccard score
(over a 3-gram tokenization) exceeds a threshold. Next, we kept only those pairs
where at least one title has fewer than 3 words. Finally, we took a random sample
of these pairs and manually examined the sample.
3It turned out that we want both C2 and C3 in the consolidated candidate set. C2
andC3 have 2,937 and 1,375 record pairs, respectively. |C2 ∩C3 | = 1,140, |C2 −C3 |
= 1,797, and |C3 −C2 | = 235. Our examination revealed that if two titles are similar
but share few tokens, the overlap blocker will include the pair, but the coefficient
blocker will discard it. So we cannot just use C3 and discard C2 .

In our case, we observed that the top record pairs returned by
the blocking debugger were not matches, and hence we decided
to stop modifying the blocking pipeline. We used PyMatcher for
blocking, and used custom Python scripts and pandas commands
to preprocess the columns before applying blocking4.

8 SAMPLING AND LABELING
After blocking, we wanted to obtain and label a sample of record
pairs from the candidate setC . (Later we need this labeled sample
to select the best learning-based matcher and then train this
matcher to predict matches in the candidate set C .)

Sampling and labeling is not straightforward because the can-
didate set C has relatively few matches and the match definition
is still evolving. Further, since we had to ask the UMETRICS team
to label, we had to manage the logistics for labeling.

Setting Up: We first emailed the UMETRICS team, then fol-
lowed up with a face-to-face meeting to discuss the logistics.
Initially, we proposed to email the record pairs as a CSV file that
they could download and use tools such as MS Excel to label
pairs as a match or a non-match. The UMETRICS team wanted a
tool with better UI that multiple team members could use. So we
developed a simple cloud-based labeling tool with a good UI, but
the tool was limited in that only one person could label at any
time. The UMETRICS team accepted this and said they would
discuss the matter internally and schedule the labeling.

Sampling and Labeling: Next, we performed sampling and
labeling iteratively. Our goal was to obtain a sufficient number
of positive matches in the labeled set. We first took a random
sample of 100 record pairs from the candidate set C , uploaded
the sampled pairs into the cloud-based labeling tool, then asked
the UMETRICS team to label the record pairs as “Yes”, “No”, or
“Unsure”5.

The UMETRICS team trained a student to label using the tool.
Meanwhile, we labeled the same set of record pairs, using our
own understanding of the match definition. Afterward we cross-
checked their labels against ours and observed 22 mismatched
labels. Specifically, one record pair was labeled a non-match
despite satisfying the matching ruleM1. The other 21 pairs had
similar award titles, but labeled as a mix of match, non-match,
and primarily unsures.

In a face-to-face meeting, the UMETRICS team confirmed that
the record pair satisfying M1 must be declared as match (they
also confirmed thatM1 is indeed a positive matching rule). For
others, they mentioned that, though the award titles were similar,
some of them were not unique enough to be declared matches.

They said that theywould have a closer look at themismatches.
After the discussion, we shared the record pairs with mismatched

4PyMatcher’s blocking methods use string filtering techniques where appropriate
to speed up the blocking process.
5It turned out that for many real-world datasets that we have seen, even domain
experts had troubles labeling certain pairs, due to dirty, incomplete, or cryptic data.
Hence the option “Unsure”. As we will see, we ignore “Unsure” pairs in training and
evaluating learning-based matchers. Our reasoning is that if even domain experts
cannot label these pairs, it is unfair to ask learning algorithms to handle them. And
if we can ask learning algorithms to label these pairs, how can we evaluate their
accuracy, given that even the domain experts cannot label them?

We also believe that if the number of “Unsure” pairs is too high, that indicates
that the dataset is too dirty, incomplete, or cryptic, and the domain experts should
clean the dataset before EM is attempted. In this case, as we will see, 300 pairs
were labeled for selecting/training matchers, out of which 32 were labeled “Unsure”.
Later 400 pairs were labeled for evaluating matchers, out of which 16 were labeled
“Unsure”. The UMETRICS team said they were okay with the quality of this dataset
(i.e., judging the EM result from this dataset to be still useful for their domain
science research).

labels using Google Sheets. TheUMETRICS team updated 4 labels
to “Yes” (keeping the labels of the remaining pairs). After the
updated labels were submitted, 15 pairs were labeled as “Yes”, 66
labeled “No” and 19 labeled “Unsure”.

Next, because we had only 15 positive matches, we decided to
obtain more labeled pairs. We discussed (via email) and asked the
UMETRICS team to label at least 100-200 more record pairs to
obtain a sufficient number of positive matches. Following this, we
internally decided to obtain labeled record pairs in two iterations,
with 100 record pairs per iteration6. The first iteration produced
29 “Yes” pairs, 64 “No”, and 7 “Unsure”. The second iteration
produced 24 “Yes”, 72 “No”, and 4 “Unsure”.

We now have 300 labeled pairs, consisting of 68 “Yes”, 202 “No”,
and 30 “Unsure”. Because we have obtained a sufficient number
of positive matches, we stopped seeking more labeled pairs.

Debugging the Labeled Sample: Next, since the labeled pairs
will be used to select and train a matcher, any labeling errors
can impact the predicted matches. To minimize this impact, we
decided to debug the labels.

To do so, we used leave-one-out cross-validation: we trained
an ML matcher on all labeled record pairs except one, applied the
matcher to predict the label for the left-out record pair, compared
this predicted label with the label given by the UMETRICS team,
and repeated the process. We used random forest as the ML
matcher, and removed the unsure and sure matches (record pairs
that satisfy M1) from the labeled data before debugging7. We
observed the following discrepancies:

(D1) Record pairs were predicted matches, but labeled non-
matches if the award titles were very similar but the award title
in the “USDAProjected” table included the suffix “NC/NRSP.”

(D2) Record pairs were predicted matches but labeled non-
matches if the award numbers were different but the award titles
were the same or very similar.

(D3) Record pairs were predicted matches but labeled a mix
of matches and non-matches if the award number was missing
from “USDAProjected” but the award titles were very similar.

We shared example record pairs (using Google Sheets) for each
of the above discrepancies, and discussed via email and face-to-
face meetings with the UMETRICS team. This team (based on
their domain knowledge) decided that all labels in D1 should be
updated as unsure (even they did not know if these were matches).
All labels in D2 should be retained. For D3, the labels must be
updated as matches if the transaction dates for the awards are
within a difference of few years (e.g., two years). This produced
a final set of 300 labeled pairs, consisting of 68 “Yes”, 200 “No”,
and 32 “Unsure.”

9 MATCHING
We now use the above set of 300 labeled record pairs to find
matches between the “UMETRICSProjected” and “USDAProjected”
tables. Specfically, we used this labeled set to select a good
learning-based matcher, then applied this matcher to the pairs in
the candidate set C (obtained after blocking) to predict matches.
6Since labeling is time consuming, we wanted to do this in iterations (rather than
asking the UMETRICS team to label all 200 pairs in one shot) to make sure we can
catch and handle any possible labeling glitches early.
7For cross validation, we need to convert each record pair into a feature vector. To do
this, we applied PyMatcher to the schemas of the two tables “UMETRICSProjected”
and “USDAProjected” to automatically generate a large set of features, which
include both string related features (e.g., Jaccard over 3grams, edit distance, etc.)
and numeric features (e.g., absolute difference, exact match, etc.). See the PyMatcher
homepage for a description of how these features are automatically generated. We
then used these features to convert each record pair into a feature vector.

UMETRICS

Candidate Set
C

USDA

block

sample/label

matches

select matcher M

predict using M

Figure 8: The initial EMworkflow formatching theUMET-
RICS and USDA datasets.

Selecting a Good Matcher: To do this, we used PyMatcher.
Let G be the set of 300 labeled pairs. First, we removed the pairs
labeled “Unsure” and sure matches (i.e., pairs satisfyingM1) from
G, then converted G into a set of feature vectors H (each pair
was converted into a feature vector; we used PyMatcher to au-
tomatically generate a set of features F , then used F to generate
feature vectors).

PyMatcher uses the scikit-learn package, and learning meth-
ods in this package cannot work with missing values in the fea-
ture vectors. So in the next step we filled in the missing values in
the feature vectors in H (with the mean values of the respective
columns).

Next, we selected the best (i.e., the most accurate) matcher
using five-fold cross validation on H . Among decision tree, SVM,
random forest, logistic regression, naive Bayes, and linear regres-
sion matchers (supplied by PyMatcher; these matchers in turn
use corresponding learning methods in scikit-learn), we found
the random forest (RF) matcher had the highest F1 accuracy (av-
eraged over the five folds).

Next, we debugged the RF matcher to try to improve its ac-
curacy. Again, we used the debugging method described in Py-
Matcher. This method tried to find the mismatches, i.e., those
pairs where the RF matcher predicted incorrectly, then examine
these mismatches and take actions to fix them (see [17]). Toward
this goal, we randomly split H into two sets I and J , trained the
RF matcher on I , then applied it to J and identified mismatches in
J , i.e., pairs in J where the label given by the RF matcher differs
from the label given in the sampling and labeling process de-
scribed earlier. We then trained the RF matcher on J and applied
it to I , to identify the mismatches in I .

It turned out many mismatches occurred due to award titles
having different letter cases. So we added more features to handle
this problem8. We then performed cross validation to select the
best matcher again. Now the decision tree performed the best
with 97% precision, 95% recall, and 94.7% F1, on average. We
debugged this matcher using the decision tree matcher debugger
of PyMatcher, but were not able to improve accuracy. So we
stopped and selected this matcher as the best matcher.

Applying the Selected Matcher: We first trained the decision
tree matcher M on the set of feature vectors H (i.e., the set of
300 labeled record pairs). Next, we removed the record pairs
satisfying the positive matching ruleM1 from the candidate set
C (which was obtained after blocking). There were 210 record
pairs that satisfyM1. Next, we converted the revised set C into
a set of feature vectors C ′ (each pair becomes a feature vector)
and imputed the missing values with the mean of the respective
columns. Finally, we applied the trained matcherM to C ′. This
produced 807 matches. Figure 8 shows the overall EM workflow.

Counting also the record pairs that satisfy the positive match-
ing rule, we obtained a total of 1,017 matches. We shared these
matches in a CSV file with the UMETRICS team and discussed
them in a face-to-face meeting.
8We did not not lowercase all words in the pre-processing step, because our experi-
ence withmany EM projects suggests that that often resulted in a loss of information.
So we only lowercased where necessary.

10 HANDLING MANY COMPLICATIONS
What happened nextweremany complications regardingwhether
the current match definition (i.e., what it means to be a match) is
incorrect and should be revised, and how to acommodate more
data (for the tables), which was accidentally omitted earlier.

Should We Match at the Cluster Level? During the discus-
sion with the UMETRICS team, we observed a gap between
their definition of a match between the UMETRICS and USDA
awards and our understanding of the same. Specifically, in our
set of 1,017 matches, there are many one-to-many matches, e.g., a
record in the “UMETRICSProjected” table matches many records
in the “USDAProjected” table. The UMETRICS team insisted that
matches should be one-to-one, i.e., a record in “UMETRICSPro-
jected” should match at most one record in “USDAProjected”.

We were confused by this requirement. Recall from Section 3
that a grant given to a project may be distributed to many smaller
projects (e.g., one per an academic year, or one per CS and one
per biology) in the same university, and this information will
be recorded in multiple entries. For instance, multiple records
in “USDAProjected” can contain information about the exact
same award, but for different academic years (e.g., a research
group may receive a 3-year award; it can send 3 annual reports to
USDA, resulting in 3 records in USDA about this award). Given
this, a record in “UMETRICSProjected” can match many records
in “USDAProjected” and vice versa.

Upon further discussion, it turned out that what the UMET-
RICS team really wanted is this. As mentioned earlier, a project
may last for many years, and may be associated with many sub-
awards. Each sub-award is captured by a record in a table. So the
UMETRICS teamwanted to cluster the records in each table, such
that all sub-awards go into the same cluster. They then wanted
to match these clusters. At this level, insisting that the matches
be one-to-one, i.e., a cluster in “UMETRICSProjected” match at
most one cluster in “USDAProjected” makes sense.

Unfortunately, since this desire was not conveyed to us earlier
(they were not even aware of this sub-award problem originally),
we already performed matching at the record level (not at the
cluster level), and at this level one-to-many and many-to-one
matches make sense.

We then analyzed the one-to-one, one-to-many, and many-to-
one match predictions and shared our analysis with the UMET-
RICS team. Our goal was to show examples of these and their
frequency in the set of matches. Tthe reasoning is that if a prob-
lem affects only a small number of matches, then it is not worth
spending a lot of effort to solve that problem.

We had another discussion with the UMETRICS team. There
they decided that the problem does not affect many matches
and so probably would have an insignificant effect on their do-
main science (which relies on these matches). So they opted to
keep matching at the record level, and kept the definition that
one record in the “UMETRICSProjected” table can match many
records in the “USDAProjected” table, and vice versa. This would
avoid a redo of the project, i.e., starting by clustering the records,
then trying to match the clusters.

Revising theMatchDefinition: Recall that the currentUMET-
RICS repository already has a rule-based matching system, and
that our goal is to beat that system. To do so, the UMETRICS
team logged intoUMETRICS and applied the rule-basedmatching
system to the same data (i.e., the “UMETRICSProjected” and “US-
DAProjected” tables) to obtain matches. The idea was to compute

and compare the precision and recall of the rule-based system to
those of our system.

During this process, they discovered that another positive
matching rule existed: “If the award number in UMETRICSmatches
the project number in USDA, then the record pair is considered a
match”. This rule could be used to pull more sure matches directly
from the “UMETRICSProjected” and “USDAProjected” tables9.

Thus, the match definition was revised to include this rule.
The question is how would this complicate the EM process. The
how-to guide of PyMatcher spells out a well-defined sequence
of steps for EM (e.g., blocking, sampling, etc.). We trained the
students to follow this sequence. By default, a revised match
definition would trigger a re-do of this sequence, which is time
consuming. For example, blocking can be easily revised by just
using the new positive matching rule to add more record pairs
to the candidate set C . But sampling and labeling would be time
consuming. We need to take a random sample of the candidate
set C , and since C has changed, we need to re-do the random
sampling and label any new pair in the sample (that has not
been labeled before).While labeling a small number of pairs seems
trivial, in practice it can take days, as we need to upload the pairs
to the cloud-based labeling tool, then wait for the UMETRICS team,
which often cannot label right away, due to other obligations.

Thus, we did not want to redo the EM process from scratch. To
avoid this, first we checked whether the ML matcher was already
learning the above positive rule from the labeled data. Specifically,
we checked and found that there were 411 pairs in C that satisfy
that rule, and out of those 397 were predicted as matches. Thus,
our matcher correctly predicted most of the pairs that satisfy the
rule as matches. Next, we checked if blocking discarded any pairs
that satisfy the new rule. We found that the Cartesian product of
the “UMETRICSProjected” and “USDAProjected” tables contain
473 such pairs, butC included only 411. Thus, blocking discarded
too many pairs. So the new positive matching rule does have an
effect on the EM process, and something must be done.

Our solution was to leave the current EM workflow alone and
create a new EM workflow (which will be used together with the
current EM workflow). In this new workflow, we wrote a Python
script to apply the new matching rule directly to the input tables
“UMETRICSProjected” and “USDAProjected” to obtain the sure
matches. This new EM workflow can be viewed as a “patch” of the
current EM workflow. If a pair is predicted by both the old and
new workflows, then we take the prediction of the new workflow.
An advantage of this approach is that we did not have to label any
new pairs.

Handling More Data: When the UMETRICS team inspected
the matches produced by the rule-based matcher at UMETRICS,
they found new award numbers that they had not seen before.
Further inspection revealed that the original table “UMETRIC-
SAwardAggMatching” was incomplete, missing 496 records.

We received these extra records in a CSV file. Revising the
table “UMETRICSAwardAggMatching” (to add these records) and
redoing the EM process following the PyMatcher’s how-to guide
would be time consuming (all the steps, blocking, sampling, label-
ing, matching, etc. must have been redone). So we followed the
same strategy used to handle a change in the match definition.
We keep the current EM workflow “as is” or make only minimal
changes to it, then “patch” it with new EM workflows. This way

9“AwardNumber” is already in table “UMETRICSProjected”. “ProjectNumber” is
not in table “USDAProjected”. However, it is in table “USDAAwardMatching” and
thus can be easily added to “USDAProjected”.

UMETRICS Sure Matches
C1

R1 Candidate Set
C2

rules

block

C2-C1 = C

select matcher

predict using M USDA

USDA

Sure Matches
D1

R2

Candidate Set
D2

rules

block

D2-D1 = D predict using M

Extra
UMETRICS

M

Labeled Pairs

Figure 9: The updated EMworkflow to accommodate extra
data and positive matching rules.

we minimized the changes we had to make to our existing work-
flow, and minimized the total human effort. This resulted in the
following procedure (see Figure 9):

(1) Apply the sure-match rules to the original input tables.
Specifically, apply ruleM1 (from the match definition) and
the positive matching rule involving award number and
project number to obtain a set C1.

(2) Apply blocking as before to obtain a candidate set C2.
(3) Remove the sure matches (C1) from C2 to obtain a set C;

this set C is what will be predicted as matches and non-
matches.

(4) Use the labeled set without the sure matches to train
the best matcher and predict on C , and call the resulting
matches R1.

(5) Repeat Steps 1-3 for the extra records in UMETRICS and
the whole USDA table until a set of sure matches D1 and
a candidate set D are obtained.

(6) Apply the best matcher obtained using labeled data (in
Step 4) to D to get a set of match predictions R2.

(7) Return the union ofC1,D1,R1, andR2 as the set of matches.
The above procedure produced 1,137 matches. Specifically, we
first applied the sure-matches rule to obtain 683 sure matches
from the original input tables and 55 sure matches from the addi-
tional records. Then we applied blocking and removed the sure
matches. This resulted in a candidate set from the original input
tables having 2,556 record pairs and a candidate set from the ex-
tra records having 1,220 record pairs. Next, we removed the sure
matches from the labeled set and selected the best matcher, which
was a decision tree matcher. Finally, we applied this matcher to
the candidate sets and obtained 399 matches from the original
tables and no matches from the additional records.

11 ESTIMATING ACCURACY
Now that we had finally obtained the matches in our approach
(and praying that no more complications arise), we were ready
to estimate the accuracies of our solution and the rule-based
matcher deployed at UMETRICS, which we will call the IRIS
matcher (IRIS is the organization that manages UMETRICS).

Ideally, if we have the true labels for the record pairs in the
Cartesian product of the input tables, then we can compute the
accuracy, i.e., precision and recall. However, having the true
labels would mean that there was no need to do EM in the first
place. To address this, we met with the UMETRICS team and
decided to follow the accuracy estimation approach described in
the Corleone paper [13]: We proceeded as follows:

(1) To use the Corleone approach, both the IRIS matches and
our predicted matches must be from the same candidate set of

UMETRICS Sure Matches
C1

R1 Candidate Set
C2

rules

block

C2-C1 = C

select matcher

predict using M USDA

USDA

Sure Matches
D1

R2

Candidate Set
D2

rules

block

D2-D1 = D predict using M
Extra

UMETRICS

M

Labeled Pairs

apply neg. rules S1

apply neg. rules S2

Figure 10: The final EM workflow with negative rules ap-
plied to the results of the learning-based matcher.

record pairs. So we looked for any award number-accession num-
ber pairs from the IRIS matches that were not included in our
consolidated candidate set (from the original and extra records),
which is E = C1 ∪C2 ∪ D1 ∪ D2 (see Figure 9). We found only
one such pair. The UMETRICS team said that the award number
in question was a terminated award (no longer valid) and could
be discarded safely.

(2) We took a random sample of 200 record pairs from the con-
solidated candidate set E, uploaded it to the cloud-based labeling
tool, and asked the UMETRICS team to label. Then we used E
to estimate precision and recall, using Formulas 2-3 in Section
6.1 of the Corleone paper [13]. We estimated that our matcher
had precision in the range (79.6%, 86.01%) and recall in (96.8%,
99.42%). The IRIS matcher had precision in the range (100%, 100%)
and recall in (52.7%, 62.07%). Thus, the IRIS matcher had higher
precision, but lower recall, compared to our matcher.

(3) To reduce the large interval sizes of the estimated precision
and recall, we asked theUMETRICS team to label another 200 ran-
domly sampled record pairs. Applying the same estimation pro-
cedure to all 400 labeled pairs10, we estimated that our matcher
had precision in (75.2%, 80.3%) and recall in (98.1%, 99.6%). The
IRIS matcher had precision in (100%, 100%) and recall in (65.1%,
71.8%). The UMETRICS team liked the fact that our matcher was
able to find more matches than the IRIS matcher.

12 IMPROVING ACCURACY USING RULES
Though we received positive feedback from the UMETRICS team,
we had an internal discussion on how to improve the precision
of our matcher. We decided to apply hand-crafted rules to the
output of our learning-based matcher. The rules would allow
us to make “localized changes”. This hopefully would improve
precision without reducing recall a lot.

Specifically, we wanted to solicit domain-specific rules from
the domain experts (the UMETRICS team) to reduce the number
of false positives, then apply these rules to the predictions of
our learning-based matcher. To do so, we had an email conversa-
tion with the UMETRICS team to understand how to reduce the
number of false positives. The UMETRICS team examined the
predicted matches, then defined a negative rule (i.e., the rule will
flip matches to non-matches), which we discuss next.

The Negative Matching Rule: This rule states that a record
pair is considered a non-match if one of the following conditions
is satisfied:
• Award numbers from UMETRICS and USDA are “compa-
rable,” (defined below), and they are not the same.
• Award number from UMETRICS and project number from
USDA are “comparable,” and they are not the same.

10The set of 400 labeled pairs consists of 92 “Yes”, 292 “No”, and 16 “Unsure”. The
estimation procedure ignores the “Unsure” pairs.

Here “comparable” means that the award numbers are considered
(for this rule) only if they have the same pattern. For example,
the UMETRICS award number “03-CS-112313000-031” and the
USDA award number “2001-34101-10526” are not comparable
because they follow different patterns (i.e., “##-XX-########-###,”
and “YYYY-#####-#####”, respectively, where “#” is any number,
“X” is any character, and “YYYY” is a four-digit year).

The UMETRICS award number “WIS01560” and the USDA
project number “WIS04509” are comparable because they follow
the same pattern “WIS#####” (but because the values are different
this pair will be considered a non-match). The UMETRICS team
gave us the list of possible patterns for the award numbers from
UMETRICS and USDA as well as the project numbers from USDA
(not shown for space reasons).

Applying the Negative Matching Rule: We applied the neg-
ative rule (provided by the UMETRICS team) to the matches
and estimated the accuracy again. Conceptually, the learning-
based matcher followed by rules could be considered just another
matcher like the IRIS matcher. The updated EM procedure is
shown in Figure 10. Here, we applied the negative rules to the
sets of matches R1 and R2 (obtained from the learning-based
matcher). The final set of matches is the union of C1, D1, S1, and
S2.

We consider this new workflow a new matcher. Because the
candidate set of this new matcher is the same as that of the
learning-based matcher from our previous iteration, we can reuse
the labeled set (of 400 pairs). Again, we used the Corleone ap-
proach to estimate the new precision and recall.

We found that our newmatcher (decision tree followed by neg-
ative rules) had precision (96.7%, 98.8%) and recall (94.2%, 97.05%).
In contrast, the learning-based matcher (without negative rules)
had precision (75.2%, 80.3%) and recall (98.1%, 99.6%). The IRIS
matcher had the precision (100%, 100%) and recall (65.1%, 71.8%).
Thus, compared to the IRIS matcher, our learning-based matcher
followed by rules has slightly lower precision, but much higher
recall. The final result set has 845 matches, and was shared with
the UMETRICS team in a CSV file that uses “UniqueAwardNum-
ber”and “Accession Number” pairs to capture the matches.

The UMETRICS team was delighted with the result, and their
director sent the following email:

That is really stupendous news! I’m surprised to see
how much you were able to raise the precision and
recall ... Thanks for all your brilliant work on this.

The Next Steps: As the next immediate step, the UMETRICS
team wanted us to package the matcher so that they could move
it into the UMETRICS repository to do matching for other data
slices. It is similar to moving a workflow that was developed in
the development stage into production.

This step raises three challenges. First, the EM workflow is
rather complex. It has rules atmultiple places (to find surematches
and to update the predictions from the learning-based matcher)
and a machine learning-based matcher. So we need to find out
how to represent it effectively. Second, the new data may be
dirty, so we need to monitor the accuracy of the match results11.
Finally, if the accuracy is not good enough, we need a way to

11This is typically done by taking a random sample of the predicted matches at
regular intervals, manually labeling it, then using the labeled sample to estimate
the accuracy. See [28] for an example of monitoring the accuracy of an e-commerce
product classification system in production.

move back to the development stage and update the EM work-
flow. Currently, we are working with the UMETRICS team to
address these challenges.

13 CHALLENGES FOR CURRENT ENTITY
MATCHING SOLUTIONS

The end-to-end EM case study that we have just described raises
many challenges for the current EM solutions and systems. In
what follows we discuss the main challenges12.

The Need for How-To Guides: It should be clear from the
case study that it is extremely hard, if not impossible, to fully
automate the EM process, end to end. The fundamental reason is
because at the start, the user does not even fully understand the
data, the match defition, and even what he or she wants.

Here, for instance, initially the users were not aware that some
records were missing, or that the match definition was incom-
plete, or that they actually wanted to match at cluster level, and
more. As a result, most EM projects are really a “conversation”
between the EM team and the domain expert team, and this conver-
sation moves forward as new results were produced and discussed.

If this is the case, then it follows that it is critical to have
some how-to guides that tell both teams how to conduct this
conversation, what to do first, what to do second, and so on.

Such guides are completely missing from most current EM
solutions and systems. While PyMatcher does have an initial
how-to guide, as this case study makes clear, that guide is still
quite preliminary. It does not provide guidance to many steps
such as how to converge on a match definition, and how to
collaboratively label effectively, among others. In practice, guides
are likely to be complex, as users want to do so many different
things, and complications will arise (as seen in this study).

Many New Pain Points: Current EM work has largedly fo-
cused on blocking and matching. This study makes clear that
there are many pain points, i.e., steps that require a lot of work
from users, that current EM research has ignored or not been
aware of. For example, how to effectively explore, understand,
and clean the tables? While data exploration and cleaning have
received significant attention, most of this work has been carried
out “in isolation”, independently of work in EM, based on the
implicit argument that these problems are orthogonal to EM. We
believe, however, that these problems should be solved in an EM-
centric way, i.e., we should not just try to understand the tables
for understanding’s sake, but rather to understand only things
that are important for subsequent EM.

Other examples of pain points, which require a lot of work
from users, include how to quickly converge to amatch definition,
how to label collaboratively, and how to update an EM workflow
if something (e.g., data, match definition) has changed. We argue
that more effort should be devoted to addressing these real pain
points in practice.

Different Solutions for Different Parts of the Data: The
vast majority of current EM works treat the input data as of
uniform quality, but in practice, this is rarely the case. Instead, the
data commonly contains dirty data of varying degree, incorrect
12In addition to this case study, in the past 3.5 years we have also worked on more
than 20 other EM cases for 12 companies and domain science groups [14]. The
challenges that we discuss here are not specific to the case stufy of this paper.
They arise in many of these other EM cases as well. Further, even though we used
PyMatcher in this case study, given the detailed examination of 33 other free and
paid EM tools conducted in [18], we believe many of the challenges discussed here
would also arise if we were to use these other EM tools.

data, and incomplete data that even domain experts cannot match.
It makes no sense trying to debug the system, then spendingmore
time and money to match incorrect and incomplete data. As a
result, it is important to have tools that help the user explore
and understand the data, then ways to help the user “split” the
data into different parts and develop different EM strategies for
different parts of the data, as illustrated in this case study (e.g.,
see Figure 10).

Support for Easy Collaboration: We found that in many EM
settings there is actually a team of people wanting to work on the
problem. Most often they collaborate to label a data set, debug,
clean the data, etc. For example, in this case study theUMETRICS
team collaboratively labeled and helped debug the labeled data.
However, most current EM tools are rudimentary in helping
users collaborate easily and effectively. Since users often sit in
different locations, it is important that such tools are cloud-based,
to enable easy collaboration.

Handling Changes Along the Way: No matter how careful
we are at the start, changes will likely arise along the way, as the
users gain more knowledge and may change their mind. So any
effective EM solution need to have good ways to handle such
changes. This case study suggested a way to do so, by minimally
modifying existing EM workflows and patching them by adding
more EM workflows. More research is necessary to evaluate and
develop solutions for this problem.

Managing Machine Learning “in the Wild”: It is clear that
ML can be quite effective. This case study suggests that it can
help significantly improve recall while retaining high precision,
compared to rule-based EM solutions. But the study also shows
that deploying even the simplest ML method “in the wild” raises
all kinds of challenges, such as labeling, coping with new data,
etc. Further, the study also suggests that the best EM solutions
are likely to involve a combination of ML and rules (such as the
negative matching rule in this study).

Designing EM SystemArchitectures: Finally, this case study
raises fundamental questions about what should be the “right”
EM system architecture. It implies that a stand-alone monolithic
EM system is not likely to work well, because the users often
want to try so many different things and many complications
often arise.

Observe that in this study, every time there was a complication,
we had to devise a new EM workflow and then wrote Python
script (that uses PyMatcher’s commands) to implement the new
workflow. This is more difficult to do with a stand-alone systems.
Instead, the study suggests that an “open-world” EM architecture,
such as the one PyMatcher has adopted, where the system is a
set of tools that interoperate with one another and also with data
science tool in PyData, is more promising. But far more studies
and research are necessary to settle this question. For a more
detailed discussion on this topic, see our recent work [14], which
discusses the system aspects of Magellan.

14 CONCLUSIONS
In this paper we have described in detail a case study of entity
matching, from raw data to the matches. We have highlighted as-
pects that previous EM work has ignored. Our case study clearly
demonstrates many challenges for current EM work and systems.
We hope that this case study on how “sausage is made” can help
EM researchers understand better the challenges of the EM pro-
cess, and thus develop more effective EM solutions.

Acknowledgments: We thank the anonymous reviewers for invaluable sugges-
tions that significantly improve this paper. This work is supported by UW-Madison
UW2020 grant and NSF grant IIS-1564282, and by Google, Informatica, Johnson
Controls, American Family Insurance, and WalmartLabs.

REFERENCES
[1] [n. d.]. pandas-profiling. https://github.com/pandas-profiling/pandas-

profiling.
[2] [n. d.]. Universities: Measuring the Impacts of Research on Innovation, Com-

petitiveness, and Science. https://www.btaa.org/research/umetrics.
[3] Foto N Afrati, Anish Das Sarma, David Menestrina, Aditya Parameswaran,

and Jeffrey D Ullman. 2012. Fuzzy joins using MapReduce (ICDE).
[4] Mikhail Bilenko, Beena Kamath, and Raymond J Mooney. 2006. Adaptive

blocking: Learning to scale up record linkage (ICDM).
[5] Luiz Fernando Carvalho, Alberto Laender, and Wagner Meira Jr. 2015. Entity

Matching: A Case Study in the Medical Domain. CEUR Workshop Proceedings
1378 (05 2015).

[6] Peter Christen. 2012. Data Matching. Springer.
[7] Peter Christen. 2012. A Survey of Indexing Techniques for Scalable Record

Linkage and Deduplication. IEEE TKDE 24, 9 (2012), 1537–1555. https:
//doi.org/10.1109/TKDE.2011.127

[8] Xu Chu, Ihab F. Ilyas, and Paraschos Koutris. 2016. Distributed Data Dedupli-
cation. PVLDB 9, 11 (2016), 864–875.

[9] Anish Das Sarma, Ankur Jain, Ashwin Machanavajjhala, and Philip Bohannon.
2012. An Automatic Blocking Mechanism for Large-scale De-duplication
Tasks (CIKM). 10. https://doi.org/10.1145/2396761.2398403

[10] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad
Ouzzani, and Nan Tang. 2017. DeepER–Deep Entity Resolution. arXiv preprint
arXiv:1710.00597 (2017).

[11] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. 2007.
Duplicate Record Detection: A Survey. IEEE TKDE 19, 1 (2007), 1–16.

[12] Mark Flood, John Grant, Haiping Luo, Louiqa Raschid, Ian Soboroff, and
Kyungjin Yoo. 2016. Financial entity identification and information integration
(feiii) challenge: the report of the organizing committee. In Proceedings of the
Second International Workshop on Data Science for Macro-Modeling. ACM, 1.

[13] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F Naughton, Narasimhan
Rampalli, Jude Shavlik, and Xiaojin Zhu. 2014. Corleone: Hands-off crowd-
sourcing for entity matching (SIGMOD).

[14] Yash Govind et al. 2019. Entity Matching Meets Data Science: A Progress
Report from the Magellan Project. UW-Madison Technical Report.

[15] Anitha Kannan, Inmar E. Givoni, Rakesh Agrawal, and Ariel Fuxman. 2011.
Matching Unstructured Product Offers to Structured Product Specifications.
In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM.

[16] Lars Kolb, Andreas Thor, and Erhard Rahm. 2012. Dedoop: efficient dedupli-
cation with Hadoop. PVLDB 5, 12 (2012), 1878–1881.

[17] Pradap Konda et al. 2016. Magellan: Toward Building Entity Matching Man-
agement Systems. PVLDB 9, 12 (2016), 1197–1208.

[18] Pradap Konda et al. 2016. Magellan: Toward Building Entity Matching Man-
agement Systems. Technical Report, http://www.cs.wisc.edu/~anhai/papers/
magellan-tr.pdf.

[19] Pradap Konda et al. 2019. Executing Entity Matching End to End: A Case
Study. Technical report pages.cs.wisc.edu/~anhai/papers/umetrics-tr.pdf.

[20] Pradap Konda et al. 2019. The UMETRICS Entity Matching Problem: Data,
Documentation, and Matches. Available from Magellan’s homepage:
sites.google.com/site/anhaidgroup/projects/magellan.

[21] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of Entity
Resolution Approaches on Real-world Match Problems. Proc. VLDB Endow.
(Sept. 2010).

[22] Hanna Köpcke, Andreas Thor, Stefan Thomas, and Erhard Rahm. 2012. Tailor-
ing Entity Resolution for Matching Product Offers. In Proceedings of the 15th
International Conference on Extending Database Technology. ACM.

[23] Han Li et al. 2018. MatchCatcher: A Debugger for Blocking in Entity Matching.
In EDBT.

[24] Xiaochun Li and Changyu Shen. 2013. Linkage of patient records from dis-
parate sources. Statistical Methods in Medical Research 22, 1 (2013), 31–38.

[25] WesMcKinney. 2011. pandas: a Foundational Python Library for Data Analysis
and Statistics. In PyHPC.

[26] Lee Peters, Joan E Kapusnik-Uner, Thang Nguyen, and Olivier Bodenreider.
2011. An approximate matching method for clinical drug names. In AMIA
Annual Symposium Proceedings, Vol. 2011. American Medical Informatics
Association, 1117.

[27] Erhard Rahm and Philip A. Bernstein. 2001. A survey of approaches to auto-
matic schema matching. VLDB J. 10, 4 (2001), 334–350.

[28] Chong Sun et al. 2014. Chimera: Large-Scale Classification using Machine
Learning, Rules, and Crowdsourcing. PVLDB 7, 13 (2014), 1529–1540.

[29] Rares Vernica, Michael J. Carey, and Chen Li. 2010. Efficient Parallel Set-
similarity Joins Using MapReduce (SIGMOD). 12. https://doi.org/10.1145/
1807167.1807222

[30] B. Weinberg, J Owen-Smith, R. Rosen, L. Schwarz, B. Allen, R. Weiss, and J.
Lane. 2014. Science Funding and Short-Term Economic Activity. Science 344,
6179 (2014), 41–43.

https://doi.org/10.1109/TKDE.2011.127
https://doi.org/10.1109/TKDE.2011.127
https://doi.org/10.1145/2396761.2398403
http://www.cs.wisc.edu/~anhai/papers/magellan-tr.pdf
http://www.cs.wisc.edu/~anhai/papers/magellan-tr.pdf
https://doi.org/10.1145/1807167.1807222
https://doi.org/10.1145/1807167.1807222

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Problem Definition
	4 Understanding the Data
	5 Understanding Match Definition
	6 Pre-Processing the Data
	7 Blocking
	8 Sampling and Labeling
	9 Matching
	10 Handling Many Complications
	11 Estimating Accuracy
	12 Improving Accuracy Using Rules
	13 Challenges for Current Entity Matching Solutions
	14 Conclusions
	References

